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 
Abstract—A novel spatially large-domain and temporally 

entire-domain method of moments (MoM) is proposed for 
surface integral equation (SIE) modeling of 3-D conducting 
scatterers in the time domain (TD). The method uses higher 
order curved Lagrange interpolation generalized quadrilateral 
geometrical elements, higher order spatial current expansions 
based on hierarchical divergence-conforming polynomial vector 
basis functions, and temporal current modeling by means of 
orthogonal weighted associated Laguerre basis functions. It 
implements full temporal and spatial Galerkin testing and 
marching-on-in-degree (MOD) scheme for an iterative solution of 
the final system of spatially and temporally discretized MoM-TD 
equations. Numerical examples demonstrate excellent accuracy, 
efficiency, convergence, and versatility of the new MoM-MOD 
method. The results also demonstrate very effective large-domain 
MoM-TD SIE models of scatterers using flat and curved patches 
of electrical sizes of up to about 1.7 wavelengths at the maximum 
frequency in the frequency spectrum of the pulse excitation, 
higher order current expansions of spatial orders from 2 to 8 in 
conjunction with entire-domain Laguerre temporal bases, and 
minimal numbers of unknowns. 
 

Index Terms—Electromagnetic analysis, numerical techniques, 
method of moments, surface integral equations, time domain 
analysis, higher order modeling, curved parametric elements, 
polynomial basis functions, scattering, transient response. 
 

I. INTRODUCTION 

HE TIME-DOMAIN (TD) surface integral equation (SIE) 
formulation is an effective approach to transient 

electromagnetic (EM) analysis of open-region (radiation and 
scattering) three-dimensional (3-D) structures. TDSIE 
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techniques have two unique advantages as compared to 
differential equation based numerical approaches, such as the 
finite element method (FEM), when analyzing homogeneous 
or piecewise homogeneous radiation and scattering structures 
in the TD. As SIE based methods, they only require surface 
discretization of the scatterer and implicitly satisfy radiation 
boundary condition through Green’s functions. As TD 
methods, they can provide analysis of transient, broadband, 
and nonlinear phenomena in a single run.  

The most explored method in solving TDSIEs is the 
marching-on-in-time (MOT) method [1]. Several MOT 
schemes, combined with the method of moments (MoM) 
Galerkin-type spatial testing, have been developed [2]–[7]. In 
terms of the numerical properties of proposed and 
implemented temporal basis functions and their orders, most 
MOT techniques apply linear approximations of the temporal 
current expansions [3], [4], [8]–[12]. Higher order Lagrange 
polynomial temporal basis functions, implemented up to the 
second order, have been suggested in order to enhance the 
accuracy of the MOT algorithm [7], [13]–[17]. 

Novel higher order temporal basis functions derived from 
Laguerre polynomials are introduced in [18]. These 
polynomials naturally satisfy the causality condition because 
they are defined on the interval from zero to infinity (entire-
domain temporal basis functions); therefore, they are a 
desirable choice for transient modeling. By applying the 
temporal testing procedure in the same fashion as the spatial 
Galerkin-type testing, and due to the orthogonality of Laguerre 
polynomials, the temporal variable can be integrated 
analytically out from the final system of TDSIEs. Instead of 
the conventional MOT procedure, the final system of 
equations is solved in marching-on-in-degree (MOD) of 
temporal basis functions. Like implicit MOT schemes [6], the 
MOD approach does not have to satisfy the Courant-Friedrich-
Levy (CFL) sampling criterion relating the spatial to the 
temporal discretization. The MOD scheme employing 
weighted Laguerre polynomials as temporal bases has been 
implemented within different MoM-SIE formulations in the 
TD, including the electric field integral equation (EFIE),  
magnetic field integral equation (MFIE), and combined field 
integral equation (CFIE) formulations, for transient scattering 
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analysis of conducting and dielectric structures [19]–[26]. 
Compared to the implicit MOT scheme, which results in a 
sparse system matrix and where the sparsity/stability depends 
on the size of the time step, the MOD scheme produces a full 
system matrix independent of the time step/order of the time-
variant basis functions. The minimal order of the Laguerre 
polynomials for the temporal support is defined by the time 
duration and frequency bandwidth product of an incident wave 
[19], [21]. Finally, the Laguerre polynomials decay to zero at 
infinite time, thus the solution cannot become oscillatory for 
late times. 

In terms of the numerical properties of proposed and 
implemented spatial basis functions and their orders, however, 
practically all the existing MOT and MOD 3-D MoM-TD SIE 
simulation tools for EM scattering analysis are low-order or 
small-domain (subdomain) techniques, with the EM structure 
being modeled by planar triangular surface elements that are 
electrically very small and the electric and magnetic currents 
over the elements are approximated by the first-order spatial 
basis functions, namely, Rao-Wilton-Glisson (RWG) 
functions [27]. This results in a very large number of spatial 
unknowns (unknown current-distribution coefficients) needed 
to obtain results of satisfactory accuracy, with all the 
associated problems and large requirements in computational 
resources. In addition, flat triangular patches do not provide 
enough flexibility and efficiency in modeling of structures 
with pronounced curvature.  

An alternative approach – constituting the higher order or 
large-domain (sometimes also referred to as the entire-
domain) computational EM [28] – is based on using higher 
order basis functions defined on large curved geometrical 
elements (patches) [29], which can greatly reduce the number 
of unknowns for a given problem and enhance the accuracy 
and efficiency of the computation. However, this approach 
seems to have not been fully employed in the MoM-TD SIE 
analysis yet; namely, almost none of the reported MoM-
MOT/MOD TD SIE results and applications in the literature 
demonstrate actual using and implementation of spatial 
discretization models with current approximation orders 
higher than one (higher order modeling). Moreover, for MoM-
TD SIE modeling of general structures that may possess 
arbitrary curvature, it is convenient to have both higher order 
geometrical flexibility for curvature modeling and higher 
order current-approximation flexibility for spatial current 
modeling – in the same method. Also, it is convenient to use 
hierarchical higher order bases, which allow elements of 
different orders and sizes combined together in the same 
model. Notable examples of spatially higher order MoM-MOT 
TD SIE modeling are the boundary integral equation (BIE) 
method in the TD using isoparametric curvilinear quadratic 
approximation of geometry and both spatial and temporal 
dependence of fields [30], [31] and the higher order Calderon 
preconditioned EFIE TD solver employing Graglia-Wilton-
Peterson (GWP) divergence- and quasi curl-conforming 
(DQCC) spatial basis functions of up to third order on second-
order curvilinear triangular elements [32]. Another example 
are spatially higher order vector basis functions (up to the 

second order) in conjunction with band-limited interpolatory 
functions (BLIFs) for temporal discretization have been 
introduced in [5]. In addition, none of the works employ large 
elements (or a combination of large and small elements) in the 
MoM-TD SIE model (large-domain modeling). 

This paper proposes a novel spatially large-domain and 
temporally entire-domain MoM-TD EFIE method, with full 
temporal and spatial Galerkin testing, for 3-D transient EM 
analysis of conducting scatterers based on higher order 
geometrical modeling and current expansion and MOD 
scheme. The geometry of the structure is modeled using 
Lagrange-type interpolation generalized quadrilaterals of 
arbitrary geometrical-mapping orders and the spatial current 
distributions over the elements are expanded in terms of 
hierarchical divergence-conforming polynomial vector basis 
functions of arbitrarily high current-approximation orders 
[29]. Note that the quadrilateral elements have been chosen to 
facilitate surface meshes that can employ very large elements, 
which is consistent with the large-domain modeling and 
higher order current expansion paradigm. Triangular elements 
could be used (with appropriate local parent coordinate 
systems) but with limited flexibility in terms of large-domain 
modeling. Time variations of the currents are expressed by 
orthogonal entire-domain temporal basis functions derived 
from Laguerre polynomials and the transient response of the 
scatterer is obtained by an iterative solution of the final system 
of spatially and temporally discretized MoM-TD EFIE 
equations in a MOD fashion [26]. It should be noted that the 
MOD is a particularly suitable choice here since the focus of 
this paper is on higher order spatial elements. However, MOD 
has seen limited use in literature because its efficiency may 
often be considerably weaker than with the methods that use 
local basis functions in time, e.g., [32].  

To the best of our knowledge, this paper presents the first 
MoM-TD SIE method with very high spatial and temporal 
expansion orders (the results demonstrate using current 
expansions of spatial orders from 2 to 8 and geometrical-
mapping orders from 1 to 4 in conjunction with using higher 
order, entire-domain Laguerre polynomial temporal basis 
functions) and the first set of spatially large-domain MoM-TD 
SIE modeling examples (the electrical sizes of flat and curved 
patches in models are up to about 1.7 wavelengths at the 
maximum frequency in the frequency spectrum of the pulse 
excitation). The new method is also the first MoM-MOD 
method with spatially higher order expansions. 

Section II of the paper presents development and 
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Fig. 1.  3-D PEC scatterer excited by an incident Gaussian pulse – analysis
by the MoM-MOD TD EFIE method. 



0018-926X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TAP.2015.2418343, IEEE Transactions on Antennas and Propagation

 3

implementation of all major numerical components of the new 
MoM-MOD technique. In Section III, the technique is 
validated and its accuracy and efficiency evaluated and 
discussed in several characteristic examples. 

II. NOVEL MOM-MOD TD EFIE METHOD 

A. EFIE Formulation in TD 

Consider a 3-D conducting, nonpenetrable (PEC – perfect 
electric conductor) body excited by an incident wave (e.g., a 
Gaussian pulse or its derivative), as shown in Fig. 1. The total 
tangential electric field (superposition of incident field iE and 

scattered field E ) on the boundary surface S is equal to zero at 
each time instant, 
 

0)(,,0)],([)],([ tangitang  tStt rrErE . (1) 

 
The scattered electric field in the unbounded homogeneous 
background medium of permittivity and permeability  is 
expressed in terms of surface electric current density vector JS 

over S as follows: 
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The Lorenz (retarded) potentials are given by 
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where || rr R  represents the distance between the 

observation point r  and the source point r , cRt /τ   is 

the time (delay) that the EM wave travels from the source to 
the observation point, and c is the intrinsic speed of 
propagation of the EM wave in the background medium. Note 
that in (4), the surface charge density sρ  is related to JS based 

on the continuity equation, t SSs ρJ . Having in 

mind the integral expressions for scattered electric field E in 
(2)–(4), (1) represents the TD EFIE for JS as unknown, which 
is discretized and solved using the MoM with Galerkin testing 
in space-time in conjunction with the MOD scheme [24], [25]. 

B. Geometrical Modeling Using Higher Order Quadrilateral 
Surface Elements 

The geometry of the structure in Fig. 1 is modeled by means 
of generalized curved quadrilateral patches shown in Fig. 2 
and analytically described as [29] 
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where Ku and Kv (Ku, Kv  1) are geometrical orders of the 
element along u and v parametric coordinates, respectively 
(note that the orders do not need to be the same within an 
element), klr  are constant vector coefficients related to 

position vectors of the interpolation nodes, see Fig.2, )(u  

represent Lagrange interpolation polynomials in the u 
coordinate,  
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with the nodes defined as uuj KKju /)2(  , uKj ,...,1,0 , 

and similarly for )(v . Usually, the equidistant distribution of 

interpolation nodes along each coordinate in parametric space 
is used. Of course, the use of specific nonequidistant node 
distribution, which would provide additional modeling 
flexibility and accuracy in some applications, is possible as 
well. Note that the 3-D generalization of the quadrilateral in 
Fig. 2 is used in the higher order FEM-TD method [33]. 

C. Higher Order Temporal and Spatial Basis Functions 

In the novel MoM-TD EFIE method, the time-variant 
electric current density and the accompanying surface charge 
density over every generalized quadrilateral in the model are 
expanded using temporal and spatial higher order basis 
functions as follows: 
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where h is the Hertz vector introduced as the actual unknown 
in the MoM solution procedure in order to avoid temporal 
integration in (4) [34], [21], and u and v are local parametric 

 
Fig. 2.  Generalized curved parametric quadrilateral MoM-SIE patch defined 
by (5), with the square parent domain. 
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coordinates of an element (SIE patch) in the model [see Eq. 
(5)]. Unknown time-dependent coefficients in (8) associated 
with the u-component of the Hertz vector huij are expanded 
using a linear combination of the three associated Laguerre 
functions with successive orders, 
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(time-dependent coefficients associated with v-component of 
the Hertz vector hvij can be expanded in a similar fashion). 
Here, M is the order of temporal basis functions, s is the 
scaling factor which controls the accuracy of the temporal 
support, huij,q are unknown constant coefficients, 
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basis functions, and )(stLq  are Laguerre polynomials of order 
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These polynomials satisfy the following recursive relation: 
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Linear combination of weighted Laguerre polynomials, (9), is 
suggested in [24], [26] in order to improve the computational 
efficiency as compared to the conventional MOD method 
where the time-dependent part of the Hertz vector is expanded 
only by a single associated Laguerre function set )(stq  [21], 

[23], [25]. The Laguerre polynomials have excellent causality, 
orthogonally, recursive-computation, and convergence 
properties [24], and are extremely convenient for the purpose 
of temporal expansions in the large-domain MoM-TD EFIE 
method. Functions f  in (8) are higher order hierarchical-type 
divergence-conforming spatial basis functions defined on each 
generalized quadrilateral patch (see Fig. 2). For the local u- 
and v-components of the Hertz vector, they are given by [29] 
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(see Fig. 3 in [35] for visualization of these functions). 

Parameters Nu and Nv in (8) are the adopted degrees of the 
spatial polynomial approximation of the Hertz vector. The 
unitary vectors au and av in (12) are obtained as 

uvuvuu  /),(),( ra and vvuvuv  /),(),( ra , with r  

given in (5), and  is the Jacobian of the covariant 
transformation, |),(),(|),( vuvuvu vu aa  . Furthermore, 

we consider the functions in the following simplified form: 
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where  are the simple 2-D power functions, 
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Note that the lowest order of approximation (Nu=Nv=1) 
yields the rooftop functions on generalized quadrilateral 
patches (which, for such basis functions, then must be very 
small).  

Substituting (2)–(4) combined with (7)–(9) into (1) and 
applying the analytical expressions for the second derivative 
of the time dependent part of the Hertz vector hij (hij 
representing either huij or hvij), 
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with the first time-derivative being due to the magnetic vector 
potential term in (2) and the second due to the substitution of 
the surface current distribution in terms of the Hertz vector 
(7), the TDEFIE formulation can be finally expanded using 
unknown coefficients hij,q and higher order temporal and 
spatial basis functions   and f , respectively, as follows: 
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                       (16) 
 

The closed form of the second derivative of the time 
dependent part of the Hertz vector (15) is derived satisfying 
the properties of Laguerre polynomials, i.e., causality and 
orthogonality [24], [36]. The error due to a finite difference 
approximation of this derivative, used in traditional MOT 
methods, is eliminated utilizing the analytical expression. In 
addition, there is no need for temporal interpolation of the 
solution. Once unknown coefficients are obtained, the 
current/field distribution over the SIE element can be 
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computed at any instant in time. Note that in (16), when 
compared to (9) and (15), the terms inside the temporal 
summation are regrouped with respect to unknown 
coefficients hij,q instead of associated Laguerre functions q .  

D. Full Time-Space MoM Galerkin Testing 

The TDEFIE (16) is tested by means of the full temporal 
and spatial Galerkin method [28], [29], [6] i.e., using the same 
functions used for current (Hertz-vector) expansion. The 
generalized Galerkin impedances corresponding, respectively, 
to the magnetic vector potential and electric scalar potential 
terms in the expression for the scattered field E in (2) in the 
model can be derived, using (3) and (4), in the following form: 
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where p  and q  are, respectively, the temporal testing and 

basis functions, p and q are indices/orders of the temporal 
testing and basis support, and mf and nf  are the spatial testing 

and basis functions on the mth and nth generalized 
quadrilateral elements (Sm and Sn). The impedance in (18) is 
obtained applying the surface divergence theorem and the 
property of higher order divergence conforming functions that 
the normal component of the testing function mf  is either zero 

at the element edges or the two contributions of the elements 
sharing an edge exactly cancel out in the final expressions for 
generalized impedances. The source-to-field distance R in (17) 
and (18) is computed as |),(),(| nnnmmm vuvuR rr  , with r 

being defined in (5). 
Due to causality and orthogonality of Laguerre polynomials 

[24], temporal integrals in (17) and (18) can be handled 
analytically first, resulting in the two types of Green’s 
functions for 2-D spatial integrals, as follows 
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Taking into account the parametric representation of the 
quadrilateral surface element, in (5), and simplified 
representation of the spatial basis functions in (13) and (14), 
generalized impedance terms in (17) and (18) corresponding 
to the testing functions defined by indices im and jm on the mth 
quadrilateral and the basis function defined by indices in and jn 
on the nth quadrilateral become 
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In these equations, Nu

(m) and Nv
(m) are the Hertz-vector 

approximation orders of the mth quadrilateral along the u- and 
v-coordinate, respectively, Nu

(n) and Nv
(n) are the corresponding 

orders for the nth quadrilateral, and the integration limits in 
both quadrilaterals are u1=v1=1 and u2=v2=1. In 
addition,  Ku

(m) and Kv
(m) are the geometrical orders along the 

u- and v-coordinate, respectively, rkl
(m) are the geometrical 

vector coefficients in the polynomial expansion of the mth 
quadrilateral, Ku

(n), Kv
(n), and rkl

(n) are the corresponding 
geometrical parameters for the nth quadrilateral in the model, 
and i is the basic Galerkin potential integral given by 
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The 1-type integral [for i = 1 in (22)], involving the first 
Green’s function based on (19), 

RsR/cIRg cRs
pq /eR/)()( )2/(-

1  , when q = p, has a 1/R-type 

singularity, which is taken care of as in our frequency-domain 
(FD)  MoM-SIE methods [28], [29]. The 2-type integral [for i 
= 2 in (22)], with the second Green’s function 

RcsRLcsRLsR/cIRg qpqp
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 when q < p, is not singular for R approaching zero, 
since  /)(lim 2

0
csRg

R



; this can be proved by applying 

L’Hospital’s rule and properties of the Laguerre polynomials. 
The generalized Galerkin voltages, namely, the column-

matrix elements due to the incident field on the right-hand side 
of the equation (16), are evaluated, after the temporal and 
spatial Galerkin testing, as 
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In order to compute the temporal integral in (23) numerically, 
the upper limit is truncated to a finite duration of the time-
domain signature Tf multiplied by the scaling factor s, 
ensuring that all further transient variations in the spatial 
domain of interest can be neglected.  

Finally, the generalized Galerkin impedances corresponding 
to the complete set of spatial basis functions in (12) can be 
obtained as a linear combination of those in (20) and (21), 
corresponding to the simplified functions in (13) and (14), and 
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similarly for the generalized voltages, which greatly expedites 
the matrix fill process when compared to the direct 
computation of final impedances and voltages [29]. Moreover, 
the Galerkin impedances and voltages for any higher order set 
of basis functions of divergence-conforming polynomial type 
can also be constructed as a linear combination of the 
impedances for the simple 2-D power functions in (13) and 
(14). 

E. MOD solution of MoM-TD EFIE 

After Galerkin testing of (16) in space-time, with all 
generalized impedance and voltage matrices in (20)–(23) 
being already precalculated, the global system of linear 
algebraic equations can be obtained in the following form: 
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where ][][][ 1,1,  mn
A
mnmn ZZZ  is the system matrix, which takes 

into account contributions of the generalized impedance 

matrices, from (20) and (21) (for ][ 1,A
mnZ  and ][ 1,

mnZ , 

respectively), for the 1-type integral  from (22) combined 
with (19) for the cases when q = p. As can be seen, the system 
matrix does not depend on the orders of temporal testing and 
basis functions, p and q, respectively; therefore, it is computed 
and inverted only once. Generalized impedances (20) and (21) 
corresponding to the 2-type integral, with (22) combined with 
(19) for the cases when q < p, are precalculated for each 
combination of the temporal testing and basis function indices, 
p and q, and stored in 3-D matrices constituted by M-element 

arrays of 2-D matrices ][ 2,
,

A
kmnZ  and ][ 2,

,


kmnZ , k = M – p + q, of 

size m × n = NMoM × NMoM, with M being the order of temporal 
basis functions and NMoM the total number of MoM spatial 
unknowns. The minimal order M is defined by the time 
duration, Tf, and the frequency bandwidth, B, of the excitation 
so that M ≥ 2BTf + 1 [19], [21]. Finally, the system (24) is 
solved recursively in the marching-on-in-degree (MOD) 
fashion for unknown coefficients of the Hertz vector }{ , pnh , n 

= 1, 2, …, NMoM, p = 0, 1, 2, …, M. Note that, comparing (24) 
with (16), the temporal summation on the right-hand side of 
the system equation (which includes already known 
coefficients) is done up to p – 1 instead of M because of the 
property (19), 0)( sR/cI pq  when q > p. Note also that initial 

coefficients for p = 0, }{ 0,nh , are obtained as the solution of 

the matrix equation }{}{][ i
0,0, mnmn VhZ  . In this case, the only 

contribution from the right-hand side of the system (24) is due 

to the excitation vector }{ i
0,mV , while all other terms are equal 

to zero because of the causality property of Laguerre 
polynomials. The system of equations (24) for the pth order is 
solved by Gaussian elimination for unknown coefficients 

}{ , pnh . By postprocessing of the obtained coefficients, the 

current Js over any generalized quadrilateral patch in the 
model is computed using (7), where the first derivative of 

)(thn  is calculated analytically as 
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Computation of electric and magnetic fields due to Js, as well 
as of any other quantity of interest for the analysis, is then 
straightforward.  

III. NUMERICAL RESULTS AND DISCUSSION 

In this section, five PEC scattering structures in free space 
are analyzed to validate and evaluate the proposed spatially 
large-domain and temporally entire-domain MoM-MOD TD 
EFIE method. In all the examples, we solve for the induced 
transient surface current densities, as the most rigorous 
representative of the solution accuracy, critical for all near 
field parameters and quantities. Generally, the accuracy of far 
field computations is much better than that for the current 
distribution. All the structures are illuminated by an incident 
Gaussian pulse as shown in Fig. 3 and given by 
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where the vector amplitude E0 takes into account the 

polarization of the wave, k̂  is the unit vector in the 
propagation direction of the incident wave, r is the position 
vector of the observation point with respect to the global 

y

z

x

rθ

ϕ

P ( , ,r θ ϕ)

E r
i
( , )t

k

O

 
Fig. 3.  Incident Gaussian pulse defined in (26) (shown for xE ˆ00 E  and

zk ˆˆ  ) and associated spherical coordinate system defining elevation and
azimuthal angles,   

and  , respectively – as excitation of conducting

scatterers analyzed by the MoM-MOD method. 
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coordinate origin, c0 is the speed of light, t0 represents a time 
delay of the Gaussian peak from the time origin, and Tw is the 
width of the Gaussian pulse. Time units in the examples are 
expressed in terms of light meters (lm), where tct 0[lm]  . 
 

As the first example, we perform the convergence analysis 
of the new MoM-MOD method for a metallic square plate 
with edge length a = 2 m. Excitation is by a Gaussian pulse 
(Fig. 3) normally impinging on a plate with E0 = 1 V/m, 
Tw = 4 lm, and t0 = 6 lm. The wave is linearly polarized with 
its electric field vector being parallel to one pair of plate 
edges. We consider in all examples that the pulse has 
significant spectral components up to fmax where the spectral 
amplitude decays to 0.1% of the maximal value. In this 
example it is approximately fmax = 250 MHz. We consider two 
models of the first geometrical order (Ku = Kv = K = 1) for the 
plate scatterer: (A) plate subdivided into 3 × 3 equal square 
SIE elements, of electrical size eA = a/3 = 0.556λ (λ being the 
free-space wavelength) at fmax, and (B) entire-domain model of 
the plate with a single SIE element, of electrical size 

eB = a = 1.667λ at fmax [note that even eA in model (A) is 
approximately six times larger than the size of elements used 
in low-order small-domain MoM techniques, esmall-domain ≈ 
0.1λ]. First, we investigate the optimal order of temporal basis 
functions, varying M in model (A) from 10 to 80, for a fixed 
order of spatial basis functions Nu = Nv = N = 4 (an overly safe 
choice based on our study of higer order parameters for the 
MoM-FD SIE method in [37]), which results in a total of 
NMoM = 264 spatial unknowns, and a fixed scaling factor 
s = 109. Fig. 4(a) shows that M = 30 is sufficient for accurate 
results. Next, shown in Fig. 4(b) is the p-refinement of model 
(B), with N ranging from 2 to 5, for the fixed order of 
temporal current approximation M = 30 and scaling factor 
s = 109, so chosen to provide accurate transient solution. Note 
that parameters M and s are the same as for model (A); as 
expected, they are not influenced by the size of the element, 
only parameter N is. The higher order results are compared 
with a low-order MoM-MOT solution [13], which includes 
112 flat triangular patches and 153 spatial unknowns (the 
surface current density is approximated using RWG spatial 
basis functions and triangular temporal basis functions). We 
observe from the figure that the higher order results converge 
monotonically and quickly with the p-refinement and that the 
solution corresponding to N = 5, resulting in NMoM = 40 
unknowns only, agrees very well with the reference solution. 
With the entire-domain model (B), NMoM is reduced by a factor 
of 6.6 with respect to model (A) with N = 4, and by a factor of 
3.8 when compared to the reference solution [13]. 

As the second example of structures with flat surfaces and 
sharp edges, we consider the transient current response over 
sides of a PEC cube of edge length a = 1 m. For the incident 

wave in (26), xE ˆ00 E , (E0 = 1 V/m) and zk ˆˆ  , which 

corresponds to the azimuthal angle o0  and elevation angle 
o0 , as depicted in Fig. 3, and the Gaussian pulse is 

defined for two different cases of the analysis. In case (i), we 
adopt Tw = 8 lm and t0 = 12 lm, so that the pulse frequency 
spectrum has a practical upper bound of fmax1 = 125 MHz, and 
thus its band does not contain internal resonances of the cube, 
the lowest of which occurs at fres1 = 212.13 MHz. For case (ii), 
Tw = 2 lm and t0 = 3 lm, resulting in the upper frequency 
bound of fmax2 = 500 MHz for the covered frequency band, 
which includes the first six resonances of the cube 
(fres2 = 259.81 MHz, fres3 = 335.41 MHz, fres4 = 367.42 MHz, 
fres5 = 424.26 MHz, fres6 = 450.00 MHz). For the temporal 
approximation in the method, we adopt M = 130 and s = 108 in 

case (i) and s = 8103  in case (ii). In addition, we consider 
two different spatial models of the cube: (A) the cube 
subdivided uniformly with three subdivisions per edge, which 
results in 54 flat (Ku = Kv = K = 1) quadrilateral patches 
(squares) (note that eA = a/3 ≈ 0.13λ at fmax1), with Nu = Nv = N 
= 2 and NMoM = 432 and (B) the cube modeled using only six 
flat surface elements representing the six cube faces 
(eB = a = 0.42λ at fmax1 and eB = a = 1.667λ at fmax2), with 
N = 5 and NMoM = 300. Figs. 5(a) and (b)–(c) show, 
respectively, the transient current responses in the nonresonant 
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Fig. 4.  Convergence analysis of the presented MoM-MOD method for a 
metallic square plate scatterer in terms of the orders of temporal and spatial 
basis functions, M and Nu = Nv = N, in computing transient responses of the 
x-directed surface current density at the center of the plate: (a) increasing M
for a fixed N in model (A) (plate subdivided into 3 × 3 SIE elements) and 
(b) p-refinement of model (B) (entire-domain model, with a single SIE 
element) for a fixed M. The higher order results are compared with the low-
order MoM-MOT solution [13]. 
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band [excitation case (i)] obtained simulating both models (A) 
and (B) and the resonant band [excitation case (ii)] using 
model (B) only. The higher order MoM-MOD results are 
compared with low-order implicit MoM-MOT TD CFIE 
solutions (using 832 triangular patches and 1,248 spatial 
unknowns) reported in [38], and an excellent agreement of the 

two sets of results is observed. 
As the first example of structures with pronounced 

curvature, we next analyze a metallic spherical scatterer, of 
radius a = 0.5 m, illuminated as in Fig. 3 with xE ˆ00 E , 

(E0 = 1 V/m), zk ˆˆ  , finite duration of the signal Tf = 40 lm, 
and cases (i) and (ii) from the previous example (note that the 
first three internal resonances of the sphere are 
fres1 = 262.02 MHz, fres2 = 369.77 MHz, and 
fres3 = 429.06 MHz). Spatial modeling of the sphere is 
performed using only six equal generalized quadrilateral SIE 
patches with geometrical orders (A) Ku = Kv = K = 2 and (B) 
K = 4, respectively (eA = eB ≈ 0.36λ at fmax1 and eA = 
eB ≈ 1.34λ at fmax2). Figs. 6(a) and (b) show the convergence of 
the presented MoM-MOD method with respect to polynomial 
orders of spatial and temporal approximations, respectively, of 
the z-component of JS at the center of one of the six patches 
(this point belongs to the central equator of the sphere) in 
model (A) in excitation case (i). Based on these results, the 
optimal polynomial orders of spatial and temporal basis 
functions of the Hertz vector (current), in (8) and (9), are 
found to be Nu = Nv = N = 2, which yields NMoM = 48, and 

M = 130 (with 810s ), respectively, for this example, and 
the agreement with results obtained by a low-order MoM-TD 
EFIE technique (528 flat triangular patches and 792 spatial 
unknowns) in conjunction with a conventional MOD [20] is 
observed to be excellent. The convergence of the higher order 
results in terms of the geometrical order of modeling for 
excitation case (ii), where N = 4 and only 192 unknowns 
suffice, is presented in Fig. 6(c). Both models (A) and (B) 
provide an excellent accuracy of results when compared to the 
reference solution [20], but the results obtained with K = 4 can 
be observed to be in a better agreement with the reference 
solution at the current peak than those with K = 2. Note also 
that the more accurate curved geometrical model with only six 
higher order SIE elements reduces the number of spatial 
unknowns by a factor of 16.5 in case (i), and by a factor of 4.1 
in case (ii), when compared to the reference model [20]. 

To examine the convergence of the presented MoM-MOD 
with spatial refinement (h-refinement), in Fig. 7 we plot the 
relative error of the current, with respect to the analytical 
solution obtained by Mie series, for the sphere from Fig. 6(c), 
in the frequency domain. The frequency domain current is 
obtained from the MoM-MOD solution using DFT and the 
relative error with respect to Mie series is averaged in the 
frequency range from 25 MHz to 300 MHz as 
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where Nf  = 12 is the number of frequency samples, for fixed  
o90  and o180  defining the point on the spherical 

surface in which the currents are computed and compared. The 
figure shows a family of curves with three representative 
polynomial current approximations N = 2, N = 3, and N = 5, 
kept constant for all elements in respective meshes. The points 
on the N = 2 curve correspond, from left to right, to each of 
the six faces of the sphere from Fig. 6(c) being uniformly 
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Fig. 5.  Comparison of results obtained by the presented MoM-MOD TD
EFIE method and low-order implicit MoM-MOT TD CFIE solutions [38] for
the transient current response of a PEC cubical scatterer: (a) x-directed
surface current density at the center of the top face of the cube in the
nonresonant band [excitation case (i)] for two different models (A) and (B)
shown in the inset; and (b) x-directed JS at the center of the top face and (c) z-
directed JS at the center of the side face of the cube in the resonant band
[excitation case (ii)] using model (B) only. 
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refined into 2 2, 4 4, and 6 6 elements, respectively. 

Similarly, the points on the N = 3 curve correspond to a 
refinement of each of the faces into 1 1, 2 2, and 4 4 
elements, and finally the points on the N = 5 curve correspond 
to a refinement of each of the faces into 1 1 and 2 2 
elements. All meshes are shown in the figure inset. 
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Fig. 7.  Relative error of the TDSIE MoM-MOD computed frequency-domain 
current averaged in the frequency range from 25 MHz to 300 MHz vs. the 
number of (spatial) MoM unknowns. A family of three curves obtained using 
models with three constant polynomial expansion orders N across all the 
elements shows convergence of the solution with an h-refinement of the mesh, 
while the fourth curve shows p-refinement of the solution for geometrical 
model (A). 

 
We observe from Fig. 7 that the method yields monotonic 

convergence with h-refinement and that higher order 
polynomial current approximation yields better convergence 
than the lower order expansion. Note also that in this example 
our lowest achievable error is around 0.55%, which is 
consistent with the lowest errors achieved by the CFIE based 
MOT for the PEC sphere example reported in [6]. At the same 
time, we remark that the error of 0.56%, i.e., close to the 
minimum error limit, is achieved very quickly with N = 5 in 
our example, hence only two points are shown on this curve. 
We finally note that our solution with the 0.55% error in 
computed current yields 0.05% relative error in the 
computation of the radar cross section (RCS), which is 
consistent with the lowest reported errors in [5]. In addition, 
we show in Fig. 7 p-refinement of the solution for three 
different spatial current approximation orders N = 3, 5, and 8 
on the same geometrical model, model (A), with only six large 
SIE elements of the fourth geometrical order, K = 4 (element 
size is e ≈ 1.34λ at fmax2). Note that model (A) with N = 8 
reduces the number of spatial unknowns 1.56 times when 
compared to model (B) with N = 5 while maintaining almost 
the same accuracy, the error being 0.61%. Also, when 
compared to model (C) with N = 2 for the same number of 
spatial unknowns (NMoM = 768), the error is reduced 10 times.  

Investigating further the convergence of the MoM-MOD 
with increasing the maximal order of the time domain basis M, 
shown in Fig. 8 is the averaged relative error of the frequency-
domain current (computed with respect to the analytical Mie 
series solution in the same way as for the example in Fig. 7, 
using (27)). The family of curves in Fig. 8 is chosen as 
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Fig. 6.  Convergence of results for a metallic spherical scatterer obtained by 
the presented MoM-MOD method with respect to polynomial orders of 
(a) spatial and (b) temporal approximations of the z-component of JS at the 
center of one of the six patches in model (A) (Ku = Kv = K = 2) shown in the 
figure inset in the nonresonant band [excitation case (i)], and 
(c) convergence of the method in terms of the geometrical order K of 
modeling in the resonant band [excitation case (ii)]. The higher order 
solutions are compared with results using the low-order MoM-MOD method 
[20]. 
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follows. Starting from the first curve on the top (curve I), we 
have a mesh where each of the 6 sphere faces is divided into 
3 3 elements, model (E), with the polynomial current 
approximation order N = 2, which yields 54 elements and 
NMoM = 432 unknowns. This mesh is then h-refined, so that the 
6 sphere faces are divided into 6 6 elements, model (D) in 
Fig. 7, and the polynomial current approximation order is kept 
the same (N = 2), which results in 216 elements and NMoM = 
1,728 unknowns, and the error of the model in this 
arrangement is given via the second curve from the top (curve 
II). The third curve from the top (curve III) is obtained 
utilizing a mesh where each of the 6 sphere faces is divided 
into 2 2 elements, model (B) in Fig. 7, with the polynomial 
current approximation order N = 4, which yields 24 elements 
and NMoM = 768 unknowns. Similarly as before, this mesh is h-
refined so that the 6 sphere faces are divided into 3 3 
elements, model (E) in Fig. 8, and the polynomial current 
approximation order is kept the same (N = 4), which gives 54 
elements and NMoM = 1,728 unknowns, and the error of the 
model in this arrangement is shown as the bottom curve (curve 
IV). 
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Fig. 8.  Relative error of the TDSIE MoM-MOD computed frequency-domain 
current averaged in the frequency range from 25 MHz to 300 MHz vs. the 
order of the time-domain bases M. Two sets of curves, with polynomial 
expansion orders across all the elements in the mesh equal to N = 2 and N = 4, 
both shown for models with a coarse and an h-refined mesh, demonstrate the 
convergence of the solution with respect to p- and h-refinement, as well as 
with increase of the temporal bases order, M. 

 
 We conclude from Fig. 8 that increasing M, i.e, marching-
on-in-degree, yields monotonic convergence in all cases. At 
the same time, we see that h-refinement (e.g., going from 
curve I to curve II) yields only slightly lower error (about 2%) 
while increasing the number of unknowns four times. 
Similarly, going from curve III to curve IV, the error 
decreases only slightly while more than doubling (2.25 times) 
the number of unknowns. (Note that the minimal error is 
practically reached for M = 250 in both curve III and curve 
IV.) On the other hand, going from curve I to curve III, by 
increasing N from 2 to 4, i.e., with a p-refinement of the 
solution, much faster convergence is achieved while the 
number of unknowns is increased only about 1.78 times. 

The next example presents the higher order MoM-MOD 
transient analysis of a standard benchmarking structure – 
NASA almond [39] of the maximum length (from the tip to 
the tail of the almond) lmax = 1 m, illuminated as in Fig. 3 with 

xE ˆ V/m 3770  , zk ˆˆ  , Tf = 30 lm, Tw = 4 lm, t0 = 6 lm, 

and fmax = 250 MHz. The almond is modeled using only 56 
quadrilateral surface elements (e ≤ 0.1λ at fmax) of second 
geometrical order (Ku = Kv = K = 2), as portrayed in Fig. 9(a), 
and the other numerical parameters of the model are Nu = Nv 

= 2, NMoM = 448, M = 130, and s = 8103 . Shown in Fig. 9(b) 
is the transient response of the current density at the center of 
the top surface of the almond. The results obtained by the 
presented MoM-MOD are compared with a low-order MoM-
MOD solution (864 flat triangular elements, 1,296 spatial 
unknowns, and M = 128) [40], and we observe an excellent 
agreement of the two sets of MoM-MOD results. 

As the last example, we analyze a more complex structure 
such as a military tank of dimensions 4 m × 9 m × 2.73 m, 
shown in Fig. 10(a). The structure is illuminated with a θ-
polarized Gaussian pulse of amplitude E0 = 1 V/m impinging 

from the direction defined by o90  and o0 (Fig. 3), 

with Tw = 70 lm, t0 = 90 lm, and fmax = 15 MHz. The tank is 
modeled using only 147 surface elements with Ku = Kv = K = 1 
[as indicated in Fig. 10(a)] and emax ≈ 0.315λ at fmax. The 
transient response of JS at the center of a flat patch on the tank 
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Fig. 9. MoM-MOD scattering analysis of the NASA metallic almond:
(a) geometrical model with 56 curved quadrilateral SIE patches and
(b) comparison of results for the transient response of the x-directed surface
current density at the center of the top face of the almond obtained by the
presented MoM-MOD and the low-order MoM-MOD solution [40]. 
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side marked by the red frame in Fig. 10(a) is computed using 
the presented MoM-MOD algorithm with N ranging from 2 to 

6, NMoM = 1,389, s = 8101 , and M = 70 or 100. The solution 
is compared in Fig. 10(b) with frequency-domain results 
obtained using the higher order MoM-FD SIE method [29] in 
conjunction with the inverse discrete Fourier transform (IDFT) 
and computed from DC (extrapolated) to 50 MHz at 128 
frequency samples; an excellent agreement of the TD and FD 
sets of results is observed. For exactly the same spatial model, 
the computational time for the MoM-FD SIE simulation is 
125 min, while the MoM-TD SIE simulation with M = 70 
takes less than 3 min (computer properties: Intel® Xeon® 
CPU E5645 @ 2.40 GHz). Note that a similar tank model is 
analyzed in [26] using low-order small-domain MoM-MOD 
EFIE and MoM-MOT methods. The model in [26] includes 
2,737 triangular flat patches, the spatial distribution of JS is 
expanded in terms of RWG basis functions resulting in 3,905 
unknowns, the order of temporal basis functions is M = 30, 
and the excitation is in the form of a triangular pulse with the 
frequency bandwidth of 50 MHz. The reported simulation 
times for this model are 1,012 min and 938 min for the MoM-
MOD and MoM-MOT methods, respectively. With an 
assumption that the simulations in [26] are performed on a 

standard PC with similar or closely comparable hardware 
(computer used is not specified in [26]), we may conclude that 
the present method comes out to be much more efficient than 
methods in [26]. 

IV. CONCLUSIONS 

This paper has proposed and presented the first spatially and 
temporally higher order MoM-TD method with very high 
spatial and temporal expansion orders; the results demonstrate 
using current expansions of spatial orders from 2 to 8 in 
conjunction with using entire-domain Laguerre polynomial 
temporal basis functions, and geometrical-mapping orders 
from 1 to 4. In that regard, this work is different when 
compared to practically all the existing MOT and MOD MoM-
TD tools, which use planar triangular patches and RWG 
functions. In that regard, it also is different when compared to 
higher order MoM-TD MOT techniques [30]–[32] and [5].  

In addition, the proposed method is the first spatially higher 
order MoM-TD MOD method. In that regard, this work is 
different when compared to all the existing spatially higher 
order MoM-TD methods in literature, which all are MOT 
methods.  

The paper has proposed and presented the first spatially 
large-domain MoM-TD method. In that regard, this work is 
different when compared to all the existing spatially higher 
order MoM-TD MOT methods in literature, which all can be 
considered as small-domain (subdomain) methods, with the 
EM structure being modeled by surface elements that are 
electrically very small. The paper has presented the first set of 
spatially large-domain MoM-TD modeling examples; the 
electrical sizes of flat and curved patches in models are up to 
about 1.7 wavelengths at the maximum frequency in the 
frequency spectrum of the pulse excitation.  

It turns out that the MOD methodology is a particularly 
suitable choice if combined with higher order spatial elements, 
large-domain modeling, and p-refined solutions.  

The paper has presented transient analysis using electrically 
large (and small) elements in combination with higher order 
spatial and temporal basis functions which significantly 
reduces the number of spatial unknowns when compared to 
low-order small-domain methods with no accuracy trade-off; 
this has been shown in all numerical examples in the paper. 
This unique property – computational efficiency improvement 
of this method – has not been shown in other transient 
methods, MOT and MOD.  

Also, superior efficiency of the higher order MoM-TD MOD 
method as compared to the higher order MoM-FD method in 
conjunction with the IDFT – in transient analysis on exactly 
the same spatial model – has been demonstrated in Fig. 10 (the 
tank model). In this example, the TD code is about 42 times 
faster than the FD code. Although TD codes should, naturally, 
be more efficient in transient analysis than FD codes, this 
result is better than what was anticipated, especially since a 
quite high order of temporal bases (M = 70) is used.  

Convergence analysis (based on the relative error of the 
current with respect to the analytical solution obtained by Mie 
series) in Figs. 7 and 8 has demonstrated the convergence of 
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Fig. 10. (a) WIPL-D mesh of a military tank consisting of 147 quadrilateral
patches with Ku = Kv = K = 1 [41] and (b) transient response of JS at the
center of a flat patch on the tank side marked by the red frame computed
using the presented MoM-MOD TD SIE method and the higher order MoM-
FD SIE method [29] in conjunction with the inverse discrete Fourier
transform.  
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the solution with respect to h- and p-refinement, as well as 
with increase of the temporal bases order, M, i.e., marching-
on-in-degree.  

In terms of the reported error of computation, the lowest 
achievable error with the proposed method in computed 
current is around 0.55%, which is consistent with the lowest 
errors reported in [6]. At the same time, the error of 0.56% is 
achieved very quickly with N = 5 in Fig. 7. The paper has 
presented results for the induced transient surface current 
densities as the most rigorous and critical representative of the 
solution accuracy in MoM-SIE modeling and assuming that 
the accuracy of far field computations is even better. Indeed, 
the presented solution with the 0.55% error in computed 
current yields 0.05% relative error in the RCS computation, 
which, in turn, is consistent with the lowest reported errors in 
[5].  

Moreover, a major strength of the proposed method is p-
convergence and ability for p-refinement, which should, in 
general, be combined with h-refinement, i.e., hp-refinement 
should be used. In that regard as well, this work is different 
when compared to all the existing MoM-TD methods in 
literature, which do not demonstrate such convergence of the 
solution with respect to p-refinement. This feature has been 
emphasized, for example, by a curve in Fig. 7 showing p-
refinement of the model for the spatially non-refined mesh, 
which is quite unique and interesting: a highly accurate 
transient solution of a spherical scatterer modeled by only six 
elements of the fourth geometrical order and size e ≈ 1.34λ at 
fmax2 with eighth order spatial polynomial current 
approximation, resulting in only 768 unknowns.   

The proposed method is a higher order and large-domain 
extension and advancement of the previously proposed and 
used low-order MoM-TD MOD method [19]–[26], and the 
importance of this advancement has been confirmed by the 
discussions and the results in the paper. In addition, this is the 
first time the accuracy is evaluated and convergence analyzed 
rigorously based on the relative error of the current (or far 
field, RCS, etc.) with respect to the analytical solution 
obtained by Mie series for MoM-TD MOD methods overall; 
there are no such reports in papers on low-order small-domain 
MOD methods and applications [19]–[26]. 

Future work includes extending the method to composite 
conducting-dielectric scattering structures.  

References 
[1] C. L. Bennett, Jr., “A technique for computing approximate 

electromagnetic impulse response of conducting bodies,” Ph.D. 
dissertation, Purdue University, West Lafayette, Ind., 1968. 

[2] S. M. Rao, Time domain electromagnetics, Academic Press, 1999. 
[3] S. M. Rao and D. R. Wilton, “Transient scattering by conducting 

surfaces of arbitrary shape,” IEEE Transactions on Antennas and 
Propagation, vol. 39, no. 1, pp. 56–61, January 1991. 

[4] S. M. Rao and T. K. Sarkar, “An alternative version of the time-domain 
electric field integral equation for arbitrarily shaped conductors,” IEEE 
Transactions on Antennas and Propagation, vol. 41, no. 6, pp. 831–834, 
June 1993. 

[5] R. A. Wildman, G. Pisharody, D. S.Weile, S. Balasubramaniam, and E. 
Michielssen, “An Accurate Scheme for the Solution of the Time-
Domain Integral Equations of Electromagnetics Using Higher Order 
Vector Bases and Bandlimited Extrapolation,” IEEE Transactions on 

Antennas and Propagation, vol. 52. no. 11, pp. 2793–2984, November 
2004. 

[6] Y. Beghein, K. Cools, H. Bagci, and D. De Zutter, “A Space-Time 
Mixed Galerkin Marching-on-in-Time Scheme for the Time-Domain 
Combined Field Integral Equation,” IEEE Transactions on Antennas and 
Propagation, vol. 61, no. 3, pp. 1228-1238, March 2013. 

[7] A. J. Pray, Y. Beghein, N. V. Nair, K. Cools, H. Bagci, and B. Shanker, 
“A Stable Higher Order Space-Time Galerkin Scheme for Time Domain 
Integral Equations,” ArXiv e-prints, arXiv:1401.2435, available on 
http://arxiv.org/abs/1401.2435  

[8] S. M. Rao and T. K. Sarkar, “An efficient method to evaluate the time-
domain scattering from arbitrarily shaped conducting bodies,” 
Microwave and Optical Technology Letters, vol. 17, no. 5, pp. 321–325, 
April 1998. 

[9] T. K. Sarkar, W. Lee, and S. M. Rao, “Analysis of transient scattering 
from composite arbitrarily shaped complex structures,” IEEE 
Transactions on Antennas and Propagation, vol. 48, no. 10, pp. 1625–
1634, October 2000. 

[10] B. H. Jung and T. K. Sarkar, “An accurate and stable implicit solution 
for transient scattering and radiation from wire structures,” Microwave 
and Optical Technology Letters, vol. 34, no. 5, pp. 354–359, September 
2002. 

[11] B. Shanker, A. A. Ergin, K. Aygun, and E. Michielssen, “Analysis of 
transient electromagnetic scattering from closed surfaces using a 
combined field integral equation,” IEEE Transactions on Antennas and 
Propagation, vol. 48, no. 7, pp. 1064–1074, July 2000. 

[12] B. Shanker, A. A. Ergin, M. Lu, E. Michielssen, “Fast analysis of 
transient electromagnetic scattering phenomena using the multilevel 
plane wave time domain algorithm,” IEEE Transactions on Antennas 
and Propagation, vol. 51, no. 3, pp. 628–641, March 2003. 

[13] G. Manara, A. Monorchio, and R. Reggiannini, “A space-time 
discretization criterion for a stable time-marching solution of the electric 
field integral equation,” IEEE Transactions on Antennas and 
Propagation, vol. 45, no. 3, pp. 527–532, March 1997. 

[14] B. Shanker, M. Lu, J. Yuan, and E. Michielssen, “Time domain integral 
equation analysis of scattering from composite bodies via exact 
evaluation of radiation fields,” IEEE Transactions on Antennas and 
Propagation, vol. 57, no. 5, pp. 1506–1520, May 2009. 

[15] Y. Shi, M. Y. Xia, R. S. Chen, E. Michielssen, and M. Lu, “Stable 
electric field TDIE solver via quasi-exact evaluation of MOT matrix 
elements,” IEEE Transactions on Antennas and Propagation, vol. 59, 
no. 2, pp. 574–585, February 2011. 

[16] A. E. Yilmaz, J. M. Jin, and E. Michielssen, “Time domain adaptive 
integral method for surface integral equations,” IEEE Transactions on 
Antennas and Propagation, vol. 52, no. 10, pp. 2692– 2708, October 
2004. 

[17] H. Bağci, F. P. Andriulli, F. Vipiana, G. Vecchi, and E. Michielssen, “A 
well-conditioned integral-equation formulation for efficient transient 
analysis of electrically small microelectronic devices,” IEEE 
Transactions on Advance Packing, vol. 33, no. 2, pp. 468–480, May 
2010. 

[18] T. K. Sarkar and J. Koh, “Generation of a wide-band electromagnetic 
response through a Laguerre expansion using early-time and low-
frequency data,” IEEE Transactions on Antennas and Propagation, vol. 
50, no. 5, pp. 1408–1416, May 2002. 

[19] Y. S. Chung, T. K. Sarkar, and B. H. Jung, “Solution of a time-domain 
magnetic-field integral equation for arbitrarily closed conducting bodies 
using an unconditionally stable methodology,” Microwave and Optical 
Technology Letters, vol. 35, no. 6, pp. 493–499, December 2002. 

[20] B. H. Jung, Y. S. Chung, and T. K. Sarkar, “Time-domain EFIE, MFIE, 
and CFIE formulations using Laguerre polynomials as temporal basis 
functions for the analysis of transient scattering from arbitrarily shaped 
conducting structures,” Progress in Electromagnetic Research, vol. 39, 
pp. 1–45, 2003. 

[21] Y. S. Chung, T. K. Sarkar, B. H. Jung, M. Salazar-Palma, Z. Ji, S. Jang, 
and K. Kim, “Solution of time domain electric field integral equation 
using the Laguerre polynomials,” IEEE Transactions on Antennas and 
Propagation, vol. 52, no. 9, pp. 2319–2328, September 2004. 

[22] B. H. Jung, T. K. Sarkar Y. S. Chung, M. Salazar-Palma, Z. Ji, S. Jang, 
and K. Kim, “Transient electromagnetic scattering from dielectric 
objects using the electric field integral equation with Laguerre 
polynomials as temporal basis functions,” IEEE Transactions on 
Antennas and Propagation, vol. 52, no. 9, pp. 2329–2340, September 
2004. 



0018-926X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TAP.2015.2418343, IEEE Transactions on Antennas and Propagation

 13

[23] Z. Ji, T. K. Sarkar, B. H. Jung, Y. S. Chung, M. Salazar-Palma, and M. 
Yuan, “A stable solution of time domain electric field integral equation 
for thin-wire antennas using the Laguerre polynomials,” IEEE 
Transactions on Antennas and Propagation, vol. 52, no. 10, pp. 2641–
2649, October 2004. 

[24] B. H. Jung, T. K. Sarkar, S. W. Ting, Y. Zhang, Z. Mei, Z. Ji, M. Yuan, 
A. De, M. Salazar-Palma, and S. M. Rao, “Time and frequency domain 
solution of EM problems using integral equations and a hybrid 
methodology,” Hoboken, New Jersey: IEEE Press, John Wiley & Sons, 
Inc., 2010. 

[25] Z. Ji, T. K. Sarkar, B. H. Jung, M. Yuan, and M. Salazar-Palma, 
“Solving time domain electric field integral equation without time 
variable,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 
1, pp. 258–262, January 2006. 

[26] Z. Mei, Y. Zhang, T. K. Sarkar, B. H. Jung, A. García-Lampérez, M. 
Salazar-Palma, “An improved marching-on-in-degree method using a 
new temporal basis,” IEEE Transactions on Antennas and Propagation, 
vol. 59, no. 12, pp. 4643–4650, December 2011. 

[27] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic 
scattering by surfaces of arbitrary shape”, IEEE Transactions on 
Antennas and Propagation, vol. AP-30, pp. 409–418, May 1982. 

[28] B. M. Notaros, “Higher order frequency-domain computational 
electromagnetics,” Special Issue on Large and Multiscale Computational 
Electromagnetics, IEEE Transactions on Antennas and Propagation, 
vol. 56, no. 8, pp. 2251−2276, August 2008. 

[29] M. Đorđević and B. M. Notaroš, “Double higher order method of 
moments for surface integral equation modeling of metallic and 
dielectric antennas and scatterers,” IEEE Transactions on Antennas and 
Propagation, vol. 52, no. 8, pp. 2118–2129, August 2004. 

[30] M. J. Bluck and S. P. Walker, “Time-domain BIE analysis of large 
three-dimensional electromagnetic scattering problems,” IEEE 
Transactions on Antennas and Propagation, vol. 45, no. 5, pp. 894–901, 
May 1997. 

[31] M. D. Pocock, M. J. Bluck, and S. P. Walker, “Electromagnetic 
scattering from 3-D curved dielectric bodies using time-domain integral 
equations,” IEEE Transactions on Antennas and Propagation, vol. 46, 
no. 8, pp. 1212–1219, August 1998. 

[32] F. Valdés, M. Ghaffari-Miab, F. P. Andriulli, K. Cools, and E. 
Michielssen, “High-order Calderón preconditioned time domain integral 
equation solvers,” IEEE Transactions on Antennas and Propagation, 
vol. 61, no. 5, pp. 2570–2588, May 2013. 

[33] N. J. Šekeljić, M. M. Ilić and B. M. Notaroš, “Higher order time-domain 
finite element method for microwave device modeling with generalized 
hexahedral elements,” IEEE Transactions on Microwave Theory and 
Techniques, vol. 61, no. 4, pp. 1425–1434, April 2013. 

[34] J. A. Stratton, Electromagnetic theory, New York: McGraw-Hill, 1941. 
[35] B. D. Popovic and B. M. Notaros, “Moment-method analysis of volume 

dielectric scatterers. Four independent entire-domain solutions: Is entire-
domain philosophy a luxury or necessity in the method of moments?” 
(invited review paper),  International Journal of Microwave and 
Millimeter-Wave Computer-Aided Engineering, vol. 6, (6), pp.454-473, 
November 1996.  

[36] A. D. Poularikas, The transforms and applications handbook, 
Pistcataway, NJ: IEEE Press, 1963. 

[37] E. M. Klopf, N. J. Šekeljić, M. M. Ilić and B. M. Notaroš, “Optimal 
modeling parameters for higher order MoM-SIE and FEM-MoM 
electromagnetic simulations,” IEEE Transactions on Antennas and 
Propagation, vol. 60, no. 6, pp. 2790–2801, June 2012. 

[38] B. H. Jung and T. K. Sarkar, “Time-domain CFIE for the analysis of 
transient scattering from arbitrarily shaped 3D conducting objects,” 
Microwave and Optical Technology Letters, vol. 34, no. 4, pp. 289–296, 
August 2002. 

[39] A. C. Woo, H. T. G. Wang, M. J. Schuh, and M. L. Sanders, 
“Benchmark radar targets for the validation of computational 
electromagnetics programs,” IEEE Antennas and Propagation Mag., 
vol. 35, no. 1, pp. 84–89, February 1993. 

[40] A. Geranmayeh, “Time Domain Boundary Integral Equations Analysis”, 
Ph.D. Dissertation, Vom Fachbereich Elektrotechnik und 
Informationstechnik der Technischen Universitat Darmstadt, Germany 
2011. 

[41] WIPL-D d.o.o. 2013. WIPL-D Pro v11.0. Available: http://www.wipl-
d.com.  

 
 

Nada J. Šekeljić (S’11) was born in Belgrade, 
Serbia, in 1984. She received the Dipl. Ing. (B.Sc.) 
degree in electrical engineering from the University 
of Belgrade, Belgrade, Serbia, in 2008, and is 
currently working toward the Ph.D. degree at 
Colorado State University, Fort Collins, Colorado.  

Since 2008, she has been a Research Assistant 
with the Electromagnetics Laboratory, and Teaching 
Assistant with the Department of Electrical and 
Computer Engineering, Colorado State University. 

In summer 2013, she worked as signal integrity simulation intern at Hewlett-
Packard, Fort Collins, CO. Her research interests are in computational and 
applied electromagnetics, and antenna design. 

 
Milan M. Ilić (S’00–M’04) was born in Belgrade, 
Serbia, in 1970. He received the Dipl. Ing. and M.S. 
degrees in Electrical Engineering from the 
University of Belgrade, Serbia, in 1995 and 2000, 
respectively, and the Ph.D. degree from the 
University of Massachusetts Dartmouth, USA, in 
2003. 

He is currently an Associate Professor in the 
School of Electrical Engineering at the University of 
Belgrade and a postdoctoral Research Associate and 
Affiliated Faculty with the ECE department of the 

Colorado State University, USA. His research interests include computational 
electromagnetics, antennas, and microwave components and circuits. 

Dr. Ilić was the recipient of the 2005 IEEE MTT-S Microwave Prize. 
 

Branislav M. Notaroš (M’00-SM’03) was born in 
Zrenjanin, Yugoslavia, in 1965. He received the 
Dipl.Ing. (B.S.), M.S., and Ph.D. degrees in 
electrical engineering from the University of 
Belgrade, Belgrade, Yugoslavia, in 1988, 1992, and 
1995, respectively.  

From 1996 to 1999, he was an Assistant 
Professor in the School of Electrical Engineering at 
the University of Belgrade. He spent the 1998-1999 
academic year as a Visiting Scholar at the 
University of Colorado at Boulder. He was an 

Assistant Professor, from 1999 to 2004, and Associate Professor, from 2004 to 
2006, in the Department of Electrical and Computer Engineering at the 
University of Massachusetts Dartmouth. From 2006 to 2012, he was an 
Associate Professor in the Department of Electrical and Computer 
Engineering at Colorado State University, where he is currently a Professor 
and Director of Electromagnetics Laboratory. His research interests and 
activities are in computational electromagnetics, higher order numerical 
methods, antennas, scattering, microwaves, metamaterials, characterization of 
snow and rain, surface and radar precipitation measurements, RF design for 
MRI at ultra-high magnetic fields, and electromagnetics education. His 
publications include more than 150 journal and conference papers, and three 
workbooks in electromagnetics and in fundamentals of electrical engineering 
(basic circuits and fields). He is the author of textbooks Electromagnetics 
(Prentice Hall, 2010) and MATLAB-Based Electromagnetics (Prentice Hall, 
2013), as well as the Electromagnetics Concept Inventory (EMCI).  

Dr. Notaroš served as General Chair for the 11th International Workshop 
on Finite Elements for Microwave Engineering – FEM2012, June 4-6, 2012, 
Estes Park, Colorado, USA, and as Guest Editor of the Special Issue on Finite 
Elements for Microwave Engineering, Electromagnetics, Vol. 34, Issue 3-4, 
2014. He was the recipient of the 2005 IEEE MTT-S Microwave Prize (best-
paper award for IEEE Transactions on MTT), 1999 IEE Marconi Premium 
(best-paper award for IEE Proceedings on Microwaves, Antennas and 
Propagation), 1999 URSI Young Scientist Award, 2005 UMass Dartmouth 
Scholar of the Year Award, 2004 UMass Dartmouth College of Engineering 
Dean’s Recognition Award, 1992 Belgrade Chamber of Industry and 
Commerce Best M.S. Thesis Award, 2009, 2010, 2011, and 2014 Colorado 
State University Electrical and Computer Engineering Excellence in Teaching 
Awards, 2010 Colorado State University College of Engineering George T. 
Abell Outstanding Teaching and Service Faculty Award, 2012 Colorado State 
University System Board of Governors Excellence in Undergraduate Teaching 
Award, 2014 Colorado State University Provost’s N. Preston Davis Award for 
Instructional Innovation, 2012 IEEE Region 5 Outstanding Engineering 
Educator Award, 2014 Carnegie Foundation for the Advancement of Teaching 
Colorado Professor of the Year Award, and 2015 IEEE Undergraduate 
Teaching Award.  


