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 

Abstract—A perfectly matched layer (PML) method is 

proposed for electrically large curvilinear meshes based on a 

higher order finite-element modeling paradigm and the concept 

of transformation electromagnetics. The method maps the non-

Maxwellian formulation of the locally-conformal PML to a 

purely Maxwellian implementation using continuously varying 

anisotropic and inhomogeneous material parameters. An 

approach to implementation of a conformal PML for higher 

order meshes is also presented, based on a method of normal 

projection for PML mesh generation around an already existing 

convex volume mesh of a dielectric scatterer, with automatically 

generated constitutive material parameters.  Once the initial 

mesh is generated, a PML optimization method based on 

gradient descent is implemented to most accurately match the 

PML material parameters to the geometrical interface. The 

numerical results show  that the implementation of a conformal 

PML in the higher order finite-element modeling paradigm 

dramatically reduces the reflection error when compared to 

traditional PMLs with piecewise constant material parameters. 

The ability of the new PML to accurately and efficiently model 

scatterers with a large variation in geometrical shape and those 

with complex material compositions is demonstrated in examples 

of a dielectric almond and a continuously inhomogeneous and 

anisotropic transformation-optics cloaking structure, 

respectively.  

 

Index Terms—Numerical algorithms, computational 

electromagnetics, finite element method, perfectly matched layer, 

transformation electromagnetics, scattering, higher order 

modeling, polynomial basis functions, curved parametric 

elements, hexahedral elements, numerical optimization. 

 

I. INTRODUCTION 

oundary conditions in open-domain problems have long 

been an issue in computational electromagnetics (CEM) 

in the use of partial differential equation (PDE) based methods 

such as the finite element method (FEM) or the finite 

difference time domain method (FDTD) [1]. When dealing 
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with electromagnetic radiation or scattering problems, 

effective truncation of the computational domain is a well-

investigated problem both in the frequency-domain and the 

time-domain. Various methods such as operator-based 

absorbing boundary conditions (ABCs) [2-3] and hybrid 

boundary element method/FEM formulations [4-5] have been 

employed to mimic the behavior of an unbounded space in a 

bounded computational domain. Without carefully chosen 

boundary conditions, truncation of an otherwise infinite 

domain leads to artificial wave reflections.  

The perfectly matched layer (PML) serves as a practical and 

effective alternative to traditional ABCs – instead of applying 

a specially formulated and generally difficult to implement 

boundary condition, an artificial lossy domain is added around 

the computational domain. This additional domain serves as a 

numerical analogue to pyramidal absorbers in an anechoic 

chamber. Incident fields propagate without reflection into the 

artificial domain and are attenuated before reaching the true 

edge of the computational domain, ensuring any numerical 

reflections from domain truncation do not contribute to the 

overall solution. The original perfectly matched layer was 

born as an alternative method to traditional ABC’s in the 

context of the FDTD method by Berenger [6]. The method 

utilized a splitting of the fields in Cartesian coordinates to 

derive a lossy material exhibiting the desired behavior. 

Alternatively, Chew and Weedon formulated an alternate 

derivation of the PML, originating from the idea of complex-

coordinate stretching [7]. The coordinates of the original wave 

equation are effectively stretched from Euclidean space ℝ3 

onto a complex-valued manifold ℂ3
.
 With a redefinition of the 

curl operator in complex space, the outward propagating fields 

can be matched to exponentially decaying fields in the PML 

domain. Sacks et al. showed in [8] that the PML could 

alternatively be formulated in Cartesian coordinates as a set of 

anisotropic absorbers. These anisotropic elements are derived 

based on matching boundary conditions at the interface of air 

and a lossy material, and act identically to the complex 

coordinate stretching based method.   

Pendry and Ward promoted the field of transformation 

optics/electromagnetics in their landmark paper [9], showing 

that the form of Maxwell’s equations in the frequency domain 

can be preserved under a change of coordinates if the 

constitutive material parameters are altered accordingly. 

Following this line of work, the coordinate stretching 
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formulation and anisotropic formulation can be seen as 

alternate formulations of an identical principle. The concept of 

complex coordinate based transformation was further 

extended to provide anisotropic PMLs in a variety of 

canonical geometries including spherical and cylindrical 

systems [10] and to match less usual material parameters 

including bianisotropic and lossy dispersive media [11-12].  

Utilizing a local orthogonal coordinate system generated 

from Darboux frames, the perfectly matched layer was 

eventually extended by Teixeira and Chew to conform to 

general orthogonal coordinate systems [13]. Conformal PMLs 

have a distinct computational advantage over any fixed 

implementation, because the convex hull of a given scatterer 

or antenna is in general not spherical or rectangular. In order 

to match such geometry to one of the fixed PML 

implementations, requires the use of additional computational 

whitespace via unnecessary air elements. The rectangular 

PML has the benefit that, if the stretching function is linear, 

the material parameters in the anisotropic PML domain will be 

piecewise constant [8]. Such a benefit is not inherited by other 

PML boundary shapes, such as the cylindrical or spherical 

implementations. 

In [14], the locally-conformal PML for FEM was 

introduced, which forgoes solutions of Maxwell’s equations 

for direct solutions of the modified set of equations, on a 

redefined complex manifold. Unlike the method based on 

local orthogonal coordinate systems, this PML formulation by 

Ozgun and Kuzuoglu requires no explicit dependence on the 

principle radii of curvature. As such, this method extends the 

complex stretching introduced to a larger class of geometries, 

simply by replacing the position element nodes with their 

complex-valued counterparts. In general, such formulations 

are referred to as non-Maxwellian, because the equations of 

interest are not the original Maxwell’s equations, but the 

modified form using the redefined curl operator. 

More recently, a variety of other conformal PML 

implementations for FEM modeling have subsequently 

appeared in literature involving the application to finite-

element time-domain (FETD) techniques. Most notably, a 

scheme for implementation of the PML in the mixed FETD 

context was presented in [15], which allows the simultaneous 

calculation of scattering over a wide band of frequencies. 

Alternatively, a separate method was presented in the context 

of discontinuous Galerkin (DG) FEM [16]. These methods 

again cast the PML as a set of anisotropic material functions 

derived from local orthogonal coordinate frames.  

Continuing to use the concept derived from the field of 

transformation electromagnetics [17], here we map the non-

Maxwellian formulation of the locally-conformal PML to a 

purely Maxwellian implementation using continuously 

varying anisotropic and inhomogeneous material parameters. 

We propose a novel PML method for use with electrically 

large curvilinear meshes based on a higher order FEM 

modeling paradigm and the concept of transformation 

electromagnetics. The interpolatory parameterization of higher 

order curvilinear geometries provides an interface to evaluate 

the required Jacobian matrices in a simple and effective 

manner. To the best of our knowledge, there has not been a 

significant work in the development of a conformal PML 

method for large, arbitrarily shaped, curved, higher order finite 

elements. This is the first higher order anisotropic locally-

conformal PML-FEM method.   

In addition, while the theoretical continuation of the PML to 

arbitrary element sizes and shapes follows from much of the 

past work on PMLs, many details of relevance to the 

implementation of such a method are entirely non-trivial in 

practice. PML implementation utilizing higher order modeling 

presents a unique set of challenges and advantages when 

compared to its low-order counterpart. One of these challenges 

is the automatic creation of a perfectly matched layer and the 

numerical calculation of the proper constitutive material 

parameters. It is well known that the majority of reflection 

error from perfectly matched layers is due to the associated 

discretization errors – as the name implies, the reflection 

would theoretically be zero in the case of infinite 

discretization accuracy [18]. One should expect that 

continuously inhomogeneous material approximations and 

curved PML interfaces should show significant performance 

improvement over the standard low-order modeling paradigm. 

In particular, we believe that the method of normal projection 

for generation of a conformal PML for higher order meshes 

and gradient-descent based PML material optimization 

algorithm described in Section III are very significant to this 

body of work. The basic theory and preliminary results of the 

new anisotropic locally-conformal PML for a higher-order 

curvilinear FEM are presented in a summary form in [19-20]. 

With recent advances in photonics and material sciences, 

and with the advent of manufacturing and design of 

metamaterial-based structures, we believe it is of a significant 

interest within the CEM community for the continual 

development of scattering codes to ease in the theoretical 

design phase of devices based on such metamaterials. There is 

an active push for commercialized design of metamaterial 

components [21]. Microscopic subwavelength features used in 

metamaterial design are too small to be modeled or to be 

resolved by an electromagnetic wave, but often admit bulk 

properties as effective anisotropic materials. Spatial variations 

in micro- and nanofabrication can lead to materials with 

effectively continuously inhomogeneous permittivity and 

permeability tensors. The future of electromagnetic and 

optical design will involve the computer-aided realization of 

metamaterial devices. This includes the accurate theoretical 

open-region modeling of electromagnetic devices containing 

arbitrary inhomogeneous and anisotropic media.  

The rest of the paper is organized as follows. Section II 

outlines the exact finite element formulation, including the 

scattered-field wave formulation, parametrized curvilinear 

geometrical discretization, the set of hierarchical curl-

conforming higher order vector basis functions, and 

continuously varying inhomogeneous and anisotropic material 

parameters for accurate modeling of arbitrary linear materials. 

Section III describes in detail the development of the perfectly 

matched layer scheme, beginning with the complex coordinate 

transformation leading to the PML behavior. It also presents a 
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novel approach to implementation of a conformal PML for 

higher order meshes; namely, by using a method of normal 

projection, the meshing of a PML around an already existing 

convex volume mesh can be done in a largely hands off 

manner. Once the initial mesh has been generated, a PML 

optimization method based on gradient descent is 

implemented to most effectively match the free-space 

impedance to the material parameters of the PML. In Section 

IV, several numerical examples are presented for numerical 

validation and comparison of the proposed method with 

alternate modeling paradigms. In particular, we examine the 

discretization error from finite element approximations 

regarding piecewise anisotropic material parameters, and 

compare these to the higher order material approximations 

provided by this method. We continue by investigating the 

effect of PML parameters on the discretization error. We then 

model a dielectric almond to show the behavior of the 

conformal perfectly matched layer on more diverse 

geometries. Finally, we examine a continuously 

inhomogeneous cloaking structure based on transformation 

optics. 

II. FINITE ELEMENT FORMULATION 

Higher order polynomials as basis functions are well known 

for the increase in the approximation accuracy of electric field 

solutions in the FEM [22]. The standard for mesh 

discretization in low-order modeling is usually taken to have 

elements no larger than λ/10 in each dimension, λ being the 

wavelength in the medium. With the use of higher order basis 

functions and curved parametric elements, one is able to do 

large-domain modeling, with elements sized up to 2λ.  

Electromagnetic scattering can be analyzed in the frequency 

domain by dividing the electric field into incident and 

scattered components and writing the double-curl vector wave 

equation [18],  
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Since the incident field must be a solution to Maxwell’s 

equations in free space, we may subtract the free-space 

contribution from the incident side of equation (1) to arrive at 

a scattering formulation for finite element implementation,  
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After testing equation (2) via the Galerkin procedure, and 

making use of appropriate boundary conditions, the finite 

element formulation of (2) can be written as (assuming that 

the entire computational domain is surrounded by a perfect 

electrically conducting boundary) 
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The geometrical discretization of the scattering body is 

given by generalized curvilinear hexahedrons of arbitrary 

order defined by a set of Lagrange interpolatory polynomials. 

These can be described in terms of a mapping from a local set 

of coordinates (u, v, w) to their position by [22] 
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where Ku, Kv, and Kw are a set of geometric orders, Li(x) is the 

ith Lagrange interpolatory polynomial for a set of Ki + 1 

equally spaced interpolation points. The local parametric 

coordinates are constrained to the unit cube, 
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For computational efficiency, a change of basis is undergone 

in order to describe the mapping (equivalently) in the 

polynomial basis of the local coordinates as 
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This basis change allows for quick computational 

determination of intermediate element points during 

integration, as well as providing a simpler form for the 

evaluation of necessary derivatives during the implementation 

of the PML layer.  

The scattered electric field vector over each element is 

approximated by a set of hierarchical curl-conforming 

polynomial vector basis functions as follows: 
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where the polynomial vector basis is defined as, for example, 
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Here, Pi denotes the ith order Legendre polynomial [23]. These 

basis functions are defined in terms of a set of contravariant 

(dual) basis vectors (a
u
, a

v
, a

w
) determined by the local 

parametric coordinates (u, v, w) of each element. The dual 

basis vectors are given in terms of the covariant basis vectors 

(au, av, aw) and the Jacobian of the local-to-global coordinate 

transform as: 
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Fig. 1: An illustration of the projection process applied to an arbitrarily 

shaped curved geometrically higher order mesh. Starting from the 

dielectric scatterer and surrounding air layer, the normal to the element 

face is calculated at each node on the mesh surface. An element is 

generated by projecting outwards along this normal. At corner regions, 

the surface normals are averaged to produce a direction of projection.  
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 The higher order modeling paradigm offers a few degrees of 

flexibility over traditional finite element methods. One of 

these is the ability to model general anisotropic and 

continuously varying material parameters [24]. This is 

accomplished by a similar Lagrange interpolation scheme to 

(4). For a general anisotropic, inhomogeneous material, we 

expand the continuously inhomogeneous material tensors in 

terms of the material tensors at the interpolation points as 
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and similarly for rμ . Note that the material approximation 

orders K’u/v/w may generally be chosen independently of the 

geometrical approximation order Ku/v/w. 

III. CONFORMAL PERFECTLY MATCHED LAYER 

This conformal PML implementation is generated via a 

spatial transformation based upon the locally-conformal 

formulation of the stretched-coordinate PML introduced by 

Ozgun and Kuzuoglu [14]. The PML consists of a layer of 

artificial anisotropic media. The goal is to generate an 

anisotropic PML layer around the existing mesh. We assume 

that a convex mesh of a scattering body exists, including a 

surrounding air cushion layer.  

The first step of the PML implementation is to generate a 

geometrical model of the conformal PML layer given a higher 

order mesh. This can be accomplished via a method of 

projections. At each geometrical node on the surface, the unit 

normal to the surface is calculated. The surface normal 

directions are simply the dual basis vectors given by (7). The 

normal on nodes shared by multiple elements (corners and 

element edges) are averaged to determine the direction of 

projection. After the projection direction has been calculated 

for each node, elements constituting the PML layer are 

generated by projecting outwards along these directions by a 

predetermined PML thickness. Because the higher order 

modeling paradigm allows for electrically large elements, only 

a single element is needed for projection from each element 

face. A visualization of this process is given in Fig. 1.  

 The locally-conformal PML is initially defined by a 

complex coordinate transform which effectively “stretches” 

the coordinates in the PML away from the real domain 

boundary into a complex space. This is accomplished by 

introducing a coordinate transformation inside the PML as 

[14] 
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 Each material interpolation point inside the generated PML 

layer is mapped back to the closest point on the surface of the 

previous computational domain. A given point in the PML 

domain P with position r  is “stretched” (in a complex 

manner) away from the closest point on the PML P0, with 

position r0 defined by 
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The imaginary complex factor serves the purpose of mapping 

oscillating fields to decaying ones. Additionally, by 

introducing a real coordinate stretching factor, the PML 

additionally serves the purpose of attenuating evanescent 

fields faster within the artificial layer.  

 This PML formulation allows the implementation of 

particularly troublesome areas where the radii of curvature on 

the initial mesh may be 0 and methods based on local 

orthogonal coordinate systems may fail [14]. Figure 2 shows 

 

 
Fig. 2: Visualization in 2 dimensions of a conformal PML layer around a 

predefined geometry (including a dielectric scatterer and air cushion). 

The shaded areas in the PML layer correspond to corner regions, in 

which the principle curvatures diverge, and the complex stretching 

function throughout the region maps back to the corner point r0. The 

closest point on the PML boundary everywhere in this region is the 

corner point. Each point in these shaded areas will be effectively 

stretched away from these corner points. 
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what these traditionally troublesome regions look like. In 

regions generated from corners, the entire PML region may 

simply be stretched away from the corner points. 

 The requirement on the stretching functions )rr( 0if  is 

that they be monotonically increasing functions of the distance 

from the PML boundary. For example, these can be 

polynomial functions given by 
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where p is a positive exponent. For simplicity, we consider 

p=1 in our implementation. Note that p=3, 4 are the typical 

choices to minimize spurious reflection from the PML in the 

FDTD context. Our future study will address the optimal 

choice of p in the higher order FEM context.  

 After every material interpolation point in the PML domain 

has been mapped to its according complex coordinate via (6), 

we can again define a Lagrange-based interpolation in the 

polynomial basis of (u, v, w) as: 
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 Maxwell’s equations are well known to be invariant under 

coordinate transformations. Maxwell’s equations on a 

modified coordinate system have the same formal appearance 

as the original Maxwell’s equations with alternate material 

parameters. By modifying the permittivity and permeability 

tensors,  
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we can obtain the same behavior of the fields as if the 

complex coordinate transformation (11) were implemented. 

Such an idea forms the basis for an entire body of work in 

transformation optics/electromagnetics theory [9,17].  

 The interpolative mapping admits the Jacobian of the 

complex coordinate transform to be written in terms of the 

Jacobians of a given elements coordinate interpolation (1) and 

complex coordinate interpolation (9). By the chain rule, this 

Jacobian is given by 
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Equations (15) and (16) together define the anisotropic 

material parameters given a complex coordinate 

transformation.  

 The minimization problem given by (12) has a unique 

solution provided the starting mesh is convex [10], which is 

already a necessary condition for the attenuating behavior of 

the perfectly matched layer [25]. While the projection process 

gives us an approximate idea of the closest point on a given 

mesh surface, it is not always exact. Failure to satisfy the 

condition given by (12) leads to an imperfectly matched 

boundary and numerical reflections. 

 To overcome this difficulty, it is useful to implement a 

numerical optimization algorithm to overcome any errors 

imposed by the projection process. For a given point, using its 

point of projection as a starting point, a search over the 

adjacent element faces is performed to ensure satisfaction of 

the condition in (12). We evaluate the aforementioned 

minimization problem numerically by means of a constrained 

gradient descent algorithm [26]. The gradient descent is 

evaluated to map back to the surface of the element from 

which it was projected, as well as the immediately 

surrounding elements on the surface.  

 The gradient descent algorithm involves starting with an 

initial guess on the PML boundary for the position of the point 

r0, and continually updating the guess based on the partial 

derivatives of a given cost function. The cost function to be 

minimized is the square of the distance between the 

interpolation point r and surface point r0, 
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The algorithm begins with a guess equal to the point of 

projection, and continually updates the (u,v,w) coordinates of 

the guess, based on the gradient of (17) as 
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The factor β  is a constant, which is dependent upon the 

absolute scale of the problem, and the factor  k   is included to 

ensure convergence of the algorithm in the case of oscillations 

around a local minimum. The update is continually 

constrained to stay within the unit cube (4b), and terminates if 

the update in position is below a selected tolerance. The 

derivatives associated with the gradient in (18) are easily 

calculated from the interpolatory definition of the element 

(4c). 

 After the calculation of new effective material parameters 

based on the gradient descent algorithm (18) and the 

appropriate material transformation (15), the matrices of 

interest are filled as usual by the Galerkin procedure via the 

integrals in (3). The incident field is set to be a plane wave (or 

other exciting field of interest) in the physical domain, but is 
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not present in the PML region. The right-hand side only needs 

to be filled for elements which are not part of the PML. 

IV. NUMERICAL RESULTS 

All simulations were run using Colorado State Universty’s 

ISTeC Cray High Performance Computing (HPC) System. 

The Cray HPC System is a Model XE6 computing system 

with 32 compute cores per node, and utilizes a Gemini 3D-

torus interconnect [27]. Distributed direct solutions of the 

associated sparse system of equations were found using 

multifrontal-based LU factorizations via the MUMPS library 

[28].  

For our first numerical example, we analyze the difference 

in accuracy between piecewise constant and continuously 

inhomogeneous material parameters in the anisotropic 

perfectly matched layer. The perfectly matched layer derives 

from a set of exact impedance matching conditions which 

theoretically yields zero reflected waves. However, 

discretization errors lead to spurious reflections, which we 

wish to minimize. One should expect an increase in the 

accuracy of the PML in the higher order modeling paradigm, 

in which material parameters are described by continuous 

interpolatory polynomials. The well-known example of the 

sphere admits an analytical solution in the form of Mie’s 

series [18], which can be used to quantify the error of a given 

PML discretization. 

This example utilizes 15,317 2nd order curved geometrical 

elements to mesh a small dielectric sphere with relative 

permittivity εr = 2.25. The radius of the sphere is 0.5 m at 

300 MHz, with a 0.3-m thick air cushion, a 0.3-m thick PML 

layer, and a field approximation order 3 wNvNuN . The 

total number of unknowns involved in such a discretization, 

which satisfies that no edge length is greater than λ/10, is 

1,225,260. The use of 3rd order field approximation makes this 

example very over-refined, in order to isolate the error caused 

by the material parameter approximation from geometrical 

modeling errors and errors caused from a lack of mesh 

refinement. 

This model is run with automatically generated material 

approximation parameters, and again with a piecewise 

approximation to the appropriate material parameters. A 

comparison of the numerical errors in the bistatic radar cross 

section (RCS) in the two cases is shown in Fig. 3. It is shown 

that by using a continuous approximation to the required 

material parameters, the reflection error is decreased by 1 to 2 

orders of magnitude.  

The second numerical example helps to illustrate the effect 

of the PML parameters on the numerical error in a setting 

based on practical discretization error. One of the advantages 

of a higher-order modeling paradigm for the PML is to reduce 

the complexity of modeling the PML by generating it from a 

single element projected outwards. For this reason, it is of 

interest to compare a practical modeling scheme where the 

PML is instead modeled by a single layer. We consider a 

dielectric spherical scatterer example identical to the first 

example, with variation in the parameters of the PML. The 

dielectric sphere is well overrefined, as is the 0.3λ0 thick 

spherical air cushion surrounding it, with λ0 denoting the 

wavelength in air (free space). Rather than overrefining the 

PML, we investigate the effects of element size. The mesh is 

made spherically symmetric with well overrefined elements in 

the transverse directions, but with more modest discretization 

in the radial direction. For practical purposes, the PML layer is 

meshed with a single radial layer of elements, with N = 3 field 

expansion, 2nd order geometry, and 2nd order material 

interpolation. This represents a very reasonable and practical 

modeling paradigm for higher-order finite elements. We vary 

both the thickness of the PML layer, tPML, as well as the 

coefficient α1 of the linear stretching function, in (13). Within 

a range of parameters around our most common choice, it is 

found that the discretization error has a fairly drastic 

dependence on the PML stretching parameter as well as the 

thickness of the PML layer. The RMS error in the normalized 

bistatic RCS is calculated for a sweep of these parameters and 

is presented in Table I. 

At low values of α1/k0 (k0 is the free-space wave number), 

the model converges slowly with increasing the tPML, because 

of the exponential decay of the outgoing waves. At high 

values of α1/k0, the model becomes extremely sensitive to the 

PML thickness because the exponentially decaying waves are 

TABLE I. RMS error in bistatic radar cross section (dB) of the dielectric 

scatterer from Fig. 3 for a sweep of the PML parameters, the thickness of 

the PML layer, tPML, and the coefficient α1 of the linear stretching 

function.  

   tPML/λ0 

  .1 .15 .2 .25 .3 .35 .4 

α
1
/k

0
 

1.33 8.377 5.642 3.952 3.634 1.885 1.074 1.014 

1.67 7.089 4.129 2.676 2.081 1.295 0.905 1.020 

2.00 5.897 2.029 1.726 1.609 0.714 0.851 1.253 

2.33 4.844 2.200 1.080 0.574 0.653 1.164 1.947 

2.67 3.945 1.556 0.614 0.348 0.991 1.606 2.206 

3.00 3.193 1.340 0.676 0.105 1.406 2.076 2.733 

 

TABLE II. RMS error (eRMS) in bistatic RCS (dB) of the dielectric 

scatterer from Fig. 3 for different values of the air layer thickness, tair. 

tair/λ0 .1 .15 .2 .25 .3 .35 .4 

eRMS 1.482 1.579 1.344 0.835 0.799 0.987 1.386 

 

 
Fig. 3: Error in bistatic radar cross section of a 1λ diameter homogeneous 

dielectric sphere of relative permittivity εr = 2.25. The sphere is excited 

by a plane wave incident from the ϕ = 0 direction. A factor of 10 

improvement in the numerical error is seen by using a continuously 

inhomogeneous PML when compared to piecewise constant material 

parameters.   
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Fig. 5: Normalized bistatic cross section of a dielectric almond scatterer 

with relative permitivitty εr = 2.25. The incident field is a z-polarized 

plane wave of frequency 10 GHz from the –x direction. The cross-section 

is validated with the use of WIPL-D, a surface integral equation solver. 
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Fig. 4: (top) Real part of the near scattered electric field (z-component) of 

the dielectric almond, as calculated by the FEM with conformal PML. 

Plane wave is incident from the +x direction and is z-polarized. (bottom) 

The same near scattered field based on MoM surface integral equation 

calculations via WIPL-D. Note the wave attenuation in the immediately 

surrounding region (the PML) in the FEM solution. 

not well approximated by the space of basis functions. We 

find that the minimum error is obtained for α1 = 3.0k0 and 

tPML=0.25λ0. However, at these values, the solution is 

somewhat sensitive to variations in these parameters. At  

higher values of α1, the fields decay faster than the solution 

can accurately model, and the error again increases. In 

practice, we settle for a more moderate nominal selection of 

α1=2.5k0 and tPML=0.3λ0. We find that this represents a 

decent balance between the accuracy of the solution and the 

sensitivity of the accuracy with respect to the PML 

parameters. Next, we fix the values of these parameters at 

α1=2.5k0 and tPML=0.3λ0 and investigate the effect of the 

thickness of the air layer, tair, on the same error function. We 

keep the air layer well overrefined (maximum element size 

<0.1λ0). The results are shown in Table II. Overall, only a 

minimal effect is seen on the error, and especially around the 

value of tair = 0.3λ0. We hereafter adopt tair = 0.3λ0 in all 

examples. 

The third numerical example examines the ability of the in 

conformal PML on a more complicated geometry.  The NASA 

almond model geometry [29] is used as a dielectric scatterer 

with εr = 2.25. The almond shape serves as a useful 

benchmark for CEM methods, because the round back and 

sharp tip provide a variation in geometrical shape. The 

excitation is by a vertically polarized plane wave incident on 

the tip of the almond (from the –x direction). The starting 

mesh consisted solely of the dielectric almond, and the 

projection procedure described in Section III was repeated 

twice to generate a 0.3λ0 air layer and a 0.3λ0 PML layer. The 

entire mesh including the air and PML consisted of 928 2nd 

order geometric elements.   

Figure 4 shows a comparison of the near scattered electric 
 

field of the dielectric almond in the FEM discretization with 

conformal PML with that obtained using a method of 

moments (MoM) solution from the industry solver WIPL-D 

[30]. An excellent agreement of the two sets of results is 

observed.  

Figure 5 shows the comparison of the bistatic RCS of the 

almond. Good agreement is observed in the far-field pattern as 

well. Because of the tapered shape of the almond, one would 

expect the presence of evanescent fields, particularly at the 

scattering tip, due to the possible occurrence of total internal 

reflection inside the dielectric. To account for this, a real 

coordinate stretching function f2 of the form given in eq. (11) 

is included with α2 = 0.8k0. Indeed, we found that such an 

implementation was necessary to provide agreement with the 

MoM solution in the far-field.  

The fourth and final numerical example is a simulation of a 

spherical continuously inhomogeneous and anisotropic 

cloaking structure. Such a structure can be described in terms 

of theory from transformation optics [31]. In [32], a higher 

order spherical cloak was simulated using continuously 

inhomogeneous material parameters based on a FEM-MoM 

hybrid formulation to deal with boundary conditions. We 

simulate a dielectric sphere with diameter of 3λ and a relative 

permittivity of εr = 2.25. The cloak is based on a linear 

mapping function, and consists entirely of an inhomogeneous 

layer 2 elements thick. The material parameters from [31] are 

approximated by 4th order interpolations. The entire sphere 

and cloaking structure is surrounded by a 0.3λ0 layer of air and 

a 0.3λ0 thick PML. Figure 6 shows the normalized bistatic 

RCS calculated from the entire device, compared to the Mie’s 

series solution. We see a reduction of the cross section to less 

than 50 dB around the entirety of the sphere. Figure 7 shows a 

snapshot in time of the z-directed electric field in and around 

the dielectric sphere. The incident waves are in essence bent 

around the sphere, and the electric field inside the dielectric is 

reduced to near zero.  
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Fig. 7: A snapshot of the total electric field (z-component) in the near-

field of an electromagnetic cloaking device. The exotic material 

parameters surrounding a dielectric sphere effectively bend an incident 

plane wave around the scattering body. The plane wave propagation 

exhibits only minimal disturbance by the presence of the entire structure.  

V. CONCLUSIONS 

This paper has proposed a novel perfectly matched layer 

method for use with electrically large curvilinear meshes 

based on a higher order FEM modeling paradigm and the 

concept of transformation electromagnetics. The method maps 

the non-Maxwellian formulation of the locally-conformal 

PML to a purely Maxwellian implementation using 

continuously varying anisotropic and inhomogeneous material 

parameters, with the interpolatory parameterization of higher 

order curvilinear geometries providing an interface to evaluate 

the required Jacobian matrices in a simple and effective 

manner. The paper has also presented a novel approach to 

implementation of a conformal PML for higher order meshes, 

based on a method of normal projection for PML mesh 

generation around an already existing convex volume mesh of 

a dielectric scatterer, with automatically generated constitutive 

material parameters. Starting with such an initially generated 

mesh, a PML optimization method based on gradient descent 

is used to most effectively match the free-space impedance to 

the material parameters of the PML. Overall, this appears to 

be the first higher order anisotropic locally-conformal PML-

FEM method.  

The numerical results have shown that the implementation 

of a conformal perfectly matched layer in the higher order 

FEM modeling paradigm provides benefits over traditional 

PMLs with piecewise constant material parameters, with the 

reflection error in a spherical dielectric scatterer example 

being reduced by a factor of 10 to 100 using the higher order 

material approximations inherent to the new method. The 

ability of the new anisotropic locally-conformal higher order 

PML to accurately and efficiently analyze scatterers with a 

large variation in geometrical shape has been demonstrated in 

an example of a dielectric almond, which is challenging for 

PML modeling because of the sharp tip and round back, as 

well as the tapered shape of the almond. The performance of 

the method in analysis of objects with unconventional and 

challenging to model material compositions has been 

demonstrated in an example of a spherical continuously 

inhomogeneous and anisotropic cloaking structure based on 

transformation optics. 

While the novel PML method can be applied to FEM 

modeling, analysis, and design of arbitrary structures, one of 

the areas of practical application and our future work is its 

utilization to aid in the theoretical design and analysis of novel 

devices based on metamaterials. 
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