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Duffy Method for Evaluation of Weakly Singular SIE
Potential Integrals Over Curved Quadrilaterals
With Higher Order Basis Functions

Ana B. Mani¢, Miroslav Djordjevi¢, and Branislav M. Notaro$

Abstract—A Duffy method for singularity cancellation is proposed for
evaluation of weakly singular potential integrals defined on generalized
curved parametric quadrilateral patches with polynomial basis func-
tions. Such integrals arise in evaluation of Galerkin matrix elements in
method-of-moments analysis of antennas and scatterers in cases of coinci-
dent source and test elements. Examples demonstrate that the proposed
Duffy method is more accurate, more rapidly converging with the increase
of orders of Gauss-Legendre integration formulas, and faster to execute
than four other methods for singularity treatment considered in the study.

Index Terms—Coordinate transformation, curved parametric elements,
Duffy method, higher order modeling, singular potential integrals, singu-
larity cancellation, singularity extraction.

[. INTRODUCTION

In analysis of antennas and scatterers based on the method of mo-
ments (MoM) in conjunction with the surface integral equation (SIE)
approach [1], one of the most important problems in the development
of a MoM-SIE technique is the treatment of weakly singular poten-
tial two-dimensional (2-D) integrals. Such integrals are involved in the
self-terms of the Galerkin impedance matrix, with the testing patch co-
inciding with the source patch, namely, when an observation (testing)
point belongs to the source patch (with basis functions). This problem is
even more pronounced and challenging when higher order basis func-
tions are used for the approximation of surface currents, and especially
when such functions are defined on curved surface (boundary) elements
(patches) employed for geometrical modeling of the structure [2].

Singularity extraction (subtraction) methods for singular integrals
consist of analytical integration of a principal singular part of the in-
tegrand and numerical integration of the residual using quadrature for-
mulas [1]-[3]. Singularity cancellation methods are based on coordi-
nate transformations, i.e., on mapping of the integration domain to a
new parametric domain such that the Jacobian of the transformation
cancels out the singular term in the integrand. A typical representative
of this approach is the Duffy method [4], originally proposed for a vol-
umetric integration domain [5].

However, most of the previous research in this area has been devoted
to handling the singularities on planar triangular patches with low-order
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current approximations, typically in the form of Rao-Wilton-Glisson
(RWQ) basis functions, e.g., [3], [6]-[11]. Overall, there seems to be
a lack of reported results on the treatment of singular potential inte-
grals involved in the self Galerkin MoM-SIE impedance matrix en-
tries for curved surface elements with higher order basis functions, the
only methods for singularity extraction or cancellation in such cases
being those presented in [1], [2], [12]-[16]. In particular, a singularity
extraction method for curved quadrilateral elements with higher order
hierarchical polynomial vector basis functions is implemented in [1],
[2]. A polar transformation method for singular potential integrals over
curved quadrilateral elements with higher order hierarchical polyno-
mial bases is proposed in [12]. Rectangular transformation methods
for singularity cancellation are applied to solve potential integrals over
curved quadrilateral elements with higher order hierarchical polyno-
mial bases in [13] and [14]. The Duffy method is applied to evaluation
of singular integrals over curvilinear triangles in [15], [16]. There is
also a lack of evaluations and assessments of the accuracy and conver-
gence properties of various possible singularity treatment and integra-
tion methods, for different locations of singular points in parametric
domains, different basis functions on flat or curved surface elements,
and overall.

This communication presents a Duffy method for singularity can-
cellation to evaluate singular potential integrals involved in the self
Galerkin MoM-SIE impedances defined on Lagrange-type generalized
curved parametric quadrilateral surface elements of arbitrary geomet-
rical orders with polynomial basis functions of arbitrary current-ap-
proximation orders. The communication also presents a comparison of
the integration accuracy when using five different methods for evalua-
tion of singular potential integrals, implemented in the same code. The
methods are: (i) the singularity extraction method [2], (ii) the Duffy
method for singularity cancellation (proposed in this communication),
(iii) the polar transformation method for singularity cancellation [12],
(iv) the quadratic rectangular transformation method for singularity
cancellation [13], and (v) the cubic rectangular transformation method
[14]. We show that overall, of the five integration methods considered,
the proposed Duffy method for singularity cancellation comes out to
be the most accurate, the most rapidly converging with the increase of
the order of integration formulas, and the fastest to execute.

II. THEORY

We consider a MoM-SIE model of an antenna or scatterer built using
generalized curved parametric quadrilaterals of arbitrary geometrical
ordersi{, and K.(K,,K, > 1), shown in Fig. 1 and analytically
described in the parametric © — v domain as [1]

oy Ko

r(u,v) = ZZI‘;Juivj, —1<u.v<1 )

i=0 j=0

where r;; are constant vector coefficients related to position vectors of
interpolation nodes defining the quadrilateral. When these elements are
used in conjunction with higher order polynomial basis functions, all
entries of the Galerkin impedance matrix can be found as linear combi-
nations of 2-D/2-D Galerkin integrals [1], which, for the case of testing
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Fig. 1. Generalized curved parametric quadrilateral defined by (1).
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Fig.2. Dufty method for singularity cancellation: subdivision of the parametric
u — v square domain into four parametric triangles with local constant p and
constant s parametric lines in triangular region 1.

and basis functions being defined on the same patch (self Galerkin in-
tegrals), contain the following singular inner 2-D basic potential inte-
grals computed at an observation (testing) point (ug, vy ) belonging to
the source quadrilateral patch:

ikt
T = / / v g(R)dudv, g(R) = IR
510
=2xf\/Zopo, R =|r(u,v)—r{uo,vo)] ?2)

with g being the free-space Green’s function, f the operating frequency
of the antenna/scatterer, and 12 the distance of the source point (u, v)
from the point (uo, vo), referred to as the singular point. When the two
points coincide, R is zero, and a special treatment of the singularity is
needed.

A. Duffy Method for Singularity Cancellation

We propose a Duffy method to solve integrals in (2), which is based
on subdividing the parametric « — v square domain into four parametric
triangles defined by the singular point and the vertices of the square, as
shown in Fig. 2 (also see [10] and [17]). Note that this is a modifica-
tion in the spirit of the original Duffy method initially proposed for a
3-D domain of integration [5], which would imply a subdivision of the
parametric square into eight right-angled triangles (much like in Fig. 4).
Each triangle in Fig. 2, having the singular point as one of its vertices,
is then independently mapped into a new p — s domain as illustrated in
Fig. 2, for one of the regions. Note also that the Duffy method in [15]
is implemented for triangle local coordinates, while in [16] it is further
developed using mapping of a curvilinear triangle to an isosceles right
triangle.
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TABLE I
PARAMETERS OF THE DUFFY MAPPING IN (3) FOR THE
FOUR TRIANGULAR REGIONS IN FIG. 2

Region 1 Region 2 Region 3 Region 4
u=a,v=>=b v=a,u=b u=a,v=>b v=a,u=b
sh=—1-v, 53 =—1—-u, si==1-v, st=—1-u,
s3=1-v, 53=1-u, $5=1-v, s3=1-ug
c=1-u, c=1-v, c=—1-u, c=-1-vy,

Mapping to the p — s domain differs for different triangles in Fig. 2
but can be expressed in a unified way as follows:

a=apg+pc, b=bo+ps, 0 <p <1, s <5< 82, c=const (3)

with coordinates @ and b standing for either « or v such that a is always
constant on the triangle edge across the singular vertex, while b is the
other parametric coordinate. With this notation, Table I provides map-
ping parameters for each region (triangle). Based on (3), the Jacobian
of the mapping can be defined and computed, for every triangle, as

pa b

v 3 p & — ol

3= ‘ ba b ' = plel. )
%5 0s

Combining (3) and (1), the radial distance from the singular point in
triangular region / in Fig. 2 can be expressed as a polynomial in p with
coefficients d being functions of s, as follows [note that the only term
in the binomial expansion of u*# using (3) that does not contain p is

11,6'116 1:

Ky K.

E E riy ('lll’b‘] — ué/ué)

i=0 j=0

Ku+Ka

di + Z dip =t

Hence, the singular integral over region ! can be expressed using (2),
(5), and (4) in a way that removes (cancels) the singularity,

=p 1=1,23,4. (5)

1 _
L. = kRt Jdpds

47
0

Rl

8o

//

namely, the singular dependence on the p coordinate in (5) is canceled
by p in the expression for the Jacobian in (4), so the integral in the
final form in (6) can be evaluated in a straightforward fashion numer-
ically, using quadrature (e.g., Gauss-Legendre) formulas. Finally, the
contributions of individual triangles are added up for the total potential
integral, I, = Iy + T + I + 1)

(™ —JkH dpd
pds
©
dl + Z dl i—1

B. Four Other Integration Methods Used for Comparison

Singularity Extraction Method: The method of extracting the singu-
larity consists of analytical integration of a principal singular part of the
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Fig. 3. Five different choices of the singular point (., v ), with parametric
coordinates given in Table II, in the # — v parametric domain, over curved
quadrilaterals in Fig. 1.

integrand over a (generally not rectangular) parallelogram whose sur-
face is tangential to the surface of the generalized quadrilateral at the
singular point, and numerical integration of the rest using Gauss-Le-
gendre quadrature formulas [1], [2]. The parallelogram is defined by
the unitary vectors of the generalized quadrilateral at the singular point
[1]. The singular integral is evaluated analytically as in [3], while the
remainder is well behaved in the vicinity of the point (wg, v9) and can
be accurately integrated numerically.

Polar Transformation Method for Singularity Cancellation: Polar
transformation [12] uses the same triangulation as in the Duffy method
in Fig. 2 while mapping the parametric © — v domain into a new p —
f domain, with a standard meaning of the radial coordinate, p, and
angular coordinate, #, in the polar coordinate system centered at the
singular point, (uo, v0 ), in the v — v domain.

Quadratic and Cubic Rectangular Transformation Methods for Sin-
gularity Cancellation: Rectangular transformation methods [13], [14],
[18] subdivide the parametric « — ¢ square domain into four rectan-
gular regions whose common vertex is the singular point. The rectan-
gular transformation for SIE integrals is applied with mapping order
t = 2 (quadratic transformation) in [13], while [14] implements the
same transformation with mapping order ¢ = 3 (cubic transformation).

III. NUMERICAL RESULTS AND DISCUSSION

We compare the integration accuracy when using five different
methods for evaluation of singular potential integrals, described in the
previous section. In the first set of examples, the integrals are com-
puted for five different locations of the singular point defined in the
u — v parametric domain as shown in Fig. 3 and specified in Table II.
The choice of singular points is made so that it reflects evaluation of
singular integrals needed for the assembly of self Galerkin impedance
matrix entries. However, the same integration schemes can be applied
when singular points belong to an edge or coincide with a vertex of the
source domain; in such cases, one would just have a different number
of regions after the subdivision of the integration domain. All results
are given in terms of the relative integration error computed as

_ |Imn - Imnl

- )
|Im n |

where I,,,,, is the reference “exact” value of the integral. All computa-
tions are performed in double machine precision.

A. Integral With Constant Basis Functions Over a Square Plate

As the first example, we consider the integral in (2) form = n = 0,
namely, with constant basis functions, over a square flat plate of side
length ¢ = 2 m, at a frequency f = 300 MHz, so that « = 2A, with
A standing for the free-space wavelength. With reference to Fig. 4, the
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TABLE 11
PARAMETRIC COORDINATES OF SINGULAR POINTS IN FIG. 3

Point A Point B Point C Point D Point E
uy =0 uy=0.5 uy=0.6 uy=0.8 uy=0.9
vy =0 vy =0.1 vy =0.4 v5=0.8 vy=-0.9
(0
o ()
0
d

Fig. 4. Forintegration in (8) over one of the eight right-angled triangles consti-
tuting a square flat plate, to compute the reference “exact” value of the integral
Ioo .

TABLE III
REFERENCE VALUES OF INTEGRAL Ip OVER A 2A X 2\ FLAT PLATE FOR
SINGULAR POINTS IN FIG. 3

Point A 0.0390728194148081 - 0.0338074127356726j
Point B -0.0104077559218362 - 0.0873743257011760j
Point C -0.019482990210943 -0.117888060820110j
Point D 0.0370913362751421 - 0.0717465899269053]
Point E 0.0379659704128063 - 0.0400119796261574j

“exact” value Ioy in this special case (flat plate) can be obtained by first
analytically transforming the 2-D integral in v and v as

8 ‘1 — eTos8
= ——d# 8
Z/ jhdr ®

and then numerically solving the final non-singular 1-D integrals in
8. Ino integral values are given in Table III. Fig. 5 shows the error
in (7) against the orders of Gauss-Legendre integration formulas, i.e.,
numbers of integration points, in each of the region’s local directions,
NGL (the same in both directions), for five different singular points in
Fig. 3 and five different integration methods.

Based on Fig. 5(a)—(c), we conclude that, for singular points A, B,
and C, the Duffy method and the polar transformation method for sin-
gularity cancellation perform the best, with the Duffy method con-
verging even faster in some cases than the latter method. We also ob-
serve that accuracy and convergence properties of the singularity ex-
traction method noticeably outperform the cubic rectangular transfor-
mation method, and especially the quadratic rectangular transforma-
tion method. From Fig. 5(d)—(f), we realize that the Duffy method is
considerably more accurate and faster converging than the polar trans-
formation method for some specific choices of singular points, i.c.,
points D and E, and that the singularity extraction method features the
highest convergence rate of all the methods for smaller values of VG L.
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Fig. 5. Evaluation of the integral Ioo (for m = n = 0) in (2) over a square flat plate using the singularity extraction method, the Duffy method for singularity
cancellation, the polar transformation method for singularity cancellation, the quadratic rectangular transformation method for singularity cancellation, and the
cubic rectangular transformation method: integration error in (7) against the order of Gauss-Legendre integration formulas, NG L, for five different singular points

in Fig. 3 oo is computed as given in (8) and Fig. 4].

Note, however, that this is electrically a rather large patch, namely, the
2X x 2A plate considered as a single MoM element. Smaller patches,
e.g., those on the order of A x A and 0.5\ x 0.5\, also used in higher
order MoM-SIE techniques, and especially electrically small patches
measuring 0.1A x 0.1\ and less, characteristic for low-order MoM-SIE
techniques, require far lower values of NG L for a given accuracy of
integration and a given machine precision (double precision).

Overall, when NG L is not limited, as shown in Fig. 5(e)—(f), the
best convergence behavior is achieved by the Duffy method. While
for some singular points and lower values of NG L, the singularity
extraction method reaches certain accuracy levels the fastest, further
improvement of its accuracy at the expense of adopting higher NG L
values is rather slow. On the other hand, both the Duffy method and the
polar transformation method exhibit a logarithmic-type of convergence
with increasing NG L.

Among the results for all singular points, the worst accuracies and
convergence behaviors for all integration methods are those in Fig. 5(f).
The singular point E in Fig. 3 thus comes out to be the worst-case sce-
nario for the evaluation of the integral Joy using any of the methods,
and the error graphs in Fig. 5(e) and (f) may be considered as defining
and limiting the accuracy and convergence properties of the individual
methods as long as the integration performance at specific singular
points is concerned.

Table IV provides information on computation times for the five in-
tegration methods, for singular point A and NGL = 20. We see that,
out of all the methods, the Duffy method, being the simplest, is the
fastest to execute.

B. Integral With High-Order Basis Functions Over a Spherical Patch

In the second example, we evaluate the integral in (2) for a selec-
tion of high-order basis functions given by m: = 2 and » = 6 over a
curved quadrilateral patch (in Fig. 1) of the fourth geometrical order,

TABLE 1V
COMPUTATION TIMES FOR FIVE INTEGRATION METHODS (INTEGRAL I, OVER
A SQUARE FLAT PLATE, SINGULAR POINT A, AND NG L = 20)

Singularity Duffy Polar Quadratic Cubic
extraction method transform. transform. transform.
390 ps 328 ps 359 ps 390 ps 374 ps
namely, with K, = K,, = 4 in (1), modeling one-sixth of a sphere of

radius ¢ = 1.2732 m, at a frequency f = 300 MHz, with the patch
being about 2 across. Shown in Fig. 6 is the geometry of the patch
and the error in (7) against the order of Gauss-Legendre integration
formulas, N G L, for singular points A, B, C, D, and E in Fig. 3 and the
five different integration methods. Based on the results in the previous
example, as well as on extensive numerical investigations of the five
methods in this (second) example, it is established that both the Duffy
method and the polar transformation method for singularity cancella-
tion with the order of Gauss-Legendre integration formulas adopted
to be as high as NG L = 200 can reliably be considered as the fully
converged and highly accurate, with negligible differences between re-
sults of the two methods. For all five singular points analyzed, the rel-
ative difference between results obtained using Duffy and polar trans-
formation methods with N G'L = 200 is less than 1.5 x 10™'*. There-
fore, in this example, we choose the solution by the Duffy method with
NGL = 200 as the reference (“exact”) result for Ly in (7), with the
reference values given in Table V.

Conclusions about the accuracy and convergence properties of dif-
ferent integration methods, and their relative advantages and short-
comings, for specific singular points and overall, are similar to those
drawn in the previous example. In addition, we realize that all the
methods perform well in Fig. 6(a) since the singular point location A
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Fig. 6. Evaluation of the integral /26 (for m = 2 and n = 6) in (2) over a spherical patch using five different integration methods: integration error in (7) against
the order of integration formulas, NG L, for five different singular points ({26 is computed by the Duffy method with NG L = 200).

TABLE V
REFERENCE VALUES OF INTEGRAL I>¢ OVER A 2X X 2A CURVED PATCH
MODELING ONE-SIXTH OF A SPHERE FOR SINGULAR POINTS GIVEN IN FIG. 3

Point A 0.0124967595839862 - 0.00129587438488675j
Point B -0.000465975239161153 + 0.00318092837694706)
Point C -0.00558811841514885 - 0.00543831056714150j
Point D 0.0176400704430661 - 0.0199165023639411j
Point E 0.0281932219071943 - 0.0194326435061862]

yields a non-singular integral (2), due to the polynomial part of the in-
tegrand having higher-order zeros. Fig. 6(b)—(f) demonstrate that the
polar transformation method offers substantially slower convergence
for singular integrals defined over curved patch when compared to ones
defined on the flat geometry. Furthermore, for low orders of integration
formulas, five methods result in a comparable precision; however, with
the increase in number of integration points, Duffy and polar transfor-
mation methods yield a convergence superior to other methods.

C. Computation of a Full 2-D/2-D Self Galerkin Integral Over a
Half of an Oblate Spheroid

As the final example, we evaluate a full 2-D/2-D self Galerkin inte-
gral (used in assembly of Galerkin impedance matrix entries)

Im RIS
|

/

| [
/ ug o / / up Loy P g(R)dupder, [dude, (9)
"7

—1-1

—1—

defined on a curved quadrilateral patch with I, = I, = 4 modeling a
half of an oblate spheroid with the maximum dimension of 2A. The or-
ders of testing and basis polynomial functions are set to mn¢ = 1y = 4
and m;, = n, = 6, respectively. Based on conclusions in [19], we

—s=— Singularity extraction
== Duffy method

—4— Polar transformation
Quadratic transform.
— = Cubic transformation

A

2

Log,, (5)

Fig. 7. Evaluation of the 2-D/2-D self Galerkin integral I,456 over a large
curved quadrilateral patch with £, = K, = 4 modeling a half of an oblate
spheroid.

adopt NG L = 6 for the regular Gauss-Legendre scheme used for the
calculation of the outer, well-behaved, 2-D integral, while NG L for
the inner 2-D integration is ranged as depicted in Fig. 7. The patch
geometry and convergence results for the integral 11466 are shown in
Fig. 7, with the same observations and conclusions in terms of the per-
formance of different integration methods as in the previous examples.

IV. CONCLUSIONS

This communication has proposed a Duffy method for singularity
cancellation to evaluate weakly singular potential integrals involved
in the self Galerkin impedances in MoM-SIE analysis of antennas and
scatterers. The impedances are defined on Lagrange-type generalized
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curved parametric quadrilateral surface elements of arbitrary geomet-
rical orders with polynomial basis functions of arbitrary current-ap-
proximation orders. In addition, the communication is considered as
a step forward in overcoming the current lack of evaluations of var-
ious possible singularity treatment and integration methods, and assess-
ments of the accuracy and convergence properties of different methods,
and their relative advantages and shortcomings, for different locations
of singular points in parametric domains, different basis functions on
flat or curved surface elements, and overall. A final overall conclusion
based on evaluations of singular potential integrals in several examples,
is that, of the five integration methods considered, the Dufty method for
singularity cancellation comes out to be the most accurate, the most
rapidly converging with the increase of the orders of Gauss-Legendre
integration formulas, and the fastest to execute.
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An Improved Design and Implementation of a Broadband
Circularly Polarized Antenna

Chien-Hsing Lee and Yu-Han Chang

Abstract—This communication presents an improved design and imple-
mentation of a broadband circularly polarized antenna that features a size
reduction, good axial-ratio bandwidth and good return loss bandwidth. The
circuit comprises one Schiffman phase shifter that is used to obtain a wide-
band phase difference of 90°, and a pair of orthogonally positioned lin-
early polarized slot antennas with equal radiation strength that are used
to accomplish a circular polarization by combining the horizontally and
vertically polarized waves with a Wilkinson power divider. Measured re-
sults show that the 3 dB axial-ratio bandwidth of the proposed antenna can
reach 81.5% (1.6-3.8 GHz), and the 10 dB return loss bandwidth is 100%
(1.48-4.47 GHz).

Index Terms—Broadband circularly polarized antenna, phase shifter,
slot antenna, Wilkinson power divider.

I. INTRODUCTION

Recently, circularly polarized (CP) antennas have been widely used
in mobile communications systems. In the case of CP waves, three con-
ditions must be satisfied, including a pair of linearly polarized (LP)
waves must have equal magnitude, the two LP waves must be orthog-
onal to each other, and the two orthogonal LP waves are independently
excited with a 90° phase shift. Although many broadband CP antennas
with a 3 dB axial-ratio bandwidth of 30~77% and a 10 dB return loss
bandwidth of 35~80% have been proposed [1]-[8] and there have been
devoted to design a better and wider bandwidth CP antenna, the pro-
posed antenna as shown in Fig. 1 was made from lower cost easily ob-
tainable materials that it can achieve the 3 dB axial-ratio bandwidth of
81.5% and 10 dB return loss bandwidth of 100%. As seen from Fig. 1,
the antenna comprises one Schiffman phase shifter (SPS) [9] and a pair
of orthogonally positioned LP slot antennas. The reason to use two slot
antennas is that one is to produce vertical LP radiation and the other is
to provide horizontal LP radiation. The two LP modes can be realized
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