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Abstract—We present an application of goal-oriented adaptive
isotropic hp-refinement for the 2-D Maxwell eigenvalue prob-
lem. We apply a simplified goal-oriented error expression for
improving the accuracy of the eigenvalues, which, when com-
bined with indicators derived from the solution, enables highly
targeted discretization tuning. Furthermore, we introduce an Ap-
refinement/coarsening optimizer coupled with error smoothness
estimation for refinement classification and execution. These
enhancements yield cost-effective resource allocations that reach
extremely high accuracy rapidly even for eigenvalues of singular
eigenfunctions. Finally, we provide numerical benchmarks more
accurate than existing numerical reference values, along with
new benchmarks for higher-order modes that will facilitate the
comparison and development of new approaches to adaptivity
and hp finite elements in computational electromagnetics (CEM).
Our implementation is based on the open-source finite element
library deal.Il.

Index Terms—adjoint methods, adaptive error control, adap-
tive refinement, computational electromagnetics, finite element
method, higher order methods, hp-refinement.

I. INTRODUCTION

N the presence of singular—or generally non-smooth

behavior—p-refinement, the process of increasing the poly-
nomial order of the discretization, yields only algebraic con-
vergence; yet with a sufficiently smooth solution, p-refinement
provides exponential convergence. Combined hp-refinement,
however, which controls the resolution of the domain sub-
division and the expansion orders, enables exponential con-
vergence even for non-smooth solutions, unlocking significant
potential for accuracy and efficiency for general problems in
computational electromagnetics (CEM) and electromagnetic
modeling.

The development and application of hp capable methods is
of increasing interest in CEM and the broader applied math-
ematics community. As the demands for accuracy increase,
the need for enhanced convergence, and therefore the sub-
stitution of low-order methods with higher-order alternatives,
has driven significant development for practical applications
in hp-refinement.

Constructing the most accurate and efficient discretization
demands versatility in the model, such as non-uniform cell
sizes and non-uniform expansion orders. Such versatility,
however, requires adequate adaption and refinement instruction
for practical and effective applications. To ensure a rapidly
convergent adaptive mesh refinement (AMR) procedure, we
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target the discretization with goal-oriented error estimation.
As opposed to standard strategies, which either specifically
examine the accuracy of the solution or some property of the
solution as a surrogate for the accuracy, the dual weighted
residual (DWR) expression of the error enables rigorous error
estimation related to quantities of interest (Qols) computed
from the solution. Furthermore, we augment the utility of the
dual weighted residual by extracting the field error for smooth-
ness estimation, which facilitates significantly improved con-
vergence and consistency in comparison to smoothness esti-
mation of the solution itself.

Goal-oriented error estimation and adaptive refinement re-
mains a key focus of research in the applied mathematics
community. For a comprehensive overview, with a particular
emphasis on duality-based approaches, see [/1]]—[3].

Mixed-order and hp-methods were introduced in [4]—[7]],
demonstrating that under proper conditions, exponential con-
vergence with respect to the number of degrees of free-
dom may be achieved through a combination of h- and p-
refinements. Since then, many practical studies of hp capable
methods have followed, e.g., [8]], [9]. Furthermore, open-
source libraries such as deal.Il [10], [11] have alleviated many
of the practical hurdles of implementing hp-methods, yet
challenges remain for effective application.

Considering the Maxwell eigenvalue problem, which is
the focus of this manuscript, the success of adaptive error
control approaches naturally relies on the convergence of
the discrete problem to the continuous problem; rigorous
analyses of this convergence through proofs of the discrete
compactness property have shown the viability of H (curl)-
conforming Galerkin discretizations for solving the Maxwell
eigenvalue problem with A-refinement procedures in [12], p-
refinement procedures in [[13]], and combined hp-refinement
procedures in [14]. Previously, [[15] studied the application of
p-refinement for a variety of waveguide models. For adaptive
hp-refinement, an analysis of a standard residual-based error
indicator and convergence was conducted in [16]. Similarly,
[17], [18] studied exponential rates of convergence for cavity
resonators and manual discretization refinements for smooth
and singular eigenfunctions.

The predominate approach for hp-refinement of Maxwell
equation problems in CEM, however, has relied mostly on
multi-grid techniques, with iterative construction and com-
parison of a starting discretization and a globally refined
(simultaneously in h and in p) reference, such as in [[19]-[21]].
Additionally, in [22] hp-refinement was applied according to
this approach for accurate S-parameter computation of waveg-
uide discontinuities with energy-norm minimization refine-
ment and, as an extension of the energy-norm approach, goal-
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oriented strategies. A similar study of goal-oriented adaptivity
for S-parameter computation was conducted in [23]]. Notably,
[24] proved convergence in the energy norm for a residual-
based hp-refinement algorithm while also avoiding the high
computational cost of the above multi-grid techniques, with
applications to a variety of Maxwell equation problems in the
3-D finite element method (FEM).

Other approaches in applied mathematics have leveraged,
in addition to various types of error estimation or indication,
estimation of several characteristics of the discretization to
determine the choice between h- and p-refinement. In [7],
local error indicators were computed for a base mesh and
its globally p-refined realization, with the ratio of these error
indicators deciding whether to h- or p-refine. On the other
hand, in [25]] the smoothness of the solution was estimated
from the Legendre expansion. Similarly, [26] studied the decay
rate of the Fourier and Legendre series expansions to guide
hp-refinement. Additionally, in [27]], the Sobolev regularity
of the solution was estimated from the Legendre expansion
coefficients. We pursue the approach of estimating the decay
rate of Legendre coefficients to generate a smoothness indica-
tor; however, we study the smoothness of the error field (i.e.,
the estimated difference between the exact solution and its
approximation), rather than the solution itself, to better target
the discretization error and insufficient local smoothness.

Similar error estimates through the DWR were also applied
to 1-D dielectric slab problems [28]], and to accelerated p-
refinement for electromagnetic scattering problems in 3-D
FEM [29]. Instead, we provide a simplified form for the
DWR of the Maxwell eigenvalue problem for eigenvalue
Qols and combined hp-refinement. Moreover, in this paper
we explore attaining maximal accuracy through hp-refinement
optimization, which, in addition to ease of use, results in
exponential convergence with respect to the number of degrees
of freedom.

The rest of this paper is organized as follows. Section II out-
lines the construction of the simplified error estimate and the
hp-refinement classification procedures. Section III provides
numerical examples, illustrating the strong performance of the
proposed refinement procedure for the Maxwell eigenvalue
problem in 2-D FEM. The examples indicate attainment of
exponential rates of convergence even for eigenvalues of sin-
gular eigenfunctions. Lastly, we provide improved numerical
benchmarks for a challenging waveguide model.

II. ERROR ESTIMATION AND REFINEMENT
CLASSIFICATION

A. Problem Formulation

We first outline the Maxwell eigenvalue problem. From the
source-free Maxwell equations (in differential form), we have
the following problem involving the electric field E,

V x (4 'V x E) — k2e,E =0 in Q, (1)

where ., and ¢, denote the relative permeability and permit-
tivity of the medium, respectively, and ky denotes the free
space wavenumber.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

We now impose several practical constraints on the types of
problems we will study. First, let us assume {2 describes a very
long, uniform perfect electrical conductor (PEC) waveguide
filled with air (i.e., u = 1 and ¢, = 1), resulting in the
Dirichlet boundary condition

nx E=0 on 09, )

where n denotes the direction normal to the boundary.
The electric field in the waveguide varies spatially according
to
E =E(z,y)e "%, 3)

where ~ denotes the propagation constant, which is, in gen-
eral, complex valued. Lastly, for the purposes of establishing
benchmarks, we investigate only the transverse electric (TE)
modes (i.e., the electric field in the axial direction is zero). The
procedure can be repeated identically for transverse magnetic
(TM) modes by isolating the magnetic field intensity H in-
stead. As the objective of the numerical method (and therefore
the adaptivity) is the accurate and efficient computation of the
cutoff-frequencies, we let v = 0.

Naturally, physical eigenpairs of (I) correspond to those
with eigenvalues greater than zero. Moreover, the eigenfunc-
tions of positive eigenvalues automatically satisfy the diver-
gence condition V - E = 0. Spurious modes, which cluster
exclusively around zero, may be eliminated trivially in post-
processing, or the outlined approach may be augmented to
a mixed finite element method to enforce the divergence
condition [30].

The aforementioned problem—when reduced to a 2-D
cross-section—admits the following variational form after
Galerkin testing: Find Upp, = {Upnp, Anp} € Brp X Ry such
that

a’(uhpv d)hp) = )‘hpm(uhzn d)hp) v¢hp € Bhpa (4)

with a(@np, @p,) = (Vi X Wnp, Vi X @y,,,) (where V; rep-
resents the transversal gradient operator and (-, -) denotes the
standard L? inner-product), and m(upp, ¢y,) = (Wnp, Gp,),
for a finite dimensional subspace By, C Hy(curl; ), where
Ho(curl; ) = {u € H(curl; ) | A x u = 0 on 902} and
Q CR%

With the preceding problem constraints, we restrict our
analysis to the 2-D Maxwell eigenvalue problem; nevertheless,
the same approach could be applied to the 3-D Maxwell
eigenvalue problem directly (assuming access to the prerequi-
site 3-D hp-refinement infrastructure). We note, however, that
the general waveguide problem requires a more complicated
variational formulation than @]), as described in, e.g., [15],
[31].

Finally, letting U = {u, A} € Hp(curl; Q) x Rs( denote the
exact solution to the generalized eigenvalue problem, we are
interested in the approximation error of the eigenvalue A,
i.e., the difference

e)wp =\ - )\h,p- (5)

In the remainder of this paper, we study the adaptive control
of this error through automated refinements of the underlying
discretization of the forward problem.
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B. Error Estimation

To apply the DWR procedure for the generalized eigenvalue
problem in order to compute (3 in such a way as to guide
adaptive error control, we first require an appropriate func-
tional of the solution that, in this case specifically, permits
relating the properties of the discretization and the accuracy
of an eigenvalue. However, as any scalar multiple of an
eigenvector is also an eigenvector, we first assert a convenient
normalization condition for the eigenfunction. Specifically, as
in [32], we choose u such that

(u,u) =1, (6)

and likewise for the approximate solution uy,, which amounts
to normalizing the eigenfunctions according to the L2-norm.
We then take the functional

JU] = Xu, u) = ), @)

which, in concert with the normalization condition @, pro-
duces the desired Qol and, as a result, we have that

JU] = J[Unp] = ex,,- (8)

To derive explicit expressions for the Qol error and re-
finement indicators, we follow the procedure in [32f]. Given
the above formulation and constraints, the associated dual
eigenvalue problem for considering an eigenvalue Qol is
identical to the forward problem, i.e., (@) is self-adjoint. Based
on [32], we can construct a simplified form of the Qol error,
namely

exnp (1= 0np) = a(Wpp, u—1,,) = Appym(Wpp, u—1,), (9)

for arbitrary ), € By, With o, = $m(u — tpp, u — upy).
While any choice of 1, preserves the identity ©) (due to
Galerkin orthogonality), we choose 1, = H%‘glu, the curl-
conforming projection-based interpolation (see [33|] and the
references therein for a detailed description of this operator)
of u into the original primal finite element space, to excise the
unimportant information in accumulating the error estimate,
which, as opposed to other choices (e.g., ’l,bhp = (), enhances
the utility of the error indicators for refinement.

The contributions in (9) are accumulated separately for each
cell K such that the total error is equivalent to

1~ opy) = u—
exn, (1= 0np) EK:GK(Uhp“ Yip) a0)

- )\hme (uhpa u— 1/’;”,)7

where the subscript K indicates that the integral terms a and
m are evaluated just over the cell K.

To enhance the control of discretization error (particularly
related to that of the approximation at the boundaries of the
cells), the contributions are then separated into a cell residual
and boundary residual. Integration by parts reveals that

ag(u,v) = /Q (VXxVxu) vdQg
K 1D

—/ (VXu)XV~fldSK,
121953
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with n denoting the direction normal to the boundary as in
(2). Note that the second integral in (1)) is performed over
the boundary of the cell (i.e., along the edges in 2-D and over
the faces in 3-D).

In the case of the boundary term for a given cell, we average
its contribution with the boundary terms from the neighboring
cells to instead measure the jump of the tangentially directed
curl V x uy, (which is, in general, discontinuous) weighted

by u — ¢hp, ie.,

exny (1= 0np) =D (VX V XUy, u— 1, )i
K

_ % [0 % (V X upp), u— 1y, )oK

— (X (V X Wpp), u— ) g5 ]
= AnpMig (Upp, W — 1)y,

= i,
K

where K indicates the collection of cells that share an edge
(in 2-D) or a face (in 3-D) with cell K, and 7 denotes the
final error contribution estimate associated with cell K. In
implementation, this procedure amounts to traversing each cell
to compute the volume terms and a separate traversal of every
face/edge, accumulating the contributions from the cells on
either side as described in @ Furthermore, note that for the
combination of two boundary terms as in @]) the curl of the
forward solution must be evaluated on both sides of an edge
(or a face in 3-D); however, given its tangential continuity,
u — b, may be evaluated just once for each edge/face.

Finally, in addition to error indicators for refinement, the
summation of the signed contributions 7jx from each cell
K provides a correction term—by means of (9)—to improve
the accuracy of the approximate eigenvalue computed from
the forward problem. For the purposes of refinement in the
remainder of the paper, we define the refinement indicator
Nk to be the absolute value of the error contribution estimate
Nk, 1.€.,

12)

nx = |kl (13)

for each cell K.

In the above expressions, we assume access to the exact
solution u. In general, however, we must substitute an ap-
proximation of u. Galerkin orthogonality precludes taking uy,,
as the approximation for u, as it would imply an estimate
of zero error. Instead, we replace u with a finite dimen-
sional approximation Wy,+ € Bj,+, Where Bj,+ denotes
the enriched finite element space generated by increasing the
expansion orders of each cell by one in the discretization of the
forward problem (@). While very effective for error estimation,
alternative approaches, such as those discussed in [/1], can
provide improvements in efficiency.

C. Refinement Classification

Following the above error estimation procedure yields a
collection of cells cataloged according to their estimated con-
tributions to the Qol error. To approach optimally equilibrated
discretizations during the convergence procedure, we develop
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a variant of the selection scheme introduced in [34]. Since
the primary concern is that the local regularity of the solution
prevents accelerated convergence, for the purposes of design-
ing the marking scheme, let us temporarily assume we h-
refine only. Furthermore, in this manuscript we consider only
isotropic refinements in h and p, while additional efficiency
and versatility may be unlocked through anisotropic refine-
ments (though with greater requirements of the underlying
refinement and coarsening infrastructure) [35].

We consider the marking procedure as a two-step process,
with an independent refinement step, followed by a coarsening
step. We have, therefore, in concert with the trinary marking
decision, three groups of cells to treat: the m cells to refine,
the [ cells to coarsen, and the remaining cells which are left
unchanged. Under one h-refinement step, the number of new
cells introduced when refining the m cells with the largest

error contribution estimates is
(27 — 1) m, (14)

where d denotes the geometric dimension of the discretization.
Groupi~ng cells into the set of refined cells, R, and unrefined
cells, R, the total predicted error 7 after an h-refinement step

1S
n=Y_ 27+ 3",

KeR KER

5)

where o(K') denotes the predicted rate of convergence on cell
K, which we take as the degree of the polynomial basis on the
cell (i.e., ignoring the regularity in the convergence condition),
with an associated refinement indicator 7nx produced from
by means of (I3). From [34], the refinement procedure
must weight not just the error reduction, but also the increased
cost and, as a result, should minimize the following objective
function

_ 1/d
Jrefine <m> - Nsl /

RICSIITE SErTY Fas

KeR(m) KcR(m)
a(K)=on o K)=on
FNGL Y et Y x|
KeR(m) KeR(m)
a(K)=a; a(K)=aj

(16)

where, to track the increased cost of refining higher-order
cells, N,, counts the number of cells (after refinement) that
have a polynomial basis of degree «,, for ¢ = 1,..., j,
where j denotes the number of different expansion orders
in the discretization. The optimal m cells with the largest
error contributions may be found through simple enumeration.
Hence, for marking cells for refinement, the approach ensures
the best choice—according to the objective function (I6)—for
the worst-case scenario (h-refinement only).

In the interest of practicality, we enforce the coarsening as
a succession to refinement (rather than a parallel operation).
Analogous to the case of refinement, the coarsening procedure
should seek to minimize the predicted error increase while
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maximizing the computational savings. In tandem with this
goal, any coarsening procedure should accelerate error homog-
enization to improve discretization quality and efficiency. With
the set R (the refined cells) fixed, we consider reclassifying
the unrefined cells for coarsening by determining the [ cells
with the smallest error contribution estimates that minimize

d
Jcoarsen (l) = Noojll/

Skt D 2 | 4

KeR(l) KeR(l)
a(K)=a1 a(K)=a1

FNGEL ST e+ Y 2%k |
KeR(l) KeR(l)
a(K)=aj a(K)=aj

a7

where R indicates the set of cells marked for coarsening.

However, independent of the underlying marking strategy,
we have a collection of cells marked for refinement or coars-
ening. In the case of pure h- or pure p-refinement, the error
indicators provide sufficient refinement information. In the
case of combined hp-refinement, however, we must decide
what to refine and how to refine, namely to decide whether to
apply h- or p-adaptivity.

Since the theoretical conditions for exponential convergence
require a sufficient degree of local regularity [36], [37], we
estimate the local smoothness on marked cells to decide h-
over p-refinement and isolate non-smooth behavior. However,
in contrast to existing works, we instead estimate the smooth-
ness from the error in the field, which we extract from the
DWR error estimation process; i.e., we leverage the field
error between the two finite dimensional Galerkin approximate
solutions (where one belongs to an enriched space) computed
as part of evaluating the eigenvalue Qol error estimate in
(12). While estimating directly from the solution provides
effective refinement classification information, estimating the
smoothness of the error strongly targets our principal objec-
tive: eliminating discretization error where the solution yields
inadequate accuracy. Examining the smoothness of the error
provides a more apt indicator for h-refinement as it marks
where the error is due to the insufficient (local) smoothness.
We adopt the approach demonstrated in [26] for estimating
the decay of the Legendre expansion. The error field, keeping
in mind the necessity of approximating the exact solution,
is simply (w,,+ — wp,) € Bp,+ as By, C Bp,+ (by
construction). Hence, for each shape function ¢; on every cell
K, we have an associated error coefficient e; . The Legendre
coefficients of the w-component (e.g., the x- or y-components)
of this local error field are then computed from

CeKw = Z Li¢)j,wei i (18)
J

N 2n+1
Ligyw = | [I =

[ G ®@PeIc s, (9)
neg K
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where ¢; ., indicates that the w-component of the vectorial
shape function @; is taken, Jx denotes the Jacobian deter-
minant of the mapping between the reference cell and its
image K, and the integrals in the transformation matrix IA/iij
are computed over the reference cell K , where P denotes
the tensor-product Legendre polynomial of the multi-index
¢ € Nd. The decay rate of each field component is estimated
independently through linear regression of the logarithm of
the coefficients, with the smallest predicted decay rate (which
suggests lower regularity) propagated forward for refinement
classification as we consider only isotropic refinements in
this work. With support for anisotropic hp-refinements, the
individual decay rates may be applied to instruct directional
refinements instead. Of course, the expansion must be trun-
cated to a finite number of terms. Hence, from [26], [38]], we
perform linear regression on the set of (modified) coefficients

Ckw= mgx lee.xwl | 2 €< P o, (20)

€l =l1€]lx

where px denotes the degree of the polynomial basis on cell
K.

As in error estimation and marking cells for refinement or
coarsening, each cell must be classified for h- or p-refinement.
Analogously to the relative marking of cells, typical strategies
employed rely on a relative threshold for determination, i.e.,
taking a threshold 7" such that

T(’%) = KNmaz + (1 = £)Nmin, (21

where x € [0,1] and 7me. and 7,,:, denote, respectively,
the maximum and minimum decay rates. This form of the
refinement classifier indicates a strong dependence on x, with
= 0 implying p-refinement only and x = 1 implying h-
refinement only, and therefore the need for a judicious choice.
Typically, in the absence of prior information, x = 1/2 is
chosen; however, depending on the problem, we might expect
additional value for p-refinement as opposed to h, and vice
versa, motivating the need for an alternative classifier.
Instead, we take the approach as in [25]], with a fixed
threshold, such as 7" = 1.0. We find that when applying the
Legendre smoothness indicator, 7' = 1.0 underestimates the
smoothness, driving, therefore, less p-refinement than would
be profitable. As a result, in the numerical results section,
we take 7' = 0.85 as a more aggressive (in terms of p-
refinement) yet still widely applicable tolerance. Naturally,
a threshold too strongly weighted towards p-refinement or
towards h-refinement will, in either case, inhibit the ability
of the adaption algorithm to yield exponential convergence.
We summarize the adaptive error control procedure as
follows:
1) For each cell, compute error contribution estimates and
refinement indicators by means of (12) and (13)
2) Of the N total cells in the discretization, identify the m
cells that should be refined, the [ cells to coarsen, and
the N — m — [ cells that are left unchanged

a) Set m to be the minimizer of the objective function

(IS
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b) With m now fixed, set [ to be the minimizer of the
objective function (17))

3) With the cells classified for refinement and coarsening,
for each cell K, estimate the smoothness of the error
field to determine whether the cell should be h- or p-
refined/reduced

a) On cell K, compute the difference uyp+ — upy,
associating the resulting error coefficients e; i
with each shape function ¢; on cell K in the
enriched finite element space

b) Estimate the decay rate C'x,, of the coefficients
of the Legendre expansion using for each
component w of the error field (i.e., the vectorial
directions)

i) For isotropic refinements, take the only the
minimum decay rate over the individual vec-
torial components of the error field

¢) If cell K is marked for refinement, then p-refine for
a decay rate above some threshold T (e.g., 7' = 1.0
or T' = 0.85); otherwise, h-refine
d) If cell K is marked for coarsening, then coarsen
in p for a decay rate below T'; otherwise, coarsen
in h
Note that for the actual execution of refinement or coarsening
of the discretization, additional requirements that depend on
the underlying hp-refinement implementation—such as main-
tenance of a 1-irregularity rule (i.e., only one hanging node
per edge after an h-refinement)—require additional care, for
example, as discussed in [39].
Finally, to analyze the effectiveness of proposed refinement,
specifically for 2-D problems, we note that the relative error
of the approximate eigenvalue is bounded by

Cefb(NDoFs)"’ ’ (22)
where NDoFs signifies the number of degrees of freedom,
C, b, kK > 0 are constants independent of the NDoFs [17].
In 2-D, when the solution is smooth, x = 1/2, otherwise
k = 1/3. A linear trend of the relative error (in log-scale)
with respect to (NDoFs)” indicates exponential convergence,
permitting a convenient method to visualize the performance
of an adaptive strategy.

IIT. NUMERICAL RESULTS

We now apply the proposed adaptive mesh refinement
procedure to a challenging model problem in the form of an
L-shaped waveguide originally proposed by [40]. The imple-
mentation is based on the finite element library deal.Il [10],
[11]], leveraging a continuous Galerkin approach with higher
order Nédélec cells of the first kind [41]] with support for non-
uniform expansion orders and hanging-nodes (1-irregular) [9].
Visualization of the discretizations and the eigenfunctions was
performed using Vislt [42].

From [40], [43]] we have a collection of numerical reference
eigenvalues to compare the accuracy and effectiveness of the
proposed approach to adaptive hp-refinement in CEM.

In all examples, the starting geometric discretization is that
of Fig. [T} The error in a given eigenvalue is computed from
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@), and the cells to refine and coarsen are chosen through
successive minimization of the objective functions (I6) and
under the assumption of the need to h-refine only. The
marking strategy is then followed by recategorization of the
refinement and coarsening to the isotropic i and p decisions
according to the smoothness estimation outlined in Section II.

Fig. 1. The starting discretization for the L-shaped waveguide.

We focus our study on the smallest nine eigenvalues, the
first five of which have been examined previously in [40],
[43].

The first nine eigenpairs separate equally into three classes:
those with strongly singular eigenfunctions, seen in Fig.
[2} non-smooth eigenfunctions, seen in Fig. B} and globally
smooth eigenfunctions, seen in Fig. E} The 1st, 6th, and 8th
eigenpairs have highly singular eigenfunctions; the 2nd, 5th,
and 9th eigenfunctions, while not unbounded, exhibit non-
smooth behavior near the re-entrant corner of the domain;
and the 3rd, 4th, and 7th eigenfunctions are globally smooth.
Furthermore, note that in each case, the curl of the eigen-
function, which is purely in the axial direction, is non-zero.
For the non-smooth and singular eigenfunctions, the curl is
highly sensitive in a neighborhood about the re-entrant corner
(i.e., small perturbations in position result in relatively large
changes in the magnitude of the curl), though approximately
zero at the re-entrant corner itself. The L-shaped waveguide,
therefore, provides an excellent test case for the analysis of
hp-refinement methods in CEM, providing a range of solution
types to evaluate efficacy and efficiency.

For each class of eigenpair, we demonstrate the effectiveness
of the proposed approach for hp-refinement. Based on the
numerical experiments in [29], which indicated that accurate
results typically require at least cubic or quartic polynomial
bases, we initialize the primal discretization with uniformly
cubic basis functions for the singular class and quartic for
the non-smooth and smooth classes; however, the polynomial
order may be reduced to unity through coarsening (i.e., the
degree of coarsening in p is unrestricted), and the maximal
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Fig. 2. Field magnitudes for the singular eigenfunctions. (a) The 1st
eigenfunction. (b) The 6th eigenfunction. (c) The 8th eigenfunction.

expansion order for the primal discretization is limited to
twelve. Note that initialization with linear basis functions is
undesirable due to inadequate information for smoothness es-
timation [26]. For illustration of the advantage of estimation of
the error smoothness over the solution smoothness, we include
results from both strategies. We denote the error smoothness
and the solution smoothness AMR strategies by E-AMR and
S-AMR, respectively. The values of the eigenvalues include
the correction term provided by the DWR and the increased
cost (in terms of the number of degrees of freedom) to compute
this estimate.

Starting with the singular class of eigenfunctions, the field
magnitude is characterized by a singularity at the re-entrant
corner and, depending on the mode, variation elsewhere in
the domain. While the neighborhood around the re-entrant
corner significantly influences the accuracy of the eigenvalues,
it is not solely responsible; this presents tremendous challenge
in highly accurate computations, and, in particular, prevents
standard error indication strategies (e.g., the gradient-jump
methods) from attaining maximum accuracy as the adaptivity
will over-emphasize the re-entrant corner (to the neglect of the
remainder of the discretization).

Fig. [5] depicts the results of the E-AMR and S-AMR proce-
dures applied to the eigenpairs with singular eigenfunctions.
For the convergence of the Ist eigenvalue, the presented E-
AMR scheme provides significant improvements in efficiency,
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(a) (b)

Fig. 3. Field magnitudes for the non-smooth eigenfunctions. (a) The 2nd
eigenfunction. (b) The Sth eigenfunction. (c) The 9th eigenfunction.
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Fig. 4. Field magnitudes for the globally smooth eigenfunctions. (a) The 3rd
eigenfunction. (b) The 4th eigenfunction. (c) The 7th eigenfunction.
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Fig. 5. Convergence of the eigenvalues of the singular eigenfunctions

with respect to the number of degrees of freedom. (a) Double logarithmic
representation. (b) log-cube-root representation.

providing a 10 to 100 times improvement in the accuracy for
the same number of DoFs compared to S-AMR. With the
horizontal axis in Fig. [5|b) scaled with respect to (NDoFs)'/3,
we see that E-AMR and S-AMR yield exponential conver-
gence. Both approaches match the accuracy (12 digits) of the
most accurate benchmark available , which required 59459
degrees of freedom. The E-AMR approach, however, required
only 20364 DoFs to attain the same accuracy.

Moving on to the 6th eigenpair, we again see in Fig. |3| the
advantage of the E-AMR approach. As no previous benchmark
exists for this eigenpair, the reference value is taken from the
invariant digits of the refinement process. With E-AMR, the
convergence of the eigenvalue is nearly identical to the 1st
eigenvalue, even with the increased fluctuation throughout the
domain. S-AMR, however, is severely limited by estimating
the smoothness from the solution, achieving only algebraic
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Fig. 6. The first converged discretizations for the singular eigenpairs. (a) The
1st eigenpair. (b) The 6th eigenpair. (c) The 8th eigenpair.

convergence with respect to the number of degrees of freedom
for this eigenvalue, as seen in Fig. [5[b). Fully leveraging the
information provided by the DWR process, as in the E-AMR
strategy, produces exponential convergence without difficulty.
Moreover, estimating the smoothness from the error, rather
than the solution as is typical, produces discretizations several
orders of magnitude more efficient. The E-AMR strategy
reaches 12 digits of accuracy for this eigenvalue.

The 8th eigenpair produces similar results as to the 1st
eigenpair; however, as the eigenpair itself is much more
demanding in terms of computational resources, 38966 DoFs
are required for 12 digits of precision using the proposed E-
AMR strategy, whereas S-AMR requires nearly three times as
many degrees of freedom for the same accuracy at 105840
DoFs. Furthermore, while E-AMR yields consistent exponen-
tial convergence, S-AMR performs inconsistently.

The first converged discretizations produced by E-AMR for
the eigenvalues belonging to the singular class are shown
in Fig. [] For the Ist eigenvalue, shown in Fig. [f[a), the
minimum and maximum expansion orders attained were three
and nine, respectively. For the 6th eigenvalue, shown in Fig.
|§kb), the minimum and maximum expansion orders were four
and twelve, while the minimum and maximum for the 8th
eigenpair, from Fig. [6(c), was two and twelve. All three
problems resulted in a significant increase in cell density in
the neighborhood of the singularity and large expansion orders
where the eigenfunctions vary smoothly.

Repeating the same process but for the class of non-smooth
eigenfunctions, we see similar performance. In each case the
reference value for computing the relative error is taken from
the invariant digits of the refinement process. As seen in Fig.
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Fig. 7. Convergence of the eigenvalues of the non-smooth eigenfunctions
with respect to the number of degrees of freedom. (a) Double logarithmic
representation. (b) log-cube-root representation.

[7} the E-AMR procedure achieves exponential convergence
for each of the eigenvalues. S-AMR, while also yielding
exponential convergence (apart from the early iterations for
the 9th eigenvalue), is once again 10 to 100 times less
efficient than the proposed E-AMR approach. Each approach,
however, can provide 14 digits of accuracy. When examining
the convergence of the 9th eigenvalue with S-AMR, estimating
the smoothness of the solution results in substantially more
h-refinement than necessary, reducing the efficiency in com-
parison to E-AMR.

Ilustrated in Fig. [8] the first converged discretizations
convey the increased rate of p-refinement possible for the non-
smooth eigenfunctions in comparison to the singular eigen-
functions. The discretizations, however, still exhibit increased
cell density at the re-entrant corner, given the sharp field
behavior as seen in Fig. 3] The 9th eigenvalue requires a high
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Fig. 8. The first converged discretizations for the non-smooth eigenpairs. (a)
The 2nd eigenpair. (b) The 5th eigenpair. (c) The 9th eigenpair.

level of refinement globally, while the 2nd and 5th eigenvalues
converge much earlier in terms of the number of degrees of
freedom.

Finally, in the case of the three globally smooth eigenpairs,
the eigenvalues converge to multiples of 72. The 3rd and 4th
eigenpairs, as identified by , share an eigenvalue of 72
and the proposed E-AMR procedure indicates that the 7th
eigenpair has an eigenvalue of 272

Unsurprisingly, given the simplicity of the eigenfunctions
depicted in Fig. f[a)-(b), the E-AMR and S-AMR approaches
perform identically for the 3rd and 4th eigenpairs, as depicted
in Fig. 0] since both successfully detect the global smoothness
and only p-refine each iteration. Note that for this case, the
horizontal axis in FigEkb) is scaled with NDoFs'/? as the
solutions are globally smooth and therefore x = 1/2 in 22).

In contrast, the 7th eigenpair, which, like the 3rd and
4th eigenpairs, has a globally smooth eigenfunction, causes
difficulty for the S-AMR strategy due to the rapid variations
present in the mode, as shown in Fig. F_fkc). E-AMR, on the
other hand, once again drives only p-refinements each iteration
for this eigenpair.

While the E-AMR yields exponential convergence and, most
importantly, only conducts p-refinement (the ideal choice for
the problem), estimating the smoothness from the solution as
in S-AMR results in ineffectual h-refinements and fewer p-
refinements in the early iterations, limiting the performance.

As the discretizations produced by E-AMR only require
global p-refinement of the starting discretization (Fig. [T) at
each iteration, and no h-refinements are performed to attain
maximal accuracy, an illustration is omitted for the smooth
eigenfunction class. For each of the three eigenpairs in this
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Fig. 9. Convergence of the eigenvalues of the smooth eigenfunctions

with respect to the number of degrees of freedom. (a) Double logarithmic
representation. (b) log-square-root representation.

class, convergence within machine precision for the eigenvalue
computed using E-AMR to the reference value occurs for a
uniform expansion order of p = 7 throughout the discretiza-
tion.

Opverall, the proposed adaption mechanism facilitates rapid
convergence of the eigenvalue Qols. By estimating the smooth-
ness of the error, as in the E-AMR approach, exponential
convergence was achieved across all examples tested. S-
AMR, on the other hand, by estimating the smoothness of
the solution, yielded acceptable, though less efficient, results
for lower-order modes and demonstrated inconsistencies for
the higher-order modes. As the field error is available from
the computation of the DWR, E-AMR provides a significant
enhancement of discretization quality without incurring sub-
stantial additional computational expenses in the refinement
process.
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Finally, in Table I we summarize the computed eigenvalues
to expand upon existing benchmarks. The benchmark values
were extracted from the E-AMR refinement process and each
eigenvalue has an estimate of the number of accurate digits
(i.e., the digits which are invariant under further refinements),
as well as the previous best accuracy from available bench-
marks (if applicable).

TABLE 1
BENCHMARK EIGENVALUES COMPUTED WITH E-AMR.
Eigenvalue Digits Previous Digits [43]
147562182397 12 12 o
3.5340313667880 14 12
72 - -
7'['2 - -
11.389479397947 14 12
12.5723873200 12 N/A
272 - N/A
21.4247335393 12 N/A
23.344371957137 14 N/A

IV. CONCLUSION

We have demonstrated the capability to adaptively refine
from coarse initial discretizations to highly accurate eigenvalue
computations through a combination of goal-orientated error
estimation, intelligent refinement selection, and smoothness
indication of the error, rather than the solution itself.

We applied the proposed approach to the first nine eigen-
pairs of a challenging waveguide model, including three
singular, three non-smooth, and three smooth eigenfunctions.
The E-AMR procedure achieved exponential convergence with
respect to the number of degrees of freedom, permitting rapid
refinement even for eigenpairs with singular eigenfunctions.
In contrast, estimation of the smoothness of the solution
in the S-AMR approach resulted in a large reduction in
efficiency across all examples. Moreover, while achieving
exponential convergence for lower-order modes, for the higher-
order modes, S-AMR overestimated the need for A-refinement,
resulting in reduced convergence rates.

In addition to confirming and improving the results of
previous numerical benchmarks, we expanded the current set
of benchmarks with higher-order modes for more challenging
test cases. Furthermore, the extensions to higher-order modes
illustrate the importance of including rapid (yet smooth)
variation in the testing and design of hp-refinement algorithms.

Future works will study alternative approaches to the hp-
decision to reduce sensitivity to the choice of the smoothness
tolerance and, most importantly, to facilitate efficient applica-
tions with arbitrarily shaped cells.
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