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Abstract—A novel higher order and large-domain Galerkin-type
finite-element method (FEM) is proposed for direct 3-D electro-
magnetic modeling in the time domain. The method is implemented
in the time-domain finite-element method (TDFEM) analysis of
multiport microwave waveguide devices with arbitrary metallic
and dielectric discontinuities. It is based on the geometrical mod-
eling using Lagrange-type interpolation generalized hexahedra of
arbitrary geometrical-mapping orders, field expansion in terms
of hierarchical curl-conforming 3-D polynomial vector basis
functions of arbitrarily high field-approximation orders, time
stepping with an implicit unconditionally stable finite-difference
scheme invoking the Newmark-beta method, and mesh truncation
introducing the waveguide port boundary condition. Numerical
examples demonstrate excellent accuracy, efficiency, stability,
convergence, and versatility of the presented method, and very
effective large-domain TDFEM models of 3-D waveguide disconti-
nuities using minimal numbers of large conformal finite elements
and minimal numbers of unknowns. The results obtained by the
higher order TDFEM are in an excellent agreement with indi-
rect solutions obtained from the FEM analysis in the frequency
domain (FD) in conjunction with the discrete Fourier transform
and its inverse, as well as with measurements and with alternative
full-wave numerical solutions in both time and FDs.

Index Terms—Curved parametric elements, electromagnetic
analysis, finite-element methods (FEMs), higher order modeling,
microwave devices, numerical techniques, time-domain (TD)
analysis, transient response, waveguide discontinuities.

I. INTRODUCTION

HE finite-element method (FEM) has been effectively
used in full-wave 3-D solutions to both open-region (e.g.,
antenna and scattering) and closed-region (e.g., waveguide and
cavity) problems based on discretizing partial differential equa-
tions (PDEs) in electromagnetics [1]-[6]. The FEM has been
well established as a method of choice for analysis and design
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of waveguide-based multiport passive microwave devices and
systems, of arbitrary shapes and material compositions, in the
frequency domain (FD) [7]-[11]. A rather disproportionate
body of work exists, on the other hand, in the development of
methods and tools for the FEM analysis and modeling in the
time domain (TD) [1], [2], [6], [12]-[24] in spite of the fact
that TD analysis and characterization of microwave structures
and evaluation of associated transient electromagnetic phe-
nomena are also of great practical importance for a number of
well-established and emerging areas of microwave theory and
engineering.

FEM techniques for direct modeling of electromagnetic
phenomena in the TD (time-domain finite-element (TDFEM)
techniques) are based on a direct numerical discretization of
TD PDEs governing such phenomena (Maxwell’s equations
or wave equations in the TD) [1], [2], [6], [12]-[23]. Alter-
natively, the TD response of a microwave structure can be
obtained indirectly, using the FEM analysis in the frequency
domain [frequency-domain finite-element method (FDFEM)]
in conjunction with the discrete Fourier transform (DFT) and
the inverse discrete Fourier transform (IDFT) [24]. Efficient
FDFEM-DFT/IDFT modeling of waveguide discontinuities
and the first TD-from-FD FEM solver are presented in [24].
This present paper focuses on the TDFEM (direct) approach.

In terms of the particulars of the numerical discretization in
space, practically all the existing 3-D TDFEM electromagnetic
tools are low-order (also referred to as small-domain or sub-do-
main) techniques, with the electromagnetic structure being
modeled by volume geometrical elements (most frequently,
tetrahedra with planar sides) that are electrically very small and
the fields within the elements are approximated by low-order
(zeroth and first order) basis. This results in a very large number
of unknowns (unknown field-distribution coefficients) needed
to obtain results of satisfactory accuracy, with all the associated
problems and large requirements in computational resources.
An alternative approach, the higher order (also known as the
large or entire domain) computational approach, which utilizes
higher order basis functions defined in large curved geomet-
rical elements, and which can greatly reduce the number of
unknowns for a given problem and enhance the accuracy and
efficiency of the computation [25], seems to have not been fully
employed in the TDFEM analysis yet. Namely, almost none of
the reported TDFEM results and applications in the literature
demonstrate actual using and implementation of models of or-
ders higher than two (high-order modeling). Notable examples

0018-9480/$31.00 © 2013 IEEE



1426

of high-order TDFEM modeling are the transfinite-element TD
method for analysis of multiport waveguide structures proposed
in [20], where nearly orthogonal Nedelec hierarchical bases of
orders from 0 to 3 are used, and TDFEM solutions to cavity and
waveguide problems in [23], where the results for hierarchical
basis functions of up to mixed fourth order (order 3.5) on
tetrahedral cells are presented. In addition, none of the works
employ large elements (or a combination of large and small
elements) in the TDFEM model (large-domain modeling).

This paper proposes a novel higher order and large-domain
Galerkin-type FEM for 3-D electromagnetic modeling in the TD
based on higher order geometrical modeling, higher order field
modeling, and an implicit unconditionally stable time-stepping
finite-difference scheme invoking the Newmark-beta method,
and presents its implementation in the TDFEM analysis of
multiport microwave waveguide devices with arbitrary metallic
and dielectric discontinuities. The geometry of the structure is
modeled using Lagrange-type interpolation generalized hexa-
hedra of arbitrary geometrical-mapping orders, and the fields
in the elements are expanded in terms of hierarchical curl-con-
forming 3-D polynomial vector basis functions of arbitrarily
high field-approximation orders. The finite-element mesh is
truncated introducing the waveguide port boundary condition
(WPBC) at the waveguide ports, which is able to launch an in-
cident wave into the waveguide and at the same time absorb the
reflections from waveguide discontinuities in the 3-D TDFEM
analysis [21]. Once the TD solution is obtained, the broadband
frequency response (if needed) is computed applying the DFT
to the TDFEM solution in the postprocessing.

To the best of our knowledge, this paper presents the first truly
higher order 3-D TDFEM method (the results demonstrate using
field expansions of orders from 2 to 9) and the first set of large-
domain TDFEM modeling examples (the examples demonstrate
very effective large-domain TDFEM models of 3-D waveguide
discontinuities using minimal numbers of large conformal fi-
nite elements and minimal numbers of unknowns). Overall, the
examples demonstrate excellent accuracy, efficiency, stability,
convergence, and versatility of the presented method.

II. FORMULATION AND NUMERICAL IMPLEMENTATION

A. Finite-Element Spatial Discretization

Consider a general multiport waveguide structure with an ar-
bitrary metallic and/or dielectric discontinuity shown in Fig. 1.
In order to apply the FEM analysis, the computational domain is
first truncated by imposing fictitious planar surfaces at each of
the ports. The bounded structure thus obtained is then tessellated
using Lagrange-type generalized parametric hexahedra of arbi-
trary geometrical orders K,,, K,,, and K, (K, K,,, K, > 1),
analytically described as [4]

K., K., K.

=22 D T L

m=0n=0 p=0
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Fig. 1. 3-D multiport waveguide structure with an arbitrary discontinuity, sim-
ulated by a higher order TDFEM method.

u=1

Fig. 2. Generalized curved parametric hexahedron defined by (1) and (2); cu-
bical parent domain is also shown.

with r,,,,, = T (U, Uy, w,) being the position vectors of in-
terpolation nodes and LX« representing Lagrange interpolation

polynomials
O
— Uy
Lh-(wy= ] P 2)
1=0,l#m m !

and similarly for L (v) and L2 (w). Equations (1) and (2)
define a mapping from a cubical parent domain to a general-
ized hexahedron, as shown in Fig. 2. The same Lagrange inter-
polating scheme is used to model continuously inhomogeneous
material properties of a hexahedron (if applicable) in the mesh

[11].

B. TDFEM Formulation

The general waveguide problem in Fig. 1 can be analyzed in
the TD starting from the source-free time-dependent Maxwell’s
equations. Considering a linear, homogeneous or continuously
inhomogeneous medium within a finite-sized computational do-
main V', bounded by the surface S, the following time-depen-
dent electric field vector wave equation is obtained, which, to-
gether with associated initial and boundary conditions, defines
a well-known boundary value problem [1], [6]

1 O0%E (r,t)

1
Vx —VXE (rt &,
Ly (v, ) + (336 ot?

)

where ¢, and p, are relative permittivity and permeability
of the medium, respectively, and ¢y is the speed of light
(co = 1/y/egit0). By multiplying (3) with space-dependant
weighted (testing) vector functions (independent of time),
w(r), integrating over the domain V (weighted residual
method), and applying the first Green’s vector identity, the
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weak formulation of the vector wave equation in the TD is
derived as follows:

/i(v < w (1) - (V x E (1,8)) dV

L
"1
—I—f — (mx VXE (r.t) w(r)ds
.
4 /
1 O?E (r,t)
o [ew) S v =0 )
v

with n standing for the outward-looking unit normal to the sur-
face S. Within each finite element in Fig. 2, the time-variant
electric field intensity vector is expanded using higher order hi-
erarchical-type curl-conforming vector basis functions f and un-
known time-dependent coefficients o (¢)

=z
|
—
2
Z
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-I-Z Zaq;i]’k(t)fwi]’k
i=0 j=0 k=0
N. No Ny—1
+ Qy 7]k(f) fun]l- (5)
i=0 j=0 k=0
where the functions f are defined as [4]
fu”‘ k= ?l,i P, (71) Pk (11]) a;
fﬂij k= Pi (’U,) ’U‘ij (’lU) a'/v
fuije =Fi(u) Py (v) whal,. (6)

The P-functions are simple polynomials representing a
higher order generalization of 1-D rooftop functions

1—u, 1=0
) u+1, 1=1 -1 <u,v,w<1
Pi(u) = u' =1, i>2, even )
ut — u, 1 > 3, odd.

Parameters N,,, N,,, and N, (N, N,, N, > 1) are the adopted
orders of the polynomials along the u-, v-, and w-directions of
the local parametric coordinate system of each hexahedral el-
ement. Hierarchical functions f enable using different approxi-
mation orders in different elements in the model for efficient se-
lective discretization of the solution domain because each lower
order set of functions is a subset of higher order sets. The recip-
rocal unitary vectors a/,, a/,, and a/,, in (6) are obtained as a/, =
(a, x ay)/J,a, = (a, xa,)/J,and a, = (a, x a,)/J,
with J = (a, x a,) - a,, being the Jacobian of the covariant
transformation and a,, = Jr/du, a, = dr/dv, and a,, =
Or/Ow being the unitary vectors, where r is given in (1). Sub-
stituting (5) into (3) and applying the Galerkin testing procedure
(testing functions are the same as basis functions), the following
semidiscrete system of linear equations, expressed in the matrix
form, is obtained:

1 d* {oa(4)} B
gBl =g =¢

[Al {a (1)} + ®)
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where the column vector of unknown coefficients is given by
{a®)} = {{au®}, {an(®)}. {aw(®)}}, and the entries of
matrices [A] and [B] are calculated as

"1
A= [ (T x8) (T xt) v
Ly

Bi,,j = /€Tf7j . fj (]V,

i/,
®
where f; and f; symbolically represent testing and basis func-
tions defined in (6) and (7), and N is the total number of basis/
testing functions. Note that matrices [A] and [B] are completely
time-independent and are computed only once. The right-hand
side of (8) is intentionally left in the form

G = —%ifj-(nx (VxE@1))dS  (10)

fhr

as this surface integral conveniently provides the interface for
excitation and reflectionless truncation of the finite-element
mesh, which is explained in Sections III and IV.

C. WPBC in the FD

Due to the continuity of the tangential component of the mag-
netic field intensity vector, n X H, and hence, the vector n x
(V x E) in (10) across the interface between any two finite ele-
ments in the FEM model, the right-hand side in (8) contains the
surface integral (10) across the overall boundary of the entire
FEM domain, and not over the internal boundary surfaces be-
tween the individual finite elements in the model, which for the
waveguide problem reduces to the surface integral across the
waveguide ports. The total electric field vector at a cross sec-
tion of a waveguide with discontinuities can be expressed as a
superposition of the incident electric field and reflections from
discontinuities that are modeled as a sum of orthogonal wave-
guide modes [1], [6]

E(x,y,2)
=B (2.9.)

oo 0o
E ' § TE /.. o %
+ Omn et,,,, " ("1‘3 y)e') +

m=0n=0

o0 o]
+ DD bwnlel) (r.y) + zel),

(z,y)leTm?

(11)
where €' and e are transversal components of eigen-
tmmn tmn p g

functions for arbitrary TE and TM modes, respectively, and
~Ym n 18 the propagation constant of the corresponding mode. If
the waveguide operates in the dominant-mode regime and it is
assumed that the ports are placed far enough from all disconti-
nuities, substituting (11) into n x (V x E) in (10) and taking
advantage of the orthogonality property of eigenfunctions, the
following boundary condition at the ports can be derived:

m=1n=1

—2710E" + 10 E
Y0 E

(excitation port)

nx (VxE)= { (receiving ports)
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where, for a rectangular waveguide of transversal dimensions
a and b ((L > b), Y10 — J kO with k[) = 27l'f/(,'[)

VR~ (xfa),

being the free-space wavenumber and f being the operating
frequency, E**¢ = FEyejpe™ 9% at the excitation port, and

e = v/2/(ab)sin(nz/a)y.

D. WPBC in the TD

Since our goal is to analyze waveguide discontinuities di-
rectly in the TD, we employ the TD representation of the wave-
guide boundary condition in (12), as derived in [6] and [21],
using the inverse Laplace transform (ILT) and applying it for
the dominant mode. Before the ILT is applied to (12), 10 can
be expressed as follows:

§ = jw. (13)
The ILT of the final equality in (13) can be found in [26] and
it yields the following TD operator:

1d
Fo=——+hi(t)*
co

(14)
where * stands for the convolution in the TD and A1 (¢) is the
impulse response of the dominant waveguide mode, given by

hio (t) = Aﬂﬂ (k1ocot) u (2) (15)
with k19 = 7 /a, u () denoting the unit step function, and .J; de-
noting the first-kind Bessel function of the first order. Note that
the singular point at £ = 0 in (15) can be avoided by applying
L’Hospital’s rule and recurrence relation for derivative of the
Bessel function J/ (2) = [J,—1(2) — Jny1(2)]/2, where z is
the argument of the Bessel function (in this case, z = k1ocot).
Therefore, att = 0, the impulse response of the dominant wave-
guide mode is equal to h1(0) = k2,co/2. Now, combining ex-
pressions in (12), (14), (15), and (5), we can incorporate the TD
boundary condition into the surface integral in (10) to obtain

o (o)
Zaj(t)lr (Ile,‘)'(Ilet,‘)dS'i' (nxf;)-(nxfj)ds-l
2o |f / |
2 1d . inc
+M—T<a%+hlo(t)*> ffLE das,
S1
i=1,2....,N (16)

where S7 and Ss are the surfaces of the waveguide cross sec-
tions at the excitation and receiving ports, respectively. Due to
the surface integration across the ports, only the unknown coef-
ficients related to the tangential components of the vector basis
functions at the ports are taken into account. Note that in (16),
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the TD operator I'¢ acts only on time-dependent unknown co-
efficients and the incident electric field. Substituting (16) into
(8), we obtain the final semidiscretized spatial form of the vector
wave equation

YATI0)

cofhy di

10 (a0 (0} = (1)

2()[
A o (i)} + 5z B

i di?

(17)

[C1] +

where the entries of matrices [C] = [C2], {¢q10 (#)}, and

{f} are computed as

Gy, = Plaxt) (nxt) ds.
s,
p=12

i,j= 1, 2,...,N (18)

{a10()} = huo (8) * {a f)}—/hm (=) {a ()} dr (19)

(=22 | L2 0+ o ()45 ()] f ()
51
. (Il X elg) ds (20)

and fi#¢(t) stands for the incident pulse function.

E. Implicit Unconditionally Stable Time-Stepping
Finite-Difference Scheme

Discretization of (17) in the TD can be done using different
finite-difference schemes. The forward and backward differ-
ence approximations are first-order accurate, while the central
difference approximation provides second-order accuracy. In
addition, the forward-difference scheme is a numerically un-
stable method, the backward-difference scheme is uncondition-
ally stable, and the central-difference scheme is a condition-
ally stable method, as shown in [1], [6], [13], and [14]. The
most preferable and frequently used time-stepping scheme is
the Newmark-beta method, which applies central differences for
the first and second derivatives and a weighted average for the
undifferentiated quantity [6]. It is shown in [27] that the New-
mark-beta method is an implicit unconditionally stable scheme
if 3 > 1/4 (3 being the parameter that controls the accuracy
and stability of the method). Employing this formulation for
B = 1/4 to discretize (17) in the TD, we obtain

dAalt)} {d();z(t)} = ﬁ [{a}"+1 —2{a}" + {a}"—l} 21
—d{(;ft)} = ﬁ [{oz}n+l — {a}nfl] (22)
(@) =1 [l +200)" + 11" @)

where the discrete-time representation of unknown field coef-
ficients at a time step ¢, = nAt is {a (¢)} = {a(nAt)} =
{a}". The initial state of the field inside the structure is defined
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by the causality condition {«(#)} = {0}, ¢ < 0, and the convo-
lution integral in (19) is discretized using the trapezoidal rule

faio = 5 (o (0) {a)” + g (1) (")

+AL Z hao ((n — i) At) {a}’

i=1

(24)

Finally, combining (21) —(24) yields the following uncondi-
tionally stable two-step update scheme:

(D ()™ = ()"~ (D] o)™
- IDa}{a}" = =[O} (29)

with the [D] matrices being given by
D=1+ s Bl (0 )
Dl = {1+ s B 5O @D
D =5 1)~ (8], (28)

The resultant time-stepping scheme in (25) implies that the
linear system of equations is solved at each time step, but the
matrix [D1] on the left-hand side of the equation is inverted only
once. Also, the discretized version of the impulse response in
(15), as well as the convolution integral in (20), can be precal-
culated and stored in the memory before the marching in time
starts. Unfortunately, the convolution on the left-hand side of
(25) has to be computed at each time step, which significantly
increases the overall simulation time. This problem can be reme-
died by a truncation of the impulse response in (15) or by per-
forming the convolution in the form of a Toeplitz matrix—vector
multiplication, as suggested in [21] and [28].

F. Modal Amplitudes at Waveguide Ports and Scattering
Parameters

Once the matrix of unknown electric field coefficients
[r] & x v, 1s obtained solving (25), these coefficients are substi-
tuted back into (5), and the modal amplitudes of the dominant
mode across the waveguide ports at each time step are calcu-
lated using the following expressions:

aro(t) = / ero - [E(r,t) - E™(r,1)] |._., dS

S1
= /610 . E(I’f) |z:21 ds
51
— fine(t) /elo - e10]s=2, dS (at excitation port)
1
bio(t) = / e1o - E(r.t)|.—., dS (atreceiving port). (29)
Sa
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! z

Fig.3. Short empty rectangular waveguide section modeled by a single large fi-
nite-element (literally an entire-domain FEM model) and higher order TDFEM.
Dimensions of the waveguide are « = 10 cm, b = 5 cm, and ! = 10 cm.

Finally, the scattering parameters of the structure in Fig. 1
are computed as the ratio of the DFT of the modal amplitudes
in (29), A1o(fx) and B1o{fx), respectively, to the DFT of the
excitation pulse signal F¢( ;)

R DFT {am(t,,)} Ao (fr)
11 — DFT {finc(fn } Finc (fk)
DET {b1o(ts)} _ Bio(fi)

So1 = DFT { firc(t,,)} T pe (fr) (30)

where the DFT of a function in the TD can be computed as

F(fi Zf

n=0
f’ k=0,1,..., Nj—

)e —i(2x/Ny)nk

fk—k

(€2))

with Ny standing for the number of frequency samples (in our
case, Ny = Ny) and f, for the sampling frequency.

III. NUMERICAL RESULTS AND DISCUSSION

As the first example, consider a short section of an empty
rectangular waveguide, shown in Fig. 3. The waveguide section
is modeled by means of a single FEM hexahedral element of
the first geometrical order (K, = K, = K,, = 1), which,
in this case, reduces to a brick. Note that this is literally an
entire-domain FEM model (an entire computational domain is
represented by a single finite element). In order to verify the
numerical stability, accuracy, and convergence of the method,
the waveguide is analyzed by the higher order TDFEM and
the reflection coefficient, which theoretically vanishes, is com-
puted in the frequency range from 1.5 to 4.5 GHz. (Note that
Ag = 7.071 cm at f = 4.5 GHz, A, being the wavelength of
the TE;9 mode.) Polynomial orders of the FEM field expan-
sions are varied from N,, = 2 to N,, = 9 in the longitudinal
waveguide direction, whereas they were kept constant, V,, = 6
and N,, = 4, along the longer and shorter waveguide cross-sec-
tional sides, respectively. The waveguide is excited by a modu-
lated Gaussian pulse given by

Eo(t) = e =10/ gin 20 f. (t —10)] Vim  (32)
where the carrier frequency is f. = 3 GHz, half-bandwidth is
Af =25GHz,0 =4/(rAf),and ¢y = 1.40. The parame-
ters of the time-marching process are: the total duration of the
time signature 7' = 10 ns, the total number of time samples
N; = 10000, and the time step At = T/(N; — 1) = 1 ps.
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TDFEM (p-refined)

—— Nw=2 —@- Nw=3

—A— Nw=4 —y— Nw=5

10— < Nw=6 > Nw=7

44— Nw=8 —@— Nw=9

0 [~ | Reference (mixed elements)

—/— First Order _—</~ Second Order

S,, (dB)

4.0 4.5

25 3.0 35
Frequency (GHz)

Fig. 4. Reflection coefficient for the TE;, mode in an empty rectangular wave-
guide in Fig. 3: convergence of the higher order TDFEM single-large-element
results with p-refinement and comparison with the reference (h-refined mixed
first- and second-order elements) results from [21].

The TD vector wave equation (already discretized in space ap-
plying the FEM) is solved at each time step using a direct solver,
namely, Gaussian elimination. Note that iterative solvers [e.g.,
a conjugate gradient solver (CGS)] can also be used. In prac-
tical cases, the total simulation time or the total duration of
the time signature, 7', is determined as approximately twice
the width of the input signal, which is usually a Gaussian or
modulated Gaussian pulse, Neumann pulse (derivative of the
Gaussian pulse), or a combination of Gaussian and Neumann
pulses, or based on monitoring the reflections at the input port
of the analyzed device [20]. Shown in Fig. 4 are the reflection
coefficients versus frequency, computed using (30) from the
TDFEM solution, for the p-refined single-large-element FEM
model. The higher order TDFEM results are compared with the
two results from [21], where a similar structure is analyzed, but
the actual waveguide-section length and TD excitation parame-
ters are not specified. The results show a stable behavior, as it is
expected because of the Newmark-beta method, and excellent
convergence properties with an extreme p-refinement. The re-
flection coefficient obtained by the higher order single-element
TDFEM is on average practically equally low (around —75 dB
in the given frequency span) as the one obtained by the mixed
second order (#-refined) model from [21]. Note that the actual
results will slightly vary with the choice of the excitation pulse
and other parameters in the TD analysis (which are not explic-
itly given in [21]).

Shown in Table I are the computational requirements, in
terms of the relative simulation time and memory, for analysis
of the waveguide section in Fig. 3, for all p-refined solutions
in Fig. 4, with the accuracy of individual solutions being given
in Fig. 4. In TDFEM simulations, the time-marching process
requires the maximum memory allocated at any point in time.
During this process, the following matrices are allocated:
[D1], [D2], [Ds], and [C], each of dimension N x N, [a]
and excitation matrix [F], defined by (20), each of dimension
N x Ny, an 1 x N, array of impulse responses {10}, and two
1 x N arrays, {q10} and {b}, where {b} is a temporary array in
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TABLE I
COMPUTATIONAL REQUIREMENTS FOR ANALYSIS OF THE WAVEGUIDE
SECTION IN FIG. 3, FOR EIGHT p-REFINED SOLUTIONS

Expansion order, 5 3 4 5 6 7 8 9

Nw
Number of
unknowns, N 144 197 250 303 356 409 462 515
Relative
. . 1 1.4 1.77 223 273 32 373 427
simulation time
Memory (MB) 22.7 31.3 40.1 49.1 583 67.6 77.1 86.8

e

Fig. 5. WR-90 waveguide with a lossless dielectric (¢, = 8.2) post and its
large-domain hexahedral FEM mesh used in higher order TDFEM computa-
tions. Dimensions of the waveguide and mesh elements are a = 22.86 mm,
b=10.16 mm,¢ = 12 mm,d = 6 mm, ¢ = 45.72 mm, and g = 24 mm.

T p—
Incident wave |
E 002
> 5 Incident wave - EVFE
= Qo1
< 5
:.? & . UO 1 2 3 4 5 6
w Time [ns]
. . L L
10 Reflected wave
= L FDFEM
E . —— FDFEM - envelope 202
> oslh - TDFEM 5 Reflected wave - EVFE
- —— TDFEM - envelope Qo1
© 04 i
= 0}
LII.I 02 xo % 1 2 3 4 5 6
Time [ns]
0.0
L Transmitted wave |
= 08 002 = 1
DFE! = 1
E —EDFEm-enve\ope 5 Transmitted wave - EVFE
2 0.6 + TDFEM 04 —_—
Ee] ——TDFEM - envelope | =
04+ %
L= Xoo
w 02r 0 1 2 _ 3 4 6
Time [ns]

20 25 3.0 3.5 4.0 45 5.0 5.5 6.0

Time (ns)

Fig. 6. Transient waveforms of incident, reflected, and transmitted waves for
the structure in Fig. 5 and excitation in (32) obtained by the higher order TDFEM
and FDFEM-DFT/IDFT [24] techniques (note that rectified modulated signals
are shown within the envelopes); EVFE results from [29] are shown in the figure
insets.

which the right-hand side of the TD [see (15), (24), and (25)]
is stored during one pass through the time-marching loop. All
computations are carried out without parallelization on an Intel
Core 2 Quad CPU Q6600 at 2.4 GHz, with 8-GB RAM, under
a 64-bit Windows 7 operating system.

The second example is an air-filled lossless WR-90 rect-
angular waveguide with a dielectric post, as shown in Fig. 5.
The waveguide is operating in the single mode window; hence,
the proper monomodal modeling is ensured by allowing a
certain distance between the discontinuity and the waveguide
ports, where the modal amplitudes of the electric field in (29)
are computed by the higher order TDFEM. The waveguide is
excited by the same type of modulated Gaussian pulse as in
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Fig. 8. Higher order large-domain hexahedral TDFEM model of a WR-62

waveguide with two crossed metallic cylindrical posts (¢ =

15.7988 mm,

b= 78994 mm,¢c = 20 mm,d = 11.51 mm, ¢ = 2.5 mm, g = 4 mm,

h = 3 mm).
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Fig. 7. Modal S-parameters of the waveguide structure in Fig. 5: comparison
of higher order TDFEM results with: (a) FDFEM results [24] and (b) FETD
[29], EVFE [29], and HFSS results.

(32) with f. = 10 GHz, Af = 2.5 GHz, ¢ = 4/(wAf), and
1.4 ¢. The large-domain FEM mesh is constructed from
only seven hexahedral elements (element dimensions vary from
027,10 1.5327), at f = 12 GHz) with K, = K, = K, =1
and N,, N,, and N, ranging from 4 to 7 in different elements
and different directions, which results in a total of 1791 FEM
unknowns. The parameters of the time-marching process are
T = 10.235 ns, N; = 5000, and At = 2.047 ps. The obtained
transient waveforms, shown in Fig. 6, are in an excellent
agreement with FDFEM-DFT/IDFT results [24] and in a good
agreement with envelope-finite-element ( EVFE) responses
from [29], bearing in mind that the results in [29] are obtained
with a different waveguide excitation (current probes with
no details provided), as opposed to modal excitations in this
work, as well as that no details are provided in [29] about the
actual locations of reference planes with respect to which the
responses are given. Reflected and transmitted signals exhibit a
stable behavior.

Next, we compute the S-parameters at the input and output
ports in Fig. 5 [using (30)]. The sampling frequency is f, =
1/At = 488.52 GHz (the number of DFT samples is equal

to =
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Fig. 9. Computed: (a) transient and (b) frequency responses for the waveguide
structure in Fig. 8 using the higher order TDFEM: comparison with FDFEM-
DFT/IDFT results [24] in (a) and with FDFEM results [24], HFSS results, and
measurements [30] in (b).

to the number of samples in time, Ny = N, = 5000). The
higher order TDFEM results are shown in Fig. 7, where they
are compared with FDFEM results [24] in Fig. 7(a) and with
finite-element time-domain (FETD) (small-domain approxima-
tion, 72 373 tetrahedral elements, AZpin = AYmin = AZmin =
1 mm = A,/30, Atyax = 1.9 ps) [29], EVFE [29], and HFSS
(commercial software, direct FD) results in Fig. 7(b). It can be
concluded based on the figures that TDFEM results practically
identically match FDFEM-DFT/IDFT results, as well as that
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Fig. 10. Higher order large-domain TDFEM model of a WR-15 waveguide
(@ = 3.76 mm, b = 1.88 mm, and ¢ = 2.5 mm) with a continuously in-
homogeneous (quadratically varying) lossless dielectric load (central element);
seven-layer approximate model of the load with piecewise constant approxima-
tion of the quadratic permittivity profile [24] is also shown.

0.8 —{ Continuously inhomogeneous model
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Fig. 11. Transient response for the reflected wave of the structure in Fig. 10:
comparison of the higher order TDFEM and FEM-DFT/IDFT [24] results for the
exact continuously inhomogeneous model and the approximate piecewise ho-
mogeneous model (with seven homogeneous layers), respectively (both models
are shown in Fig. 10).

both sets of higher order results match the reference HFSS re-
sults extremely well, and in that sense, they both outperform the
FETD and EVFE results.

As the third example, consider a WR-62 waveguide with two
crossed metallic cylindrical posts, with the large-domain FEM
model shown in Fig. 8 (ten generalized hexahedral elements,
K,, K,,and K, are 1 or 2, N, N,,, and N, range from 2 to
5, yielding 1184 unknowns) and the excitation in the form of
the signal in (32), where f. = 14 GHz and A f = 3 GHz. The
transient and frequency responses of the structure computed by
the higher order TDFEM (At = 1.462 ps and N; = 5000) are
shown in Fig. 9. In Fig. 9(a), we observe an excellent agreement
between the TDFEM and FDFEM-DFT/IDFT [24] results for
the reflected waveform. In Fig. 9(b), a very good agreement
between the numerical results obtained by the TDFEM, FDFEM
[24], and HFSS and the measured data [30] for the S1; of the
structure is observed.
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Fig. 12. (a) Magnitude and (b) phase (argument) of the S;;-parameter of
the waveguide structure in Fig. 10 obtained by the higher order TDFEM and

FDFEM [24], respectively, applied to the exact continuously inhomogeneous
model and by HFSS applied to the approximate seven-layer model.

As the last example, we consider a WR-15 waveguide loaded
with a continuously inhomogeneous dielectric slab with a rela-
tive permittivity profile given by e,.(u) = 9—8u?, -1 < u < 1,
and v = 2z/c — 1, as depicted in Fig. 10. The transient re-
sponses for the reflected wave obtained by the higher order
TDFEM (excitation in (32), f. = 62 GHz, Af = 15 GHz,
At = 0.33 ps, and NV; = 5000) for: (A) an exact continuously
inhomogeneous model and (B) an approximate piecewise ho-
mogeneous model are shown in Fig. 11. Model (A), with the
entire slab represented by a single continuously inhomogeneous
finite element, consists of only three hexahedral finite elements
with K, = K, = K,, = 1 (one inhomogeneous dielectric el-
ement with N, = 4, N, = 2, and N,, = 7 and two buffer
elements with N, = 4, N, = 2, and N, = 4) and requires
only 205 unknowns. Model (B), with the slab approximated by
seven homogeneous layers (relative permittivities of layers are
given in Fig. 10), includes nine hexahedral elements (K, =
K, =K, =1, N,, N,, and N, range from 2 to 5) and re-
sults in 569 unknowns [24]. The results of the FEM-DFT/IDFT
simulations for both models [24] are included for comparison. It
can be observed from the figure that, in both cases, the TDFEM
and FEM-DFT/IDFT results are practically identical, as well
as that the transient responses for the continuously inhomoge-
neous model and the seven-layer model agree very well. Note
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that for model (A), the TDFEM simulation takes 2.5 times less
computational time than the FEM-DFT/IDFT simulation, while
the TDFEM simulation of model (B) takes 34% more compu-
tational time than the FEM-DFT/IDFT simulation. Note also
that the FEM-DFT/IDFT solver takes advantage of an extremely
fast multifrequency FDFEM analysis of 3-D waveguide struc-
tures (the global FEM matrix is filled only once and then reused
for every subsequent frequency point) needed for the inverse
Fourier transform [24].

The computed S1;1-parameter of the structure in Fig. 10 is
shown in Fig. 12. In the graphs, the TDFEM solution with
the continuously inhomogeneous model is compared with
the FDFEM solution for the same model and with the HFSS
solution for the seven-layer model. We observe an excellent
agreement of the TDFEM and FDFEM-DFT/IDFT results and
a very good agreement of both sets of higher order results with
the HFSS solution (TDFEM and FDFEM-DFT/IDFT solutions
for the seven-layer model, being in excellent agreement with
the HFSS results, are not shown).

IV. CONCLUSIONS

This paper has proposed a novel higher order and large-do-
main Galerkin-type FEM for direct 3-D electromagnetic
modeling in the TD and has presented its implementation
in the TDFEM analysis of multiport microwave waveguide
devices with arbitrary metallic and dielectric discontinuities.
The method is based on the geometrical modeling using La-
grange-type interpolation generalized hexahedra of arbitrary
geometrical-mapping orders, field expansion in terms of hierar-
chical curl-conforming 3-D polynomial vector basis functions
of arbitrarily high field-approximation orders, time-stepping
with an implicit unconditionally stable finite-difference scheme
invoking the Newmark-beta method, and mesh truncation
introducing the WPBC.

Numerical examples of waveguide structures that include
metallic and homogeneous and continuously inhomogeneous
dielectric discontinuities have validated the method, which
appears to be the first truly higher order 3-D TDFEM technique
(the results have demonstrated using field expansions of orders
from 2 to 9), and have demonstrated its excellent accuracy,
efficiency, stability, convergence, and versatility. They have
demonstrated very effective large-domain TDFEM models of
3-D waveguide discontinuities using minimal numbers (from
one to ten) of large conformal finite elements and minimal
numbers (up to 1791) of unknowns, which appear to be the
first set of large-domain TDFEM modeling examples. The
results obtained by the higher order TDFEM are in excellent
agreement with the FDFEM-DFT/IDFT solutions, as well as
with measurements and with alternative full-wave numerical
solutions in both the TD and FD.
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