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Abstract—A novel double higher order Galerkin-type method of
moments based on higher order geometrical modeling and higher
order current modeling is proposed for surface integral equation
analysis of combined metallic and dielectric antennas and scat-
terers of arbitrary shapes. The technique employs generalized
curvilinear quadrilaterals of arbitrary geometrical orders for
the approximation of geometry (metallic and dielectric surfaces)
and hierarchical divergence-conforming polynomial vector basis
functions of arbitrary orders for the approximation of electric
and magnetic surface currents within the elements. The geomet-
rical orders and current-approximation orders of the elements
are entirely independent from each other, and can be combined
independently for the best overall performance of the method in
different applications. The results obtained by the higher order
technique are validated against the analytical solutions and the
numerical results obtained by low-order moment-method tech-
niques from literature. The examples show excellent accuracy,
flexibility, and efficiency of the new technique at modeling of both
current variation and curvature, and demonstrate advantages of
large-domain models using curved quadrilaterals of high geomet-
rical orders with basis functions of high current-approximation
orders over commonly used small-domain models and low-order
techniques. The reduction in the number of unknowns is by an
order of magnitude when compared to low-order solutions.

Index Terms—Electromagnetic analysis, electromagnetic scat-
tering, higher order modeling, integral equations, method of
moments (MoM).

I. INTRODUCTION

ANTENNAS involved in modern wireless systems are
often composed of metallic and dielectric parts of ar-

bitrary shapes and with arbitrary curvature. There is a clear
need for advanced analysis and design tools for predicting the
performance and optimizing the parameters of such antennas
prior to costly prototype development. These tools have to
be based on general computational electromagnetic methods
for modeling of arbitrary three-dimensional (3-D) combined
metallic and dielectric structures. In addition, antenna designers
demand that the simulation tools be accurate, fast, reliable, and
run on relatively small computing platforms, such as standard
desktop PCs.

One of the most general approaches to the analysis of metallic
and dielectric structures is the surface integral equation (SIE)
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approach, where both electric and magnetic surface currents
are introduced over boundary surfaces between homogeneous
parts of the structure, and surface integral equations based
on boundary conditions for both electric and magnetic field
intensity vectors are solved with current densities as unknowns.
The SIEs are discretized by the method of moments (MoM)
[1], which gives rise to MoM-SIE modeling techniques [2]–[4].
Overall, the MoM-SIE method is an extremely powerful and
versatile numerical methodology for electromagnetic-field
simulation in antenna and scattering applications that involve
perfectly conducting and penetrable (dielectric and linear
magnetic) materials.

However, practically all the existing 3-D MoM-SIE simu-
lation tools for metallic/dielectric structures are low-order or
small-domain (subdomain) techniques—the structure is mod-
eled by surface geometrical elements (boundary elements) that
are electrically very small and the electric and magnetic currents
over the elements are approximated by low-order (zeroth-order
and first-order) basis functions. More precisely, the boundary
elements (patches) are on the order of in each dimension,

being the wavelength in the medium. This results in a very
large number of unknowns (unknown current-distribution coef-
ficients) needed to obtain results of satisfactory accuracy, with
all the associated problems and enormous requirements in com-
putational resources. In addition, commonly used boundary ele-
ments are in the form of flat triangular and quadrilateral patches,
and thus they do not provide enough flexibility and efficiency in
modeling of structures with pronounced curvature.

An alternative which can greatly reduce the number of un-
knowns for a given problem and enhance further the accuracy
and efficiency of the MoM-SIE analysis in antenna/scattering
applications is the higher order or large-domain computational
approach. According to this approach, a structure is approxi-
mated by a number of as large as possible geometrical elements,
and the approximation of current components within individual
elements is in the form of a single (two-fold) functional series
of sufficiently high order. Only relatively recently the computa-
tional electromagnetics (CEM) community has started to exten-
sively investigate and employ higher order surface and volume
elements and higher order basis functions in the frame of MoM,
including both the SIE formulation [5]–[9] and volume integral
equation (VIE) formulation [10]–[15], and the finite element
method (FEM) [6], [16]–[20].

For MoM-SIE modeling of general structures that may pos-
sess arbitrary curvature, it is essential to have both higher order
geometrical flexibility for curvature modeling and higher order
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current-approximation flexibility for current modeling in the
same method. In other words, if higher order (large-domain)
basis functions for currents are used on flat patches, many small
patches may be required for the geometrical precision of the
model, and then higher order basis functions actually reduce
to low-order functions (on small patches). On the other hand,
geometrical flexibility of curved patches can be fully exploited
only if they can be made electrically large, which implies the
use of higher order current expansions within the elements as
well. Finally, in order to make the modeling of realistic struc-
tures optimal, it is convenient to have elements of different or-
ders and sizes combined together in the same model. If all of
these requirements are to be satisfied, implementation of hier-
archical-type higher order polynomial basis functions for the
approximation of electric and magnetic surface currents over
curved boundary elements seems to be the right choice.

This paper proposes a novel higher order (large-domain)
PC-oriented Galerkin-type MoM-SIE technique for 3-D elec-
tromagnetics based on higher order geometrical modeling and
higher order current modeling, which we refer to as a double
higher order method. The surface elements proposed for the ap-
proximation of geometry (metallic and dielectric surfaces) are
generalized curvilinear quadrilaterals of arbitrary geometrical
orders. The basis functions proposed for the approximation of
currents within the elements are hierarchical divergence-con-
forming polynomial vector basis functions of arbitrary orders.
The proposed technique represents a generalization of the
MoM-SIE technique [9], where bilinear quadrilateral surface
elements (boundary elements of the first geometrical order)
are used with higher order polynomial current expansions.
The new method enables excellent curvature modeling (e.g.,
a sphere is practically perfectly modeled by only six curved
quadrilateral boundary elements of the fourth geometrical
order) and excellent current-distribution modeling (e.g., using
the eighth-order polynomial current-approximation in the two
parametric coordinates on a quadrilateral boundary element).
This enables using large curved MoM quadrilaterals that are on
the order of (e.g., ) in each dimension as building
blocks for modeling of the electromagnetic structure (i.e.,
the boundary elements can be by two orders of magnitude
larger in area than traditional low-order boundary elements).
Element orders in the model, however, can also be low, so that
the lower order modeling approach is actually included in the
higher order modeling. The geometrical orders and current-ap-
proximation orders of the elements are entirely independent
from each other, and the two sets of parameters of the double
higher order model can be combined independently for the best
overall performance of the method. Because the proposed basis
functions are hierarchical, a whole spectrum of element sizes
with the corresponding current-approximation orders can be
used at the same time in a single simulation model of a com-
plex structure. Additionally, each individual element can have
drastically different edge lengths, enabling a whole range of
“regular” and “irregular” element shapes (e.g., square-shaped,
rectangular, strip-like, trapezoidal, triangle-like, etc.) to be
used in a simulation model as well. Some preliminary results

of double-higher order MoM modeling of purely metallic
structures are presented in [21].

This paper is organized as follows. Section II presents the
mathematical development of the proposed boundary elements
and describes numerical components of the new double higher
order MoM-SIE technique. This includes the derivation of sur-
face integral equations for electric and magnetic surface current
density vectors as unknown quantities, development of general-
ized Galerkin impedances (the system matrix elements) for arbi-
trary boundary elements (i.e., for any choice of surface elements
for geometrical modeling and any choice of divergence-con-
forming basis functions for current modeling), generation of
generalized curvilinear quadrilateral elements for higher order
modeling of geometry, implementation of hierarchical polyno-
mial vector basis functions for higher order modeling of currents
over the quadrilaterals, and evaluation of generalized Galerkin
impedances for the new proposed double higher order quadri-
lateral elements. In Section III, the accuracy, convergence, and
efficiency of the new MoM-SIE technique are evaluated and
discussed in several characteristic examples. The results ob-
tained by the higher order MoM are compared with the an-
alytical solutions and the numerical results obtained by low-
order MoM techniques from literature. Numerical examples in-
clude a dihedral corner reflector, a metallic spherical scatterer
(analyzed using six different higher order models), a dielectric
spherical scatterer (analyzed using five different higher order
models), and a circular cylinder of finite length with attached
wire monopoles. The examples show excellent flexibility and
efficiency of the new technique at modeling of both current
variation and curvature, and demonstrate its advantages over
low-order MoM techniques.

II. NOVEL DOUBLE HIGHER ORDER MOM FOR

ELECTROMAGNETIC MODELING

A. Surface Integral Equation Formulation

Consider an electromagnetic system consisting of arbitrarily
shaped metallic and dielectric bodies. Let the system be excited
by a time-harmonic electromagnetic field of complex field-in-
tensities and , and angular frequency . This field may
be a combination of incident plane waves or the impressed field
of one or more concentrated generators. According to the sur-
face equivalence principle (generalized Huygens’ principle), we
can break the entire system into subsystems, each representing
one of the dielectric regions (domains), together with the be-
longing metallic surfaces, with the remaining space being filled
with the same medium. One of the domains is the external space
surrounding the structure. The scattered electric and magnetic
fields, and , in each domain can be expressed in terms of
the equivalent (artificial) surface electric current, of density ,
and equivalent (artificial) surface magnetic currents, of density

, which are placed on the boundary surface of the domain,
with the objective to produce a zero total field in the surrounding
space. On the metallic surfaces, only the surface electric currents

exist (these are actual currents) and .
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The boundary conditions for the tangential components of the
total (incident plus scattered) electric and magnetic field vectors
on the boundary surface between any two adjacent dielectric
domains (domains 1 and 2) yield

(1)

(2)

where we assume that the incident (impressed) field is present
only in domain 1. On the conducting bodies, the boundary con-
ditions (1) and (2) reduce to only, so for metallic
surfaces in domain 1 we have

(3)

The scattered electric field in the region of complex permit-
tivity and complex permeability is expressed in terms of the
electric and magnetic current densities as follows:

(4)

(5)

(6)

while the scattered magnetic field is obtained as

(7)

(8)

(9)

In the above expressions, and are the magnetic and elec-
tric vector potentials, and and are the electric and magnetic
scalar potentials, respectively. The potentials are given by

(10)

(11)

(12)

(13)

where is the boundary surface of the considered domain, and
the Green’s function for the unbounded homogeneous medium
of parameters and

(14)

being the propagation coefficient in the medium and the
distance of the field point from the source point.

Having in mind the integral expressions for fields and in
(4)–13, (1)–(3) represent a set of coupled electric/magnetic field
integral equations (EFIE/MFIE) for and as unknowns,
which can be discretized and solved using the MoM.

B. Generalized Galerkin Impedances for Arbitrary Surface
Elements

Assume first that all the surfaces (metallic and dielectric)
in the system are approximated by a number of arbitrary sur-
face elements. Let us approximate the surface electric and mag-
netic current density vectors, and , over every element
in the model by a convenient set of basis functions with un-
known complex current-distribution coefficients. In order to de-
termine these coefficients, the EFIE/MFIE system in (1)–(3) is
tested by means of the Galerkin method, i.e., using the same
functions used for current expansion. The four types of general-
ized Galerkin impedances (the system matrix elements) corre-
sponding to the four combinations of electric- and magnetic-cur-
rent testing functions and defined on the th surface
element and the electric- and magnetic-current basis func-
tions and defined on the th element in the model are
given by

(15)

(16)

(17)

(18)

The generalized voltages (the excitation column-matrix ele-
ments) are evaluated as

(19)

(20)

Substituting (5) into (15), expanding , and ap-
plying the surface divergence theorem leads to the following ex-
pressions for electric/electric Galerkin impedances:

(21)

where is the outward normal to the boundary contour
of the surface . When the divergence-conforming current ex-
pansion on boundary elements is used, the last term in (21) is
identically equal to zero, because the normal components of
testing functions are either zero at the element edges or the
two contributions of the elements sharing an edge exactly cancel
out in the final expressions for generalized impedances. Finally,
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expressing the potentials in (21) in terms of the electric-current
basis function over the th surface element , we obtain

(22)

Similarly, starting with (6) and (11), expanding ,
and performing a cyclic permutation of the scalar triple product,
the expression for electric/magnetic generalized impedances in
(16) can be transformed to read

(23)

By duality, the magnetic/electric and magnetic/magnetic gen-
eralized Galerkin impedances in (17) and (18) have the same re-
spective forms as those in (23) and (22), and are given by

(24)

(25)

Equations (22)–(25) provide general expressions for MoM
generalized impedances for solving the EFIE/MFIE in (1)–(3)
using any type of surface discretization and any adopted set
of divergence-conforming basis functions in the context of the
Galerkin method. In what follows, we shall restrict our attention
to the specific higher order MoM technique proposed for anal-
ysis of electromagnetic radiation and scattering in this paper.

C. Higher Order Geometrical Modeling

As basic building blocks for geometrical modeling of
3-D electromagnetic structures of arbitrary shape and mate-
rial composition, we propose generalized curved parametric
quadrilaterals of higher (theoretically arbitrary) geometrical
orders (Fig. 1). A generalized quadrilateral is determined by

points (interpolation nodes) arbitrarily
positioned in space, where and ( , ) are
geometrical orders of the element along - and - parametric
coordinates, respectively (note that the orders do not need to be

Fig. 1. Generalized parametric quadrilateral of geometrical orders K and
K (K ;K � 1). M = (K + 1)(K + 1) is the total number of
interpolation points.

the same within an element). The quadrilateral can be described
analytically as

(26)
where are the position vectors of the interpo-
lation nodes, are Lagrange-type interpolation polyno-
mials satisfying the Kronecker delta relation ,
with and representing the parametric coordinates of the
th node, and are constant vector coefficients related to

. For more details on geometrical properties
of parametric elements (in the context of FEM) the reader is
referred to [22], [23].

In this paper, we use the equidistant distribution of interpola-
tion nodes along each coordinate in the parametric space, while
the use of specific nonequidistant node distributions, which
would provide additional modeling flexibility and accuracy in
some applications, is possible as well. In addition, any other
choice of higher order surface expansions for geometrical
modeling that can be represented as a double sum of 2-D power
functions (e.g., parametric quadrilaterals using spline
functions for describing the geometry) can also readily be
implemented in our method for electromagnetic analysis.

Note that, in general, the surface tangent is discontinuous
on the boundary of two attached curved generalized parametric
quadrilateral elements defined by (26), regardless of the geo-
metrical orders and of the quadrilaterals. However, this
geometrical discontinuity across the boundaries of adjacent ele-
ments becomes less pronounced as the elements of higher ge-
ometrical orders are used. For instance, when approximating
a circular cylinder using 32 interpolation points along its cir-
cumference and three different geometrical models constructed
from: (A) 32 first-order elements; (B) 16
second-order elements; and (C) eight fourth-
order elements per cylinder circumference,
the angles between the surface tangents of the neighboring ele-
ments at the junctions in models (A), (B), and (C) are 168.750 ,
179.787 , and 180.011 , respectively, compared to the exact
180 . If a more accurate model is needed, one can increase the
total number and/or geometrical orders of patches. Note also
that this geometrical problem is not present if the geometry is
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described in terms of spline functions, which can provide con-
tinuous surface tangents across the edges shared by curved el-
ements (e.g., third-order splines used to solve scattering from
bodies of revolution in [24]).

All the geometries considered as examples in this paper are
modeled using specialized geometrical preprocessor codes, and
no general meshers are employed. Development and discussions
of general geometrical preprocessors for mesh generation for
an arbitrary geometry using higher order surface elements is
beyond the scope of this paper.

D. Higher Order Basis Functions for Electric and Magnetic
Currents

Electric and magnetic surface current density vectors over
every generalized quadrilateral in the model are represented as

(27)

(28)

where are divergence-conforming hierarchical-type vector
basis functions defined as

, even
, odd

(29)

Parameters and are the adopted degrees of the poly-
nomial current approximation, which are entirely independent
from the element geometrical orders ( and ), and ,

, , and are unknown current-distribution coeffi-
cients. The unitary vectors and in (29) are obtained as

(30)

with given in (26), and is the Jacobian of the covariant trans-
formation

(31)

Note, that the sum limits in (27) and (28) that correspond to
the variations of a current density vector component in the di-
rection across that component are by one smaller than the orders
corresponding to the variations in the other parametric coordi-
nate. This mixed-order arrangement, which ensures equal ap-
proximation orders for surface charge densities corresponding
to the - and -directed current basis functions, has been found

to be a preferable choice for modeling of surface currents in all
applications. It enables considerable reductions in the overall
number of unknowns, at no expense in terms of the accuracy of
current and charge modeling over surfaces. An excellent theo-
retical elaboration of this approach (in the context of FEM) can
be found in [25].

E. Generalized Galerkin Impedances for Higher Order
Quadrilateral Elements

The unknown coefficients and in (27) and (28) are
determined by solving the EFIE/MFIE system with the gener-
alized Galerkin impedances given in (22)–(25), which we now
specialize for the implementation of generalized curved quadri-
lateral elements of arbitrary geometrical orders, (26), and hier-
archical divergence-conforming polynomial vector basis func-
tions of arbitrary current-approximation orders, (29). Without
the loss of generality, we consider only the -components of
basis and testing functions. Furthermore, we consider the func-
tions in the following simplified form:

(32)

where are the simple 2-D power functions

(33)

The generalized Galerkin impedances corresponding to the
complete basis functions in (29) can be obtained as a linear
combination of those corresponding to the simplified functions
in (32) and (33). In addition, the impedances for any higher
order set of basis functions of divergence-conforming polyno-
mial type can also be constructed as a linear combination of the
impedances for the simple power functions in (32) and (33). A
notable example may be higher order hierarchical basis func-
tions with improved orthogonality properties constructed from
ultraspherical and Chebyshev polynomials [26], [27] (note that
the technique presented in [26], [27] is restricted to bilinear
quadrilaterals (elements with ) only, as well as
that these basis functions, being more complicated than the reg-
ular polynomials, require larger MoM matrix filling times, and
are therefore impractical when iterative solvers are not used).

Upon substituting (32) into (22), the electric/electric imped-
ances corresponding to the testing function defined by indexes

and on the th quadrilateral and the basis function de-
fined by indexes and on the th quadrilateral become

(34)
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where and are the current-approximation orders
of the th quadrilateral along the - and -coordinate, respec-
tively, and are the corresponding orders for the th
quadrilateral, and the integration limits in both quadrilaterals are

and . The source-to-field distance
is computed as

(35)

Taking into account the parametric representation of the
quadrilateral surface element, (26), then leads to the final
expression:

(36)

where and are the geometrical orders along the -
and -coordinate, respectively, and are the geometrical
vector coefficients in the polynomial expansion of the th
quadrilateral, , , and are the corresponding
parameters for the th quadrilateral in the model, and is the
basic Galerkin potential integral given by

(37)

Similarly, using (32) and expanding the gradient of Green’s
function, the electric/magnetic impedances in (23) are trans-
formed to

(38)

Using (26) then yields

(39)

where is the basic Galerkin field integral evaluated as

(40)

Note that only two types of scalar basic Galerkin integrals,
and in (37) and (40), are needed for the entire Galerkin

impedance matrix. Moreover, only -integrals are sufficient
for purely metallic structures. These integrals are evaluated
only once for any pair, and , of quadrilateral elements in
the model. Rapid and accurate combined numerical/analytical
methods are developed for the integration over curved higher
order generalized quadrilateral surfaces, for the - and -inte-
grals. When the distance in (35) is relatively small (or zero),
the procedure of extracting the (quasi)singularity is performed
[28]. As can be expected, the problems with the (quasi)singular
integration are more pronounced with the field integrals. Effi-
cient algorithms for recursive construction of the generalized
Galerkin impedances and the EFIE/MFIE system matrix are
used in order to avoid redundant operations related to the sum-
mation indexes in the Gauss–Legendre integration formulas, as
well as the indexes and for current expansions and and
for geometrical representations within the impedances.

Starting with the generalized voltages given in (19) and (20),
several models of lumped and distributed excitations and loads
[29] are included in the proposed MoM technique (loads are in-
troduced using the concept of a compensating electric field). The
resulting system of linear algebraic equations with complex un-
knowns and is solved classically, by the Gaussian elim-
ination. By postprocessing of these coefficients, the currents
and over any generalized quadrilateral in the model and
fields and in any dielectric region (including the far field)
are obtained.

III. NUMERICAL RESULTS AND DISCUSSION

A. Dihedral Corner Reflector

As an example of structures with flat surfaces, consider the
scattering from a metallic 90 dihedral corner reflector. The two
plates, each being large, are modeled by a
total of bilinear quadrilateral elements

, which in this case reduce to squares, with the polynomial
degrees in all of the elements. Without the use
of symmetry, this results in unknowns. Fig. 2
shows the radar cross-section (RCS) of the reflector in the full
azimuthal (horizontal) plane for the vertical polarization of the
incident plane wave. The results obtained by the higher order
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Fig. 2. Radar cross-section of a 90 dihedral corner reflector, in the full
horizontal plane, for the vertical polarization of the incident plane wave,
obtained by the higher order MoM and by the low-order MoM from [30].

Fig. 3. Radar cross-section of a dihedral corner reflector for four different
orders (2, 4, 6, and 8) of the polynomial approximation of currents in the higher
order MoM.

MoM are compared with the low-order MoM results from [30]
(the number of unknowns is not specified in [30]), and an excel-
lent agreement is observed. Note that the quadrilaterals in the
higher order model are on a side.

The convergence analysis of the higher order current approxi-
mation is performed for this example. Four different levels of the
polynomial approximation of currents are adopted: (1)

; (2) ;
(3) ; and (4)

. The corresponding RCS results are shown
in Fig. 3. We observe excellent convergence properties of the
polynomial basis functions, the RCS prediction average abso-
lute differences between levels (1) and (2), (2) and (3), and (3)
and (4), being 7.6, 3.4, and 0.3 dB, respectively. In specific, note
that even the second-order current approximation yields accu-
rate result for the lobes at the directions perpendicular to the
dihedral sides. Additionally, with the fourth-order basis func-
tions, the dominant double-reflected fields in the forward re-
gion of the reflector are also predicted reasonably accurately. Fi-
nally, the sixth-order (or higher) current-approximation model
adds the accuracy in the computation of fields in the back re-
gion of the reflector as well. Note also that the estimated number

Fig. 4. Four geometrical models of a spherical scatterer constructed from (a)
96, (b) 216, (c) 384, and (d) 600 bilinear quadrilaterals (K = K = 1).

of unknowns, based on a topological analysis, for a common
low-order MoM solution with the reflector subdivided into trian-
gular patches with Rao–Wilton–Glisson (RWG) basis functions
[31] is around 12000, which is about 10 times the number of un-
knowns required by the higher order MoM and .

B. Metallic Spherical Scatterer

As an example of curved metallic structures, consider a spher-
ical metallic scatterer of radius illuminated by an inci-
dent plane electromagnetic wave in the frequency range 10–600
MHz. In the first set of experiments, the first-order geomet-
rical modeling is employed ( in all elements).
Four different geometrical models constructed from (1)

bilinear quadrilaterals [Fig. 4(a)], (2)
bilinear quadrilaterals [Fig. 4(b)], (3)

bilinear quadrilaterals [Fig. 4(c)], and (4)
bilinear quadrilaterals [Fig. 4(d)]

are implemented, with the second-order current approximation
in every element in all of the four models.

The total numbers of unknowns without the use of symmetry
in models (1), (2), (3), and (4) amount to 768, 1728,
3072, and 4800, respectively.

Shown in Fig. 5 is the RCS of the sphere, normalized to the
sphere cross-section area, as a function of . The results ob-
tained by the higher order MoM are compared with the analyt-
ical solution in the form of Mie’s series. An excellent agree-
ment between the numerical results obtained with the model (4)
and analytical results is observed with the average absolute RCS
prediction error less than 3%, while models (1), (2), and (3) pro-
vide acceptable results only up to the frequency at which
0.53, 1, and 1.6, respectively [the results obtained by the model
(1) are not shown in Fig. 5]. Note that an increase in the cur-
rent-approximation orders and in models (1)–(3) does
not yield better results at higher frequencies, meaning that the
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Fig. 5. Normalized radar cross-section [RCS=(a �)] of a metallic sphere, for
three higher order MoM models employing the first-order geometrical modeling
in Fig. 4(b)–(d), respectively, along with the exact solution (Mie’s series).

Fig. 6. Induced electric surface current over the surface of the model
in Fig. 4(b) at two frequencies, corresponding to (a) a=� = 0:6 and (b)
a=� = 1:2.

errors in the RCS prediction using these models are a conse-
quence of the inaccuracy in geometrical modeling of the sphere
surface. Note also that, even though this is an almost small-do-
main application of the proposed large-domain method, where
a large number (600) of elements (with relatively low current
approximation orders) is needed for the sphere surface to be ge-
ometrically accurately represented by parametric surfaces of the
first geometrical order, the largest quadrilateral elements in the
model (4) are on a side at the highest frequency consid-
ered, which is still considerably above the usual small-domain
limit of .

For an additional insight into the correlation of errors in
modeling of geometry and errors in modeling of currents,
Fig. 6 shows the induced electric surface current over the
surface of the model (2) at two frequencies, corresponding to
(a) and (b) . We observe that, while the
mutual orientation of quadrilateral elements in the model at the
frequency (a) does not influence the surface current distribution
over the sphere surface, the interconnections and surface-tan-
gent discontinuities between quadrilaterals at the frequency
(b) act like wedges, and a nonphysical current distribution is

Fig. 7. Two geometrical models of a spherical scatterer constructed from (a)
six and (b) 24 generalized quadrilaterals of the fourth geometrical order (K =
K = 4).

Fig. 8. Normalized radar cross-section [RCS=(a �)] of a metallic sphere,
for two higher order MoM models employing the fourth-order geometrical
modeling in Fig. 7(a) and (b), respectively, along with the exact solution (Mie’s
series).

obtained that follows the geometry of the quadrilateral mesh,
where the variations of the current density magnitude clearly
indicate the boundaries of the quadrilaterals constituting the
model. These variations, of course, do not exist on the surface
of the actual spherical scatterer. In other words, the error in
modeling of curvature expressed in terms of the wavelength
is negligible at the frequency (a), while at the frequency (b),
it can not be ignored. The same conclusion is then translated
from the current distribution consideration to the far field and
RCS computation at frequencies (a) and (b), as can be observed
from Fig. 5.

In the second set of experiments, the fourth-order geometrical
modeling is employed ( 4 in all elements). The
sphere surface is first approximated by (A) 6 fourth-order
quadrilaterals [Fig. 7(a)] in conjunction with the eighth-order
current approximation ( 8) in each element and
then by (B) 24 fourth-order quadrilaterals
[Fig. 7(b)] with the sixth-order current approximation (

6) in each element. This results in a total of 768
and 1728 unknowns in models (A) and (B), respectively, with
no symmetry used.

Fig. 8 shows the simulated RCS of the sphere obtained by
the two geometrically higher order MoM models, as compared
with the exact solution calculated in terms of Mie’s series. We
observe an excellent agreement between the numerical results
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Fig. 9. Normalized radar cross-section [RCS=(a �)] of a dielectric
(" = 2:25) sphere, for three higher order MoM models employing the
first-order geometrical modeling in Fig. 4(a)–(c), respectively, along with the
exact solution (Mie’s series).

obtained with the model (A) and analytical results up to the fre-
quency at which and the curved quadrilateral ele-
ments in the model are approximately across. In particular,
the maximum absolute RCS prediction error is less than 1% for

(quadrilaterals are maximally across), and
then increases slightly for . With the model
(B), an excellent agreement with the exact solution is obtained
in the entire frequency range considered, with the maximum ab-
solute RCS prediction error less than 0.5% for and
less than 3% for .

Note that all the results for scattering from metallic spheres
presented in this subsection are obtained by solving the EFIE
(3) and no treatment of internal resonances is applied. The new
double higher order method appears to yield equally accurate
results at the internal resonances of the sphere, even though the
condition number of the MoM matrix is very large at these fre-
quencies. The RCS solution is sensitive to internal resonances
only when the current approximation orders are not sufficient,
which is also in agreement with the previous results [32].

C. Dielectric Spherical Scatterer

As an example of curved dielectric structures, consider a
spherical dielectric scatterer 1 m in radius in the frequency
range 10–600 MHz. The relative permittivity of the dielectric
is (polyethylene). Shown in Fig. 9 is the RCS of the
sphere calculated using the first-order geometrical modeling

, with the sphere surface being approximated
by means of (1) bilinear quadrilaterals [Fig. 4(a)], (2)

bilinear quadrilaterals [Fig. 4(b)], and (3)
bilinear quadrilaterals [Fig. 4(c)], along with the analytical so-
lution in the form of Mie’s series. The adopted electric and
magnetic current approximation orders in models (1), (2), and
(3) are 4, 2, and 2 and the resulting total numbers
of unknowns 6144, 3456, and 6144, respectively. We
observe that the RCS predictions are slightly shifted toward
higher frequencies with all the three models, the frequency
shift being the most pronounced with the model (1) at higher
frequencies. The fact that the geometrical models are inscribed
into the sphere certainly contributes to this shift of the results.

Fig. 10. Normalized radar cross-section [RCS=(a �)] of a dielectric (" =
2:25) sphere, for two higher order MoM models employing the fourth-order
geometrical modeling in Fig. 7(a) and (b), respectively, along with the exact
solution (Mie’s series).

Note, however, that a very good agreement can be observed
between the numerical results obtained by the model (3) and
the analytical results in the entire frequency range considered.
Note also that the numerical results in Fig. 9 obtained by any of
the three models in Fig. 4(a)–(c) are significantly more accurate
than the corresponding numerical results obtained with the
same models for the metallic sphere (Fig. 5), which can be
attributed to the fact that inaccuracies in modeling of surfaces
of penetrable (dielectric) bodies do not degrade the overall
analysis results as significantly as in the case of nonpenetrable
(metallic) bodies.

Fig. 10 shows the RCS of the dielectric sphere evaluated using
the two fourth-order geometrical models
shown in Fig. 7. In the model (A), the adopted electric and
magnetic current approximation orders are

, while in the model (B), these orders are set
to be . We observe that, as
compared to the exact solution (Mie’s series), the model (A)
performs well up to the frequency at which
and the curved quadrilateral elements in the model are about

or across .
Furthermore, the maximum absolute RCS prediction error is
less than 2% for , with the maximum length
of curved quadrilateral elements not exceeding

. The model (B) provides an accurate RCS predic-
tion in the entire frequency range considered (quadrilaterals are

across at the highest frequency), with the maximum
absolute error less than 1% for (maximum
side dimension of quadrilaterals is about ) and a slightly
increased error in the rest of the frequency range considered due
to a minimal frequency shift of the results.

D. Wire Monopoles Attached to a Metallic Cylinder

As an example of antennas with curved surfaces, consider a
system of wire monopoles attached to a metallic cylinder. The
radius of the cylinder is 10 cm and its height 22 cm. The system
is analyzed in two configurations: (1) with a single 12-cm
monopole antenna attached to the cylinder and (2) with an 8-cm
driven monopole and 44-cm parasitic monopole attached to the
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Fig. 11. Circular cylinder of finite length with attached wire monopoles,
modeled by 32 biquadratic (K = K = 2) quadrilaterals and two wires.

cylinder, as indicated in Fig. 11. The radii of the driven and
passive monopoles are 1 and 2 mm, respectively. The antenna
system is analyzed at the frequency of 833 MHz.

Shown in Fig. 11 is the simulated geometrical model of the
structure. The cylinder is modeled using 28 and 32 second-order

quadrilateral surface elements in configura-
tions (1) and (2), respectively. Each monopole is modeled by
a single straight wire segment. The driven monopole is fed by
a point delta generator at its base. Note that the triangle-like
curved quadrilaterals are used around the wire-to-surface con-
nections in order to easily enable current continuity across junc-
tions. Note also that the flexibility of the generalized quadrilat-
erals at approximating both the curvature of the surface and the
curvature of the edges of the cylinder, along with their flexibility
to accommodate for degenerate quadrilateral shapes, enable the
effective modeling of the cylinder with two junctions by means
of only 32 surface elements. Note finally that neither the fact
that the two adjacent outer edges of the quadrilaterals approx-
imating the bases of the cylinder form an angle of 180 at the
quadrilateral vertex they share nor the fact that the quadrilat-
eral edges in the wire-to-surface junctions are extremely short
(on the order of the wire radius) as compared to the other three
edges of the quadrilateral do not deteriorate the accuracy of the
current modeling and the overall accuracy of the analysis.

The results for the radiated far field obtained by the higher
order MoM are compared with the results obtained by the
low-order MoM from [33]. The patterns are shown in Fig. 12
for the configuration (1) and Fig. 13 for the configuration (2).
The two-fold symmetry is used in both MoM approaches and a
very good agreement of the two sets of results is observed. The
discrepancy between the results is less than 3.5% in the entire
pattern range in Fig. 13 and is practically nonexistent in Fig. 12.
The simulation results for the monopole antenna impedance for
the two configurations are given in Figs. 12 and 13 as well. We
observe that the impedances computed by the two methods also
agree very well. Note that the numbers of unknowns required
by the higher order MoM, 49 for the configuration (1) and
62 for the configuration (2), are considerably smaller than the
corresponding numbers of unknowns required by the low-order
MoM [33], 936 and 986.

Fig. 12. Normalized far field pattern and the antenna input impedance
of the antenna system in Fig. 11 with only one monopole antenna present
[configuration (1)], obtained by the higher order MoM and by the low-order
MoM from [33].

Fig. 13. Normalized far field pattern and the antenna input impedance of
the antenna system in Fig. 11 with both a driven monopole and a parasitic
monopole present [configuration (2)], obtained by the higher order MoM and
by the low-order MoM from [33].

IV. CONCLUSION

This paper has proposed a highly efficient and accurate
double higher order PC-oriented Galerkin-type MoM for mod-
eling of arbitrary metallic and dielectric antennas and scatterers.
The method is based on higher order geometrical modeling
and higher order current modeling in the context of the SIE
formulation for combined metallic (perfectly conducting)
and dielectric (penetrable) structures. It employs generalized
curvilinear quadrilaterals of arbitrary geometrical orders for the
approximation of geometry (metallic and dielectric surfaces)
and hierarchical divergence-conforming polynomial vector
basis functions of arbitrary orders for the approximation of
electric and magnetic surface currents within the elements. The
geometrical orders and current-approximation orders of the
elements are entirely independent from each other, and can be
combined independently for the best overall performance of
the method in different applications. The paper has presented
the mathematical and computational development of the new
MoM-SIE technique, including the evaluation of generalized
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Galerkin impedances (MoM matrix elements) for double higher
order quadrilateral boundary elements.

The accuracy, convergence, and efficiency of the new
MoM-SIE technique have been demonstrated in several char-
acteristic examples. The results obtained by the higher order
MoM have been validated against the analytical solutions
and the numerical results obtained by low-order MoM tech-
niques from literature. The flexibility of the new technique
has allowed for a very effective modeling of a dihedral corner
reflector, a metallic spherical scatterer, a dielectric spher-
ical scatterer, and a circular cylinder of finite length with
attached wire monopoles by means of only a few large flat
and curved quadrilateral boundary elements and a minimal
number of unknowns. All the examples have shown excellent
flexibility and efficiency of the new technique at modeling
of both current variation and curvature. The examples have
demonstrated advantages of large-domain models using curved
quadrilaterals of high geometrical orders with basis functions
of high current-approximation orders over commonly used
small-domain models and existing low-order techniques from
literature (the reduction in the number of unknowns is by an
order of magnitude when compared to low-order solutions),
but also over almost small-domain models that represent lower
order versions of the proposed large-domain, high-order (more
precisely, low-to-high order) technique. Finally, it has been
demonstrated that both components of the double higher order
modeling, i.e., higher order geometrical modeling and higher
order current modeling, are essential for accurate and efficient
MoM-SIE analysis of general antenna (scattering) structures.
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