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Abstract: In the thesis, a novel, general entire-domain nonment-nmethod is
proposed for the analysis of |lossy-dielectric bodies of arbitrary shape and
i nhonogeneity in the electromagnetic field. The bodies can be isolated or
electrically coupled with arbitrary wire antennas. The approxi mati on of geonetry
is performed by neans of so-called trilinear hexahedrons. This is a body with
strai ght edges and curved sides, conpletely defined by its eight vertices, which
can be positioned in space arbitrarily. The hexahedrons, theoretically, my be
of arbitrary electrical size. The equivalent electric displacenent vector is
approximated by 3D polynomials in local paranetric (generally non-orthogonal)
coordi nates satisfying automatically the continuity condition for its norma

conmponent over shared sides of hexahedrons. The unknown current coefficients are
determ ned by a Gal erkin solution of the volunme two-potential integral equation

The method is very accurate, efficient and reliable, enabling the analysis of up
to electrically nmediumsized dielectric scatterers or wire/dielectric antennas
on even standard PC's. Nunerical results are in excellent agreenment with the
results obtained by available nethods. However, the proposed nethod requires
much | ess unknowns (for at |east an order of nmmgnitude), and consequently very
much reduced CPU tine and nenory requirements when conpared with the existing,
subdomai n, met hods.
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