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Abstract: In the thesis, a novel, general entire-domain moment-method is
proposed for the analysis of lossy-dielectric bodies of arbitrary shape and
inhomogeneity in the electromagnetic field. The bodies can be isolated or
electrically coupled with arbitrary wire antennas. The approximation of geometry
is performed by means of so-called trilinear hexahedrons. This is a body with
straight edges and curved sides, completely defined by its eight vertices, which
can be positioned in space arbitrarily. The hexahedrons, theoretically, may be
of arbitrary electrical size. The equivalent electric displacement vector is
approximated by 3D polynomials in local parametric (generally non-orthogonal)
coordinates satisfying automatically the continuity condition for its normal
component over shared sides of hexahedrons. The unknown current coefficients are
determined by a Galerkin solution of the volume two-potential integral equation.
The method is very accurate, efficient and reliable, enabling the analysis of up
to electrically medium-sized dielectric scatterers or wire/dielectric antennas
on even standard PC’s. Numerical results are in excellent agreement with the
results obtained by available methods. However, the proposed method requires
much less unknowns (for at least an order of magnitude), and consequently very
much reduced CPU time and memory requirements when compared with the existing,
subdomain, methods.
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