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Abstract—A review of the higher order computational elec-
tromagnetics (CEM) for antenna, wireless, and microwave
engineering applications is presented. Higher order CEM tech-
niques use current/field basis functions of higher orders defined
on large (e.g., on the order of a wavelength in each dimension)
curvilinear geometrical elements, which greatly reduces the
number of unknowns for a given problem. The paper reviews all
major surface/volume integral- and differential-equation elec-
tromagnetic formulations within a higher order computational
framework, focusing on frequency-domain solutions. With a
systematic and unified review of generalized curved parametric
quadrilateral, triangular, hexahedral, and tetrahedral elements
and various types of higher order hierarchical and interpolatory
vector basis functions, in both divergence- and curl-conforming
arrangements, a large number of actual higher order techniques,
representing various combinations of formulations, elements,
bases, and solution procedures, are identified and discussed. The
examples demonstrate the accuracy, efficiency, and versatility of
higher order techniques, and their advantages over low-order dis-
cretizations, the most important one being a much faster (higher
order) convergence of the solution. It is demonstrated that both
components of the higher order modeling, namely, higher order
geometrical modeling and higher order current/field modeling,
are essential for accurate and efficient CEM analysis of general
antenna, scattering, and microwave structures.

Index Terms—Antennas, curved parametric elements, differen-
tial-equation techniques, electromagnetic analysis, fast methods,
finite element method (FEM), higher order modeling, hybrid
methods, integral-equation techniques, method of moments
(MoM), numerical techniques, polynomial basis functions, scat-
tering.

1. INTRODUCTION

HE importance of computational electromagnetics
(CEM) to antenna, microwave, and wireless technologies
can hardly be overstated. CEM simulations are nowadays
effectively used at frequencies spanning dc to optics, for
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system sizes ranging from subatomic to intergalactic, and
for such a broad spectrum of application areas as design of
antennas and RF/microwave devices, components, and circuits,
electromagnetic scattering, wireless communication systems,
remote sensing, electromagnetic compatibility, signal integrity,
high-speed electronics, new materials, nanoelectromagnetics,
and bioelectromagnetics. CEM techniques can broadly be clas-
sified into those based on integral-equation (IE) formulations
[1]-[5], those based on differential-equation (DE) formulations
[5]-[13], and hybrid techniques combining the IE and DE
approaches [5]-[9]. On the other side, as the general numerical
discretization procedures for transforming the integral and
differential equations into a matrix equation, and ultimately
into a solution to the problem, the CEM uses the method of
moments (MoM) [1] to discretize IEs and both finite element
method (FEM) [6] and finite-difference time-domain (FDTD)
method [11] to discretize DEs, in addition to other approaches,
including (but not limited to) the transmission-line mod-
eling (TLM) method [13]-[15], multiresolution time-domain
(MRTD) method [16]-[18], and finite integration technique
(FIT) [19], [20]. Overall, MoM, FEM, FDTD, TLM, MRTD,
and FIT algorithms, with different IE and DE formulations, are
extremely powerful and versatile general CEM methodologies
for electromagnetic simulations.

However, in terms of the particulars of the numerical dis-
cretizations, traditional CEM tools are low-order (also referred
to as small-domain or subdomain) techniques — the structure is
modeled by surface and/or volume geometrical elements that
are electrically very small and the currents and/or fields within
the elements are approximated by low-order basis functions.
More precisely, the elements are on the order of A/10 in each
dimension, A being the wavelength in the medium, and the
basis functions are complete to the lowest order (zeroth order).
This results in a very large number of unknowns (unknown
current/field distribution coefficients) needed to obtain results
of satisfactory accuracy, with all the associated problems and
enormous requirements in computational resources. Equiva-
lently, low-order bases exhibit a low (low-order) convergence
rate of the solution — the accuracy of the solution is improved
slowly with increasing the number of unknowns. In addition,
commonly used geometrical elements are in the form of flat
triangular and quadrilateral patches for surface modeling, and
those for volumetric modeling include bricks, tetrahedra, and
triangular prisms, all with planar sides, and thus such elements
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do not provide enough flexibility and efficiency in modeling of
structures with pronounced curvature.

An alternative which can greatly reduce the number of un-
knowns for a given problem and enhance the accuracy and effi-
ciency of the CEM analysis in different IE, DE, and hybrid for-
mulations is the higher order (also known as the large-domain
or entire-domain) computational approach. This approach uti-
lizes higher order basis functions defined in large geometrical
elements (e.g., on the order of \ in each dimension), which en-
ables faster (higher order) convergence of the solution. For CEM
modeling of general structures that may possess arbitrary curva-
ture, it is essential to have both higher order geometrical flexi-
bility and higher order current/field-approximation flexibility in
the same method. In other words, if higher order basis functions
for currents/fields are used on flat surface elements or volume
elements with flat sides, many small elements may be required
for the geometrical precision of the model, and then higher order
basis functions actually reduce to low-order functions (on small
elements). On the other hand, geometrical flexibility of curved
elements can be fully exploited only if they can be made electri-
cally large, which implies the use of higher order current/field
expansions within the elements as well. Finally, in order to make
the modeling of realistic structures optimal, it is often conve-
nient to have elements of different orders and sizes combined
together in the same model.

Although the higher order CEM has a history of almost
40 years, with one of the first higher order MoM techniques
being that for wire-dipole antenna analysis in [21], one of the
first higher order FEM solutions that to a general waveguide
problem in [22], and one of the first modeling techniques
using curved elements that for IE analysis of arbitrary metallic
antennas and scatterers in [23], only relatively recently the
CEM community has started to very extensively investigate and
employ higher order surface and volume elements and higher
order basis functions. A number of higher order techniques have
been proposed and described in the frame of MoM, including
surface integral equation (SIE) formulations [2]-[4], [24]-[67],
volume integral equation (VIE) formulations [68]-[77], and
volume-surface integral equation (VSIE) formulations [9],
[41], [78], [79], FEM [6], [7], [9], [24], [25], [80]-[119], FDTD
method [120]-[130], MRTD method [17], [18], and FIT [131].
They have already proved to be an efficient and reliable resource
for solving large and complex electromagnetic problems in a
variety of emerging areas of science and engineering. Higher
order electromagnetic modeling is definitely becoming the
mainstream of activity in CEM, with many important research
challenges yet to be addressed and solved in a quest to achieve
more speed, accuracy, and versatility of CEM simulations,
with a common goal to create an ultimate, “ideal” analysis and
design tool for each given class of real-world applications, and
each given engineering problem.

This paper reviews the higher order CEM for antenna, wire-
less, and microwave engineering applications. It discusses the
state of the art in this important area, and aims at providing as
complete and unified as possible representation of fundamental
aspects and recent advances across a spectrum of higher order
CEM formulations, geometrical elements, basis functions, and
solution techniques. However, given the wealth and diversity of
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available and emerging higher order CEM methods and codes,
this review is by no means meant as an exhaustive survey,
but rather a systematic presentation and evaluation of com-
monalities and specifics of higher order approaches and tools,
with an eye toward their practical applicability and usefulness.
Moreover, the focus is on techniques in the frequency domain.
The paper is organized as follows. Section II presents different
higher order IE and DE formulations. This includes SIE for-
mulations for structures made from a perfect electric conductor
(PEC) and arbitrary material structures, respectively, VIE and
VSIE formulations, SIE-Green’s function formulations for
multilayer structures, hybrid MoM-physical optics (PO) formu-
lations, and FEM formulations with different hybridizations. In
Section III, most frequently used surface and volume elements
for higher order geometrical modeling in CEM are reviewed, in-
cluding generalized curved parametric quadrilaterals, triangles,
hexahedra, and tetrahedra. Section IV discusses higher order
current and field modeling using different types of hierarchical
and interpolatory vector basis functions, in both divergence-
and curl-conforming arrangements, on different higher order
geometrical elements from the previous section. Higher order
spatial/temporal basis functions for time-domain techniques
are also presented. Section V addresses various components of
higher order solutions, such as testing procedures, evaluation
of singular integrals, Nystrom discretization, acceleration
using the multilevel fast multipole algorithm (MLFMA) and
plane-wave time-domain (PWTD) algorithm, matrix solvers,
error estimates, adaptive schemes, and mesh generation. In
Section VI, the accuracy, convergence, and efficiency of higher
order CEM techniques, and their advantages over low-order
solutions, are demonstrated and evaluated in several character-
istic examples.

II. HIGHER ORDER IE AND DE FORMULATIONS

A. Higher Order SIE Formulations for PEC Structures

Surface integral equations (SIEs) for three-dimensional (3-D)
PEC structures, with the surface electric current density vector,
Js, as unknown quantity, are based on boundary conditions for
the total (incident plus scattered) electromagnetic field on the
surface of the structure (S). In particular, for the analysis in
the frequency domain, the boundary condition for the tangential
component of the total electric field intensity vector yields the
electric field integral equation (EFIE)

He

nen x L®(J,) = n x E",
€e

Ne = ey

whereas the magnetic field integral equation (MFIE), expressing

the boundary condition for the total magnetic field intensity
vector, reads

(s) 1 inc

n x K¢ (Js)+§J5:an . 2)

E™»¢ and H'™® are, respectively, incident electric and magnetic

field intensity vectors, n is the outward unit normal on S, and

€e» e, and 7, are the complex permittivity, permeability, and in-

trinsic impedance of the external homogeneous medium around
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the structure (most frequently free space). The integral opera-
tors L® and K are defined as

LO)(J,) :jk/

S

K®(J,) = / Js x VgdS, g=
S

1
(Jsg + ﬁvs -JSVg> ds

—jkR

AR’

k=w/en ()

with g and k denoting Green’s function and wave number, re-
spectively, for the unbounded medium of parameters € = ¢,
and 1 = pe, R the distance of the field point from the source
point, and w the angular frequency. The integral K is com-
puted in the principal value sense. Either one of (1) and (2)
can be used independently to solve for Jg, with the EFIE being
used much more frequently, primarily because the MFIE cannot
handle open metallic surfaces (e.g., thin wires and plates). In the
case of metallic surfaces with distributed loadings, e.g., surfaces
with resistive or dielectric layers (coatings), conductors with
skin effect taken into account, etc., a self-term Z,J, is incor-
porated in (1), where Z; is the appropriate surface impedance.
In the case of thin metallic wires, J, becomes the line current
intensity, /, along the generatrices of wires (the reduced-kernel
approximation for wires), and integrals over S in (3) reduce to
line integrals. Higher order solutions to the EFIE are presented
in [2]-[4], [24], [25], [29]-[34], [36]-[45], [49]-[511, [54]-(56],
[58], and [59], and solutions to the MFIE in [4], [23], [24], [30],
[33], [35], [37], [44], [49], [50], [55], [56], and [58].

In analysis of closed metallic structures (i.e., if S is a closed
surface) in a lossless external medium, both EFIE and MFIE
formulations suffer from internal resonance problems, associ-
ated with spurious solutions at resonant frequencies of a cavity
formed by filling the interior of .S with the external medium. One
approach to overcome these problems is to linearly combine (1)
and (2) together to form the combined field integral equation
(CFIE)

1
anen X I:L((;S)(Jq) X 1’1] + (1 — 05)779, |:1’1 X Kgs)(J;) + §Jq
= an x (E™ x ) + (1 - a)nen x H™. (@)

Numerical experiments show that the choice of the combination
parameter « is not critical for the analysis; it is usually adopted
as a = 0.5, which would put the same weight on the electric and
magnetic fields in the equation if they were those of a uniform
plane wave (E/H = 7). The CFIE is discretized to higher
orders in [3], [24], [31], [45], [49], [50], [55], and [56].

For transient SIE analysis of PEC structures, time-domain in-
tegral equations (TDIEs) analogous to those in (1)—(4), namely,
TD-EFIE, TD-MFIE, and TD-CFIE formulations, are used [53].
In TDIE models, the given IE is discretized in both space, over
S, and time. TD formulations enable effective modeling of time-
varying and nonlinear problems and fast broadband simulations
(provide broadband information in a single run), at the expense
of the additional discretization — in time domain.

B. Higher Order SIE Formulations for Arbitrary Material
Structures

In SIE formulations for arbitrary 3-D material structures, we
use the surface equivalence principle (generalized Huygens’
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principle) to break the entire structure into substructures, each
representing one of the homogeneous dielectric regions (do-
mains) constituting the structure, together with the belonging
metallic surfaces, with the remaining space being filled with
the same medium (of that region). One of the domains is the
external space surrounding the structure. The scattered electric
and magnetic fields in each domain can be expressed in terms
of the equivalent surface electric and magnetic currents, of
densities J5 and Mg, which are placed on the boundary surface
of the domain, with the objective to produce a zero total field in
the remaining space. These current densities are given by the
following boundary conditions:

Jo=nxH* M, =—-nxE®"* 5)

where E*' and H®** are the total electric and magnetic field in-
tensities at the boundary surface just inside the domain, and n is
the unit normal on the surface directed into the domain. On the
metallic surfaces, only the surface electric currents (Js) exist.
For the boundary surface between any two adjacent dielectric
domains (domains p and gq), we write separately the boundary
conditions (5) for the two domains (with a zero field outside),
and then combine them together, with the expressions for do-
main ¢ multiplied by parameters « and /3. This leads to [3]

npex { [, L0(30) - KM,
—o [nquf)(—JS) - Kgs)(—Ms)} }
R} v
=n,, x (EF° — aE™) (6)
mg % { [KO @)+ 1O (M)
8 [Kgf)(_Js) + ngngS>(_Ms)] }

+5(-p),
=ny, x (H = SHM) (7

which is a set of coupled SIEs (EFIE and MFIE) with J and
M as unknown quantities. The operators L), and K, (3), are
computed on the boundary surface just inside domain p, using
material parameters of that domain (¢, and p,,), L, and K, are
computed on the other side of the surface, using material param-
eters of domain ¢ (g4 and 114), and n,,, is directed from domain
¢ to domain p. Similarly, (Ei", H*) and (Ei", H}"") repre-
sent the fields due to the impressed sources in domains p and g,
respectively, assumed to radiate as if in an unbounded medium
of parameters (e, f1,,) or (g4, 1y) and computed at the same
locations as the corresponding scattered fields. For example, if
domain p is the external space from which a plane electromag-
netic wave illuminates the structure, (E;*, H;*) is the field of
the wave and E*°, H** = 0, whereas E}}¢, H ' = 0 if, as
another example, the generator feeding an antenna via its field
(Eiq““, H;““) resides in domain ¢. Note that the factors 1/2 in
the last terms on the left-hand side of both (6) and (7) signify
the fact that the integral K in (3) is evaluated in the prin-
cipal value sense. Otherwise, these terms would be — (1 — o)) M
and (1 — )J; [57], the difference coming from the quasistatic
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self-fields near the surface, given by (E, )ser = np, X Mg/2
and (H,, )seif = —n,q X J/2 on the side toward domain p, and
(Eq)solf = _(Ep)solf and (Hq)sclf = _(Hp)solf on the other
side of the surface, which are not included in K.

Depending on the choice of « and 3 in (6) and (7), different
SIE formulations are obtained for this problem. The most fre-
quently used formulation, with higher order solutions in [3],
[40]-[43], [52], [57], is the Poggio, Miller, Chang, Harrington,
Wu, and Tsai (PMCHWT) formulation, adopting « = 3 = 1.
This eliminates the terms proportional to M and J in (6) and
(7), respectively, and is equivalent to putting the same weight,
in the respective equations, on the total electric/magnetic fields
at the two sides of the boundary. Miiller’s formulation, imple-
mented in [56], [57] with a higher order discretization, specifies
a = —g4/ep and B = —pq/ pp, which eliminates the quasistatic
electric and magnetic fields due to electric and magnetic charges
associated with Jg and My, respectively, in (6) and (7), and
thus effectively reduces the order of singularity of equations.
This, in turn, facilitates the integration involved in computing
MoM matrix elements and improves the conditioning properties
of the equations. However, Miiller’s formulation leads to inac-
curacies in the solution for high-contrast material structures and
for structures with geometrical singularities (e.g., edge singular-
ities) [57].

C. Higher Order VIE Formulations

Employing the volume equivalence principle, an inhomoge-
neous (possibly lossy) dielectric structure, of complex permit-
tivity €;, surrounded by a homogeneous medium of complex
permittivity €. (i = pte), which most frequently is free space
(ee = €0, he = Hp), can be represented by a system of equiv-
alent volume electric (polarization and conduction) currents, of
density J, radiating in an unbounded medium of parameters €.
and .. From the constitutive equation for these currents (gen-
eralized local Ohm’s law), J is related to the total electric field
intensity, E*°®, at any point in the dielectric as J = ogE'"?,
with o = jw(e; —¢€.) being the equivalent electric conductivity
at that point. This gives the following volume integral equation
(VIE), with J as unknown quantity:

(v) _ pinc

ey tl@ =E ®)
where the integral operator L(*) is the volumetric version, with
integration over the volume (V') of the dielectric structure, of
that in (3). If divergence-conforming bases are used in the VIE
model, J in (8) is expressed in terms of the electric flux den-
sity vector, D, whose normal component is continuous across
the surfaces with abrupt changes of dielectric parameters. The
relationship between the two vectors is

Ei — Ee

J=jwKD, K= 9)

€i
where K stands for the electric contrast of the dielectric with
respect to the external (background) medium. Higher order so-
lutions to the VIE are those in [68]-[77].
A dual VIE to that in (8) can be written for the equivalent
volume magnetic current density, M, throughout the volume
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of an inhomogeneous magnetic structure based on the constitu-
tive equation with the equivalent magnetic conductivity, oy =
jw(pi — e ), at a point as a proportionality constant. For mate-
rials with both dielectric (including conducting) and magnetic
properties, a set of two coupled VIEs with both J and M as
unknown quantities is solved. Finally, for anisotropic materials,
VIEs with tensor permittivity and/or permeability can be used.

D. Higher Order VSIE Formulations

In addition to using the general SIE formulation in (6) and (7),
analysis of structures composed of both dielectric and PEC parts
can be performed combining the VIE for dielectric structures in
(8) and surface EFIE for PEC structures in (1). The resulting
hybrid VIE-SIE or VSIE formulation, given by

J
jw(ei — ee)

et X [LS’)(J) + LS)(JS)} =n x E™ (10)

+ Ne [Lgv)(J) + Lgs>(JS)} _ ginc

solves simultaneously for J throughout the dielectric domains
(V) and J over the PEC surfaces (.5) of the composite structure,
with higher order discretizations in [41] and [78].

Moreover, VIE discretization can be added to the SIE system
in (6) and (7) to account for inhomogeneous parts of the struc-
ture. For instance, if homogeneous material domain ¢ in a SIE
model with the PMCHWT (o = 8 = 1) version of (6) and (7)
encloses an inhomogeneous dielectric object of permittivity ¢;,
which is treated by the VIE in (8), the hybrid VSIE system of
equations reads

npx [EPS = 1, L0 (1) + KO (M)

oy % [B i LO(-3.)

PO (-M,) — LY ()] (D
Ny X [H;nc - Kz()s)(']s) - 77511'1(05)(1\45)]
=n,, X [H;“C -KP(-3,)
i LY (M) K (3)] (12)
W%Eq) +n,L{Y (=3,
— KO (-M,) + 7,1 ()= E," (13)

Its higher order solutions are presented in [79] and [9].

E. Higher Order SIE-Green’s Function Formulations for
Multilayer Structures

IE formulations aimed to dealing with arbitrarily shaped com-
posite metallic and dielectric structures, such as the SIE for-
mulation in (6) and (7), and VSIE formulations in (10) and
(11)—(13), respectively, cannot be regarded as an optimal solu-
tion to problems involving PEC structures in planar multilayer
dielectric media (e.g., multilayer microstrip antennas and cir-
cuits). Simply, most of unknowns in a model are employed for
modeling the dielectric layers, which is rather uneconomical
for problems where layers can be treated as of infinite extent.
Here, significant advancements in efficiency and accuracy of
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the analysis can be achieved by combining the SIE approach to
the analysis of PEC structures (in a homogeneous environment)
with exact Green’s functions for an infinite multilayer dielectric
medium. An example is the EFIE in (1) with L®) transformed
from the expression in (3) to the following mixed-potential form
(MPIE) for multilayer environments [51], [59]:

L®)(J,) =jk/g‘4~Jst+$V/G‘I’VS-JSdS (14)
s S

where G* is the dyadic Green’s function for the magnetic
vector E)tential, A, in the layered medium, G2 is the cor-
responding scalar Green’s function for the electric scalar
potential, ®, and J; is the electric surface current density
over PEC surfaces in the model, which is the only unknown
quantity for the problem. Equations (1) and (14) thus represent
an SIE-Green’s function formulation for analysis of PEC
structures of arbitrary shapes immersed in arbitrary multilayer
media. It is implemented using higher order surface elements
and basis functions in [51], [59]. Other MPIE formulations
are also possible, with different forms of the associated dyadic
Green’s functions [132].

F. Higher Order MoM-PO Formulations

One strategy to substantially enhance the efficiency of MoM
solutions at high frequencies is based on its hybridization with
high-frequency techniques for asymptotic analysis of electri-
cally very large smooth parts of the structure. A notable example
are current-based hybrid rigorous-asymptotic techniques com-
bining MoM and physical optics (PO). In a MoM-PO model,
the structure under consideration is decomposed into two parts,
a MoM region, with currents JM°M and a PO region, with cur-
rents JTO, so that the total currents over the structure surface
can be written as

Jg = JMM 4 JPO, (15)

Theoretical foundation of the hybrid technique is a system of
coupled SIEs (1) and (2), with the EFIE in the MoM region and
MEFIE in the PO region. In (2), the PO approximation for surface
currents is employed, which inherently neglects mutual interac-
tion effects within the currents in the asymptotic region and im-
poses the geometrical-optics shadow condition, thus reducing
the MFIE to

|
nx KO @M 4 270
=n x H™ (in the lit PO region)

JPO =0 (in the shadowed PO region).  (16)

Higher order solutions are given in [44] and [46].

G. Higher Order FEM Formulations

Higher order FEM techniques for electromagnetic modeling
of inhomogeneous material structures are based on volumetric
discretizations of the curl-curl electric-field vector wave equa-
tion (E-field FEM formulation)

Vx 'V x E— ke, B = — jhoned; — V x p7 "M
ko = w\/eo o a7
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where ¢, and pu, are complex relative permittivity and perme-
ability of the medium (tensors for anisotropic materials), J; and
M; are impressed electric and magnetic current densities, and
E is the total electric field intensity vector — the unknown quan-
tity to be determined in a solution procedure. At material inter-
faces, E must be tangentially continuous. The curl-curl mag-
netic-field vector wave equation, with the total magnetic field
intensity vector, H, as unknown quantity (H -field formulation),
can be written in a dual fashion.

Using the Galerkin testing procedure, the weak form repre-
sentation of (17) suitable for numerical solution can be written
as

//tfl(wa)-(VxE)dV—kg/aTW-EdV
‘/f V

== / (komow - J; + V x pu7tM;)dV
v

—I-jk'ong?{ w - (n x H)dS (18)
s

where V' and S are, respectively, the volume and boundary
surface of the FEM computational region, and w is a testing
function. Higher order discretizations of the FEM region for
the frequency-domain analysis can be found in [25], [82]-[96],
[98]-[113], and [115]-[119], and those for the time-domain
analysis in [97] and [114]. The tangential component of H
over S is determined by the appropriate boundary conditions
imposed at the surface, providing a foundation for a numerical
interface between the FEM domain and the remaining space
for modeling of unbounded problems (e.g., antennas and scat-
terers), i.e., for implementing mesh termination schemes based
on absorbing boundary conditions (ABCs) [93] and boundary
integral (BI) equations [9], [85], [93]-[97], [117], leading to
different versions of hybrid FEM methodologies.

FEM-ABC techniques impose approximate local conditions
across the faces of finite elements associated with the outer
boundary S of the FEM region, thus simulating the zero-reflec-
tion conditions of the open space and enabling the mesh termi-
nation, while preserving the simplicity of the FEM method and
sparsity of the final system. However, as the solution obtained
by an ABC is approximate, the truncation surface (S) must be
placed sufficiently far away from the material structure and must
have a convex shape, which significantly increases the compu-
tational domain. The BI terminations are exact, and hence S can
be placed as close to the structure as possible and can take an ar-
bitrary shape. However, the FE-BI method leads to matrices that
are not purely sparse, but sparse with fully populated sub-blocks
(BI blocks), which increases computational complexity of the
hybrid solution.

H. Higher Order FE-BI Formulations

In higher order FE-BI techniques for unbounded problems
[9], [85], [93]-[96], the FEM region V in (18) is truncated and
numerically closed (completed) by SIE (MoM) solution outside
V. The SIE formulation thus provides exact boundary condi-
tions in terms of boundary integrals for the FEM region. If, with
reference to the notation in (6) and (7), material domain ¢ be-
longs to the FEM region in the model, while domain p is in the
external region, boundary conditions (5) at the boundary surface



2256

between the two domains, just outside domain ¢, give the fol-
lowing EFIE and MFIE:

1 4
e 1,10 (3.) — KO (M,)| - SM.=n,, xEP, (19)
— s 1 inc
Ny, X [K}ﬁ (3.)+m, 'L )(Ms)] +53.=n,, xH. (20)
These equations, coupled through

M, = E, x n,, @1)

to the FEM solution for the electric field intensity E, in domain
q using (18), constitute a FE-BI formulation with E in the FEM
region and Jg and My over the BI surface as unknown quanti-
ties. To avoid internal resonance problems, (19) and (20) can be
combined to form a CFIE, as in (4).

In [97], an efficient higher order FE-BI hybridization in time
domain (TD-FE-BI) is obtained via the first-order impedance
boundary condition on S, leading to the following functional
for the boundary value problem:

F(E)
1
- 2 /V [u‘r_l(VXE)-(VXE)+N068§E~E+M00 8tE-E] dv
1
+§% [c7'0,(n x E) - (n x E) + 2E - U,]dS (22)
S

whose stationary point is the solution to the problem, where
¢ = 1/\/eopo is the velocity of electromagnetic waves in free
space and Uy is an unknown function on .S evaluated using a BI
in terms of equivalent electric and magnetic surface currents, J
and M, placed on a closed surface Sy that resides inside S but
fully encloses the material structure. With the BI term neglected,
the impedance boundary condition imposed in (22) becomes the
first-order ABC (which ensures zero reflection only for the nor-
mally incident waves). The BI thus corrects the first-order ABC
such that (22) essentially provides an exact ABC. On the other
side, the hybridization in (22) preserves the sparsity of the FE
matrix (like FEM-ABC hybridizations) and its solution is free
of spurious modes associated with internal BI resonances, since
the impedance boundary condition prevents any real resonance
in the cavity formed by S.

III. HIGHER ORDER GEOMETRICAL MODELING

A. Generalized Curved Parametric Quadrilaterals

An arbitrary surface can be represented by a mesh with a
basic building element in the form of a generalized curved para-
metric quadrilateral defined by the following equation in two
parametric coordinates (u and v):

r=r(u,v), —-1<wuv<l1 (23)
where r is the position vector (with respect to the global coor-
dinate origin) of the point determined by parameters u and v on
the quadrilateral surface. The quadrilateral surface is bounded
by lines u = +1 and v = =+1. Equation (23) defines a para-
metric transformation (mapping) from a square parent domain
in a local parametric u-v coordinate system to a curved quadri-

lateral in the global 3-D (z-y-z) coordinate system, and vice
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Fig. 1. Generalized curved parametric quadrilateral defined by (23); Square
parent domain is also shown.

versa, as illustrated in Fig. 1. The function r(u, v) is sometimes
known exactly, as an analytical expression for a given surface
(e.g., a part of the surface of a sphere [2]). Most frequently, it
is approximated using a double sum of two-dimensional power
functions

(24)

where K, and K, (K,, K, > 1) are adopted (theoretically
arbitrarily high) geometrical orders of the element along the u-
and v-parametric coordinate, respectively, and b,,,,, are constant
vector coefficients to be determined. The simplest way to deter-
mine these coefficients is to require that a total of M = (K, +
1)(K, +1) points, (t,,v,) for0 < m < K,, 0 <n < K, of
the parametric quadrilateral (interpolation nodes) belong to the
actual surface that is being approximated, which results in

r(u,v) = z“: z“: v, DX« (u)LE (v).

m=0n=0

(25)

Here, r,,,, = r(um,v,) are position vectors of interpolation
nodes and LX+ represent Lagrange interpolation polynomials
given by

Ky

- U — Uy
Lyt (u) = H ﬁ (26)
jg=0 ™
i#m

with u; being the interpolation nodes along an interval —1 <
u < 1 (note that L,I,f is unity for v = u,, and zero at all
other nodes), and similarly for LX"(v). Usually, the equidis-
tant distribution of interpolation nodes along each coordinate
in the parametric space is used. Of course, the use of specific
non-equidistant node distributions, which would provide addi-
tional modeling flexibility and accuracy in some applications, is
possible as well.

Fig. 2(a) shows the simplest Lagrange generalized quadrilat-
eral, defined by K,, = K, = 1 in (25) and called the bilinear
quadrilateral. It is determined solely by M = 4 interpolation
points — its 4 vertices (arbitrarily positioned in space), so that
(25) and (24) become

r(u, v) = i[rog(l —u)(1 =) + rio(u+ 1)(1 )

+roi(l—u)(v+1)+ri(u+1)(v+1)]

=bgg + biou + bg1v + briuw. 27
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01

Fig. 2. Examples of Lagrange generalized quadrilaterals in (25): (a) bilinear
quadrilateral in (27) and (b) quadrilateral of the fourth geometrical order in (28).

Its edges and all coordinate lines are straight, while its surface is
somewhat curved (inflexed). As another example, the quadrilat-
eral of the fourth geometrical order (K, = K, = 4, M = 25),
assuming the uniform distribution of interpolation nodes in the
square parent domain, is given by

4
r(u,v) = §r00(u +0.5)u(u — 0.5)(u — 1)(v +0.5)
co(v—0.5)(v—1)
16
— 31‘10(1& + Du(u — 0.5)(u — 1)(v + 0.5)
co(v—0.5)(v—1)+---
4
+ §r44(u + 1)(u+0.5)
~u(u —0.5)(v+ 1)(v+ 0.5)v(v — 0.5)
=boo + biou + baou® + bggu® + byou*
+ 4 b04’U4 + b14uv4
+ bagu®v? + basuv? + byute? (28)
and depicted in Fig. 2(b). Of course, for modeling of cross sec-
tions of arbitrary cylindrical structures (in FEM or MoM-VIE
2-D techniques), only planar (2-D) curvilinear quadrilaterals of
the form in (24) or (25) are used (all the interpolation nodes in
Figs. 1 and 2 belong to the cross-section considered).

Note that, in general, the surface tangent is discontinuous on
the boundary of two attached curved Lagrange quadrilateral el-
ements, defined by (25), regardless of the geometrical orders
K, and K, of the quadrilaterals. However, this geometrical dis-

continuity across the boundaries of adjacent elements becomes
less pronounced as the elements of higher geometrical orders
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are used. For instance, when approximating a circular cylinder
using 32 interpolation points along its circumference and three
different geometrical models constructed from (A) 32 first-order
(K, = K, = 1) elements, (B) 16 second-order (K,, = K, =
2) elements, and (C) 8 fourth-order (K, = K, = 4) elements
per cylinder circumference, the angles between the surface tan-
gents of the neighboring elements at the junctions in models
(A), (B), and (C) are 168.750°, 179.787°, and 180.011°, respec-
tively, compared to the exact 180° [43]. If a more accurate model
is needed, one can increase the total number and/or geometrical
orders of patches.

On the other side, more complicated parametric quadrilat-
eral surfaces that provide continuous surface tangents across the
edges shared by curved elements can be used. In one dimension
(i.e., along each parametric line), these higher order geomet-
rical approximations take into account not only the values of the
function that is being interpolated, but also the values of its first
derivative (or even higher order derivatives, in general). For ex-
ample, third-order (cubic) B-splines (or beta-splines) [133] en-
sure the continuity of the function and its first and second deriva-
tives at the endpoints.

Generalized quadrilaterals of higher geometrical orders in
(25) are used in SIE-MoM techniques [4], [43], [45], VSIE
techniques [9], [79], and MoM-PO techniques [44], [46]. Their
planar curvilinear version is used in 2-D FEM modeling [105].
Bilinear quadrilaterals in (27) are used with higher order current
approximations in SIE techniques [2], [3], [38], [40]-[42] and
VSIE techniques [41], [78].

B. Generalized Curved Parametric Triangles

Another attractive and effective geometrical modeling tech-
nique for arbitrary surfaces is based on using generalized curved
parametric triangles as basic building blocks for mesh genera-
tion. A generalized triangle is commonly represented in terms
of simplex coordinates (also referred to as normalized area co-
ordinates), {1, €2, and 3, as shown in Fig. 3. Namely, the parent
domain is now an equilateral triangle with a unit height (b = 1),
and edges equal to a = 2/\/§ The coordinates &1, &2, and &3 of
an arbitrary point inside the triangle are defined as the normal
distances of the point to the triangle edges across from vertices
1,2, and 3, respectively. It is easily seen that the range of values
for each of these parameters is from 0 to 1. It is also obvious
that they are not independent from each other, as any two of
them uniquely determine the position of the point. In addition,
the lines connecting the point (&1, &2, £3) to the triangle vertices
break the triangle into three subtriangles with heights &7, &2, and
&3, and areas &; /\/§, Eg/\/§, and 53/\/3, respectively. Since the
sum of these subareas gives the area of the equilateral triangle,
which, in turn, equals 1/ V'3, we have

G +&+i=1 (29)

Mapping from the planar equilateral unit-height triangle in

a local simplex coordinate system to a curved triangle in the

global 3-D coordinate system (see Fig. 3), or vice versa, is
defined by the parametric equation

r= r(£17 527 53)7

0<¢&,6,6 <1 (30
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const

Fig. 3. Generalized curved parametric triangle defined by (30), with the parent
domain in the form of an equilateral triangle of unit height.

Analogous higher order polynomial surface expansion to that in
(24) for generalized quadrilaterals can be used for generalized
triangles as well. Adopting the equidistant distribution of inter-
polation nodes along each simplex coordinate, the steps along
&1, &2, and &3 are given, respectively, by m/K,n/K,and p/ K,
withm,n,p =0,1,2,..., K, where K is the adopted geomet-
rical order of the element (the same for all coordinates). From
29), m + n + p = K, and (30) becomes
K

>

m,n,p=0
(m+n+p=K)

€29
Here, r;,,, are position vectors of interpolation nodes and R

are Silvester—Lagrange interpolation polynomials of order K

Rg(f):{%nz =0 (Kf—l)

1<m<K
m =0 )

i (32)

Note that RE is unity at ¢ = m/K and zero at ¢ = 0, 1/K,
2/K,...,(m—1)/K.

Element of the lowest order, K = 1, is a flat triangle, with
(31) yielding

r(&1,&2,&3) = r100é1 + ro10é2 + ro01é3 (33)

and rqg9, ro10, and rog; being the position vectors of the tri-
angle vertices. Fig. 4 shows the generalized Silvester—Lagrange
triangle of the fourth geometrical order (K = 4), defined by
M = 15 interpolation nodes with m + n + p = 4.

Generalized triangles of higher geometrical orders in (31) are
used in SIE techniques [4], [25], [49], [50], [52], [53], [58], SIE-
Green’s function techniques [51], [59], and FE-BI techniques
[93]1-[95], [97]. Their planar curvilinear version is used in 2-D
FEM techniques [87], [100], [113], [118].

C. Generalized Curved Parametric Hexahedra

Volumetric modeling of arbitrary electromagnetic structures
can be carried out using generalized curved parametric hexa-

hedra defined by
(34)

r=r(u,v,w), —-1<wuv,w<l.
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Fig. 4. Generalized Silvester—Lagrange triangle (31) of the fourth geometrical
order (m + n + p = 4) [24].

These elements represent a volume (3-D) generalization of
quadrilateral patches in Fig. 1. Thus, the Lagrange-type inter-
polation hexahedron of arbitrary geometrical orders K,, K,,
and K, (K., K,, K,, > 1), as the generalization of (25), is

given by
K,
r(u, v, w) Z (v)Lff“ (w).
- (35)

Fig. 5(a) shows the first-order element (K, = K, = K,, =
1; M = 8 interpolation points—element vertices), called the tri-

linear hexahedron, whose faces are bilinear quadrilateral sur-
faces in Fig. 2(a). Its equation is

LK

mnp m

(w) Ly

I MS
I Mﬁ

r(u,v,w) )
= g[rooo(l —u)(l=v)(1—w)
+ r100(u + 1)(1 — v)(1 — w)
(w4 1) (v + 1) (w +1)]
=Dbooo + b1oou + bo1ov + boorw

+ biiguv + bigruw 4+ bor1vw + byuvw.  (36)
Also shown, in Fig. 5(b), is the triquadratic hexahedron (K, =
K, = K,, = 2), determined by M = 27 interpolation points
arbitrarily positioned in space.

Generalized hexahedra of higher geometrical orders in (35)
are used in VIE techniques [74], [75], VSIE techniques [9], [79],
FEM techniques [102]-[104], and FE-BI techniques [9], [85].
Trilinear hexahedra in (36) are used with higher order current
approximations in VIE techniques [70]-[72] and VSIE mod-
eling [41], [78].

D. Generalized Curved Parametric Tetrahedra

Extending the triangular curved surface in Fig. 3 to a vol-
umetric element, a generalized curved parametric tetrahedron
is obtained, described analytically by the following equation in
simplex coordinates (normalized volume coordinates) 1, &, €3,
and &4:

r:r(£17£27£37€4)7 0S€17£27£37£4S 17

SL+é&+E&E+E6 =1 (37
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(b)

Fig. 5. Examples of Lagrange generalized hexahedra in (35): (a) trilinear hex-
ahedron in (36) and (b) triquadratic hexahedron (X, = K, = K,, = 2).

As indicated in Fig. 6, the coordinates of a point inside a parent
equilateral tetrahedron of unit height in the local simplex coordi-
nate system, which is mapped to a curvilinear tetrahedron in the
global Cartesian coordinate system, represent the normal dis-
tances to the corresponding (flat) faces of the equilateral tetrahe-
dron. The above relationship between the coordinates expresses
the fact that the volumes of subtetrahedra defined by the point
(&1, &2, &3, €4) and any three of the vertices 1, 2, 3, and 4 in the
local system add up to the volume of the equilateral tetrahedron.
The volumetric version of (31) is a quadruple Silvester—La-
grange interpolation polynomial of order K in coordinates &,

&2, &3, and &y,

r(é-la 627 637 54)
K

= 2

m,n,p,q=0
(m+n+p+q=K)

L pnpg B (G RE (&) RE(&)RE(¢4). (38)

For K = 1, we have a simple tetrahedron with all straight
edges (and flat faces)

r(&1, &2, &3, &) = rioooé1 + roiooé2 + roo10€s +roooiéa (39)

where r1000, 0100, Foo10, and rogp1 are the position vectors of
its vertices. As a higher order example, shown in Fig. 7 is a
curved tetrahedron with K =4 (m +n+p + q = 4).
Generalized tetrahedra of higher geometrical orders in (38)
are used for FEM modeling in [25], [88], [93]-[95], and [97].
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Fig. 6. Generalized curved parametric tetrahedron defined by (37), with parent
unit-height equilateral tetrahedron.

0040

1003

3001 2002

Fig. 7. Generalized Silvester—Lagrange tetrahedron (38) of the fourth geomet-
rical order (m +n + p 4+ q = 4) [24].

Note that, in general, CEM models with tetrahedra and
triangles require considerably more unknowns than the corre-
sponding models with hexahedra and quadrilaterals.

IV. HIGHER ORDER CURRENT AND FIELD MODELING

A. Higher Order Hierarchical Divergence-Conforming Basis
Functions on Generalized Quadrilaterals

The first class of basis functions on generalized quadrilat-
erals (Fig. 1) is a set of divergence-conforming hierarchical-type
vector basis functions representing a higher order generaliza-
tion of rooftop functions [134] constructed from simple power
functions (P) in parametric coordinates u and v. With them, the
electric surface current density vector over generalized quadri-
laterals (in the MoM-SIE model) is approximated as

* Z Z al(;)fi(;}) (u,v)a,

1§ =B@Pi)., [ =Pwk) @0
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where P denotes modified (divergence-conforming) power
functions

1—u, 1=
" _Ju+l, =
Piu) = u'—1, ©>2, even
ul—u, >3, odd
Pi(v)=v/, —1<u,v<1. (41)

N, and N, (N, N, > 1) are the adopted degrees of the poly-
nomial current approximation in the u- and v-direction, respec-
tively, which are entirely independent from the element geomet-
rical orders (K, and K ), {«} are unknown current-distribution
coefficients, and < is the Jacobian of the covariant transforma-
tion, found from the unitary vectors a,, and a, along the para-
metric coordinates

or or

= |au X av|7 %7 ay = %

Ay = (42)
with r given in (23). Note that the lowest order of approxima-
tion (N, = N, = 1) yields the rooftop functions on generalized
quadrilateral patches. For any 5 (0 < 57 < N, — 1), the basis
functions (1 — u)v? (for i = 0) and (u + 1)v? (fori =1) serve
for adjusting the continuity condition for the normal component
of J; along edges v = —1 and u = 1, respectively, of the ele-
ment (divergence conformity), while the remaining basis func-
tions (for 2 < ¢ < N,,) are zero at the quadrilateral edges and
serve for improving the current approximation over the surface.
From (40)—(42), this vector component for the edge v = —1,
for instance, is

1 a, X a,
(J ) norm = Jo, 8in by = Jou(—1,0) W
N,—1

(u
|av —1,v) Z o

(at edge u = —1)
(43)

where J;, denotes the u-component of Jg at the edge (the
v-component of Jy is tangential to the edge), and 0,,,, the angle
between the u and v parametric lines at the same point. Since
the unitary vector along the edge, a,(—1,v), is the same for
the two adjacent elements sharing the edge, the continuity
condition between the elements, for —1 < v < 1, can readily
(automatically) be enforced, regardless of the adopted geo-
metrical orders, current-expansion orders, or local orientations
of the elements. The only requirement that needs to be sat-
isfied is the geometrical compatibility of the joint edge. The
current continuity is imposed by equating the corresponding
normal-vector coefficients, oz(()?) in (43), associated with the
elements, so that these coefficients are common for the two
elements, with additional corrections (sign change) due to
possibly different element orientations. For elements with
different geometrical orders along the common edge, K, in
(25), the same parametric presentations on both sides of the
junction are ensured by placing the interpolation nodes of
the element with a higher order at positions that match the
parameter values already determined by the interpolation nodes
of the element with a lower order. For elements with different
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current-expansion orders along the junction, N, — 1 in (43),
the normal-vector coefficients are matched only up to the
lesser of the two orders and are set to zero for the remaining
normal-vector basis functions. This order reduction pertains to
the common edge only and does not influence the expansions
over the rest of the surfaces of the elements. More general
discussions of different types of surface-element junctions
and procedures of adjusting the higher order bases to ensure
divergence conformity at boundaries between curved elements
are provided in [3] and [4], respectively.

Using high orders N, and N, enables using large curved
MoM quadrilaterals that are on the order of A (e.g., 1A —2)) in
each dimension as building blocks for modeling of the electro-
magnetic structure (i.e., the boundary elements can be by two
orders of magnitude larger in area than traditional low-order
boundary elements). Note that the sum limits in (40) that cor-
respond to the variations of a current density vector compo-
nent in the direction across that component are by one smaller
than the orders corresponding to the variations in the other para-
metric coordinate. This mixed-order arrangement, which en-
sures equal approximation orders for surface charge densities
corresponding to the u- and v-directed current basis functions,
has been found to be a preferable choice for modeling of surface
currents in all applications. Basis functions in (40) and (41) are
used for modeling of both electric and magnetic surface cur-
rents, J5 and M, on generalized quadrilaterals of higher ge-
ometrical orders (25) in the SIE technique for arbitrary mate-
rial structures [43]. They are used in conjunction with bilinear
quadrilaterals (27) in the SIE technique for PEC structures [2],
SIE techniques for arbitrary material structures [3], [40], [41],
and VSIE technique based on (10) [41], [78].

Hierarchical higher order basis functions, in general, enable
using different orders of current/field approximation in different
(surface or volume) elements in the model for efficient selective
discretization of the solution domain, because each lower-order
set of functions is a subset of higher order sets. For instance, the
hierarchical nature of basis functions in (40)—(41) and selective
adoption of orders N,, and N, in different quadrilaterals allow
for a whole spectrum of quadrilateral sizes (e.g., from a very
small fraction of A to a couple of \) and the corresponding cur-
rent approximation orders to be used at the same time in a single
simulation model of a complex structure. Additionally, each in-
dividual element can have drastically different edge lengths, en-
abling a whole range of “regular” and “irregular” quadrilateral
shapes (e.g., square-shaped, rectangular, strip-like, trapezoidal,
triangle-like, etc.) to be used in a simulation model as well. Hier-
archical basis functions, on the other hand, generally have poor
orthogonality properties, which results in MoM/FEM matrices
with large condition numbers. This affects the overall accuracy
and stability of the solution. Most importantly, if the matrix
equation associated with the MoM/FEM is solved using iterative
solvers, the overall computation time is much larger when the
corresponding matrices are badly conditioned (e.g., the number
of iterations for conjugate gradient solvers is proportional to the
square root of the condition number).

Orthogonality and conditioning properties of hierarchical
higher order basis functions in (40) can be significantly im-
proved, and made comparable to those of interpolatory bases,
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if basis functions f;;, other than rooftop functions, are con-
structed from standard orthogonal polynomials instead of
power expansions. A notable example is the following class of
Legendre basis functions [45]:

. . 1—u, 1=0
Pi(u):Ci U+]., 1=1 y PJ(U)ZCJ'Q]'<?))

Qi(u) = Qi—2(u), i>2
anzgji%@?—nﬂ —1<u,v<1 (44)

where Legendre polynomials ) [135] defined on the interval
[—1, 1], which have nonzero values at the interval boundaries,
are combined to form polynomials P fori > 2 in a diver-
gence-conforming fashion. Namely, using the difference of the
polynomials @) of orders 7 and ¢ — 2 as the basis function of
order ¢+ in approximating the variation of the u-component of
the current density vector Jg in (40) along the u coordinate, and
analogously for the v-component of J,, makes the higher order
expansions for the normal component of Js zero across edges
shared by adjacent generalized quadrilaterals and allows for the
maximum number of basis functions to be mutually orthogonal
within the solution procedure. The scaling factors C' and C are
adopted to further reduce the condition number by ensuring that
the Euclidean norm of basis functions is unity on a square patch
of unit side length [45]. Similar classes of higher order hierar-
chical MoM basis functions with improved conditioning con-
structed from other types of standard orthogonal polynomials,
e.g., Chebyshev polynomials, are also used [42].

B. Higher Order Interpolatory Divergence-Conforming Basis
Functions on Generalized Triangles

The next class of higher order basis functions are divergence-
conforming interpolatory vector basis functions (for modeling
of surface currents) on generalized triangles (in Fig. 3). Here, we
start with Rao—Wilton—Glisson (RWGQG) basis functions [136],
which are a simplex counterpart of rooftop functions on quadri-
lateral patches. The RWG function associated with edge 1 of
the triangle in Fig. 3 (edge across vertex 1) can be expressed in
simplex coordinates as

A6 66) = 56l — &alo) @s)
and analogous expressions hold for the functions for the other
two edges. The Jacobian and unitary vectors are obtained as

o
- Om

where r is given in (30), and the edge vectors 1,,, (m = 1,2, 3)
in Fig. 3 as

a, (46)

S =a; - (a; x ag), (m=1,2,3)

Iy = —ay, lb=a;, Il3=ay—a;. 47
The function A; has a normal component only on edge 1, which,
moreover, is constant along the edge, so that the current con-
tinuity can be automatically adjusted with the accompanying
RWG function on the adjacent patch across the edge. The higher

order basis functions are generated by multiplying the RWG
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Fig. 8. A subset of interpolation nodes used in (48) for N = 2, for basis func-
tions associated with edge 1 of the triangle, obtained by shifting the nodes in
Fig. 4 away from edges 2 and 3 [24].

functions by combinations of Silvester—Lagrange interpolation
polynomials (32), where the same mesh of interpolation nodes
is used for interpolating the current distribution as for the geo-
metrical transformation in Fig. 3. However, not all nodes in the
mesh are used for individual basis functions. Namely, the inter-
polation polynomials multiplying the function A; are defined
on a subset of interpolation nodes that does not include those re-
siding on edges 2 and 3, along which the normal components of
A; vanish, and analogously for polynomials multiplying RWG
functions A5 and A3. Therefore, the order of the current approx-
imation, i.e., the order to which the basis functions are complete,
on the element (the same in all three simplex directions), N, is,
in effect, by two smaller than the geometrical (mapping) order
of the element, K, as illustrated in Fig. 8. With this, the basis
function of order IV for edge 1 corresponding to the interpola-
tion node (¢, j, k) is given by [25], [24]

A (61, 6,)

= CUIRN*2 () RY+2(6) RN Y2 (63) A (61, 62, 63)
0S£17€27£3S17 L:0717N
G k=1,2,...,N+1, i+j+k=N+2=K (48)

where C'L(]l,l is the normalization factor chosen to make the

normal component of AS; unity along edge 1, and R are
shifted Silvester—Lagrange interpolation polynomials, defined
as

m—1
ﬁ I[[ (KéE=i), 2<m<K+1

=1

1, m=1

RE(¢) = . (49)

The shifted polynomials enable shifting of the array of the in-
terpolation nodes away from edges 2 and 3, toward the inte-
rior of the triangle, as in Fig. 8 (note that RE does not have a
zero at £ = 0). Analogous expansions are used for basis func-
tions A%} and A'%). By visualizing the nod for A?)
ions A; and A;7; . By visualizing the node arrays for A,
and AS’% corresponding to that for 1\1(]1,)T in Fig. 8, we realize
that the nodes in the interior of the triangle appear in the in-
terpolation pattern three times, i.e., three different vector basis
functions, A, A?), and A®®), interpolate the unknown sur-
s Djigr Dyjgs ijk> p
face vector function (J;) at each of the interior nodes. However,
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a 2-D vector function has only two degrees of freedom, which
implies that the three basis functions are linearly dependent, so
one of them must be eliminated from the set to obtain a unique
solution. Note that, combining (45)—(48) and (29), the surface
expansion for J4 on a generalized triangle can be written as

Y AGH AR AR A (50)
which resembles that in (40) for a generalized quadrilateral. As
the total number of interior nodes is N(N + 1)/2, the number
of unknowns in the interior is N (N + 1). On the other side, the
nodes along edges appear only once in the interpolation pattern,
resulting in only one vector basis function for each edge node,
except for the nodes at triangle vertices, which are not included
at all. Hence, the number of edge unknowns is 3(\V + 1), for
a total of (N 4+ 1)(IN + 3) unknowns per triangle. Of course,
edge unknowns that are common for the patches sharing the
edge should be counted only once, which effectively reduces
the overall number of unknowns in the model.

Basis functions in (48), on higher order generalized triangles,
are used in SIE techniques for modeling of PEC structures in
free space [4], [25], [49], [50], [58], and in layered media [51].
They are also used in SIE models involving arbitrary material
structures [52], as well as for FE-BI modeling [93]-[95].

Interpolatory higher order basis functions, in general, have
excellent orthogonality properties and produce well-condi-
tioned MoM/FEM matrices. In addition, there is a direct
physical interpretation of every current- or field-distribution
coefficient in the model, since only one basis function is
nonzero at every interpolation point. However, in divergence-
or curl-conforming arrangements, interpolatory bases require
that the orders of current/field approximation must be kept
constant throughout the model, implying that all elements
in the model must be about the same size. For instance, the
(high) order N for basis functions in (48) must be the same
for all generalized triangular patches in the SIE mesh, which,
accordingly, should be approximately equally sized and nearly
equilateral (NN is the same for all three edges in a triangle). This
considerably limits the modeling flexibility of interpolatory
higher order techniques.

C. Higher Order Spatial/Temporal Basis Functions for TDIE
Modeling

In higher order TDIE techniques, a higher order spatial dis-
cretization of currents is combined with a temporal discretiza-
tion based on the marching-on-in-time (MOT) scheme [53]. For
an SIE formulation of transient scattering from PEC surfaces,
the surface currents can be approximated as [53]

JS(I', t) = 2 2 OzijT(t — LAt)A(]) (I‘)

i=1 j=1

(G

where T are scalar temporal basis functions and A are vector
spatial basis functions adopted in the form of higher order diver-
gence-conforming interpolatory polynomials (48) on general-
ized triangles, and Ny and Ny are their respective total numbers
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in the model. The time steps are At = 7/(swp), with wy being
the maximum angular frequency of the incident field (the field
is assumed to be temporally bandlimited to wy) and s > 1 an
oversampling factor (typically on the order of 10). In [53], T  are
chosen to be bandlimited interpolatory functions (BLIFs) de-
fined as the product of an approximate prolate spheroidal wave
function (APSWF) and sinc function

. t 2
g ( t) sin |a (—NwAt) -1
T(t) = R0 2 (52)

swol sinh(a) (ﬁ) -1

where N,, is the APSWF width parameter and ¢ = 7N, (s —
1)/s is the time-bandwidth product of the APSWF. However,
the BLIFs cannot be directly implemented into the MOT scheme
as this would result in a noncausal system, and hence an extrap-
olation technique, based on the linear least square approach, is
used to recover time marching with BLIFs by extrapolating (pre-
dicting) future current samples from the values of past currents.

D. Higher Order Point-Based Basis Functions on Generalized
Quadrilaterals and Triangles

In point-based SIE techniques, such as those based on the
Nystrom discretization [137], [28], the unknown surface cur-
rents are represented by their samples at a set of discrete points
on the surface geometrical elements (patches) in the model.
These techniques do not automatically stipulate the current con-
tinuity across junctions between patches and do not enforce
divergence-conformity of basis functions, allowing the use of
defective meshes, where element edges in junctions are not nec-
essarily entirely shared by the two adjacent patches. Hence,
a nonconforming form of higher order Legendre basis func-
tions on generalized quadrilateral patches, as simple products
of Legendre polynomials [see (44)]

=1 = wQiw), —1<uv<1 (53)

in the vector expansion for J in (40), can be used for a point-
based (Nystrom) discretization, with the SIE sampled at the
quadrature points defined by the two-fold Gauss—Legendre in-
tegration formula [55].

On the other side, point-based discretizations on generalized
triangular patches [58] employ products of Silvester—Lagrange
interpolation polynomials, (32), in simplex coordinates in Fig. 3

fiie = RN (E)RY ()R (&3), 0<6,6,8 <1,
i+j+k=N (54

for each component of Js, where NV is the order of the interpo-
lation. Interpolation nodes (%, j, k) are chosen to be the same as
the integration points of Gauss—Legendre quadratures.

E. Higher Order Curl-Conforming Basis Functions on
Generalized Quadrilaterals and Triangles

The curl-conforming version of hierarchical higher order
basis functions on generalized quadrilaterals in (40)—(42), used,
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for instance, in 2-D FEM computation of the transversal elec-
tric field intensity vector (E) in the cross section of arbitrary
electromagnetic waveguides [105], is given by

Nu—1 N,
= Z Za ) Py(u) P (v)al,,
i=0 =0
N. N.-1
+ Z a Pj(v)a’,
=0 j5=0
Ci<uw <l (55)

Here, a}, and a}, are the reciprocal unitary vectors, obtained as

a,; X1n nxa
/v o u
A= o, el = (56)

with n denoting the unit vector normal to the surface of the ele-
ment. Rooftop functions 1 Fv (for 7 = 0,1) in the reciprocal E,,
field component in (55) are coupled across the edges v = F1
with the corresponding rooftops in adjacent elements in the tan-
gential-field continuity boundary conditions (curl conformity),
and similarly for the F,, component at the edges © = F1 [with
analogous expressions for Etane as in (43)]. We note that, just
opposite to the divergence-conforming expansion in (40), the
reciprocal u-component of the vector is associated, in terms of
the conformity requirement, with v = F1 edges, and vice versa.
We also note that the vector basis function counterparts in (40)
and (55), a u-directed divergence-conforming and v-reciprocal
curl-conforming function and vice versa (including the adjust-
ment of the sign for the right-handedness of the u-v coordinate
system with respect to the normal n), are related as

fv:url—conforming =nxX fdiv—conforming~ (57)
We note finally a reciprocal, with respect to (40), mixed-order
arrangement of sum limits in (55).

For generalized triangles (Fig. 3), the simplex coordinate gra-
dients are V&, = n X 1,,, /S (m = 1,2, 3) [25], so (57) gives
the following expression for the curl-conforming version of the
zeroth-order (RWGQG) bases in (45):

Q1(£1,62,8) =nx A =6VE - GVE,

0<61,6,65 <1 (59)
which are known as Whitney forms. The higher order curl-con-
forming interpolatory basis functions associated with edge 1 of
the triangle in Fig. 3 (and Fig. 8), Qq k> are then obtained by

merely replacmg A; by Q; in (48), and analogously for Q)

gk

and Q .- These bases are used in 2-D FEM modeling [100].
Note that higher order sets of divergence- and curl-con-
forming interpolatory basis functions defined on generalized
curved quadrilaterals, analogous to those on triangles, are also
available [25], [4]. On the other side, very effective sets of hi-
erarchical higher order basis functions for triangular elements,
suitable for p-adaption, are developed in both divergence-con-

forming [37], [4] and curl-conforming [91], [4] arrangements.
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F. Higher Order Hierarchical Divergence- and
Curl-Conforming Bases on Generalized Hexahedra

For VIE and VSIE hierarchical modeling using generalized
hexahedral elements in (34) and Fig. 5, a 3-D generalization of
divergence-conforming higher order 2-D vector bases in (40) is
used for the approximation of the electric flux density vector
[see 9], D = D, + D, + D,, in parametric coordinates u, v,
and w,

N,—1N,—

N,
Y Y aaw
i=0 j=0 k=0

=(a, X a,) - ay,

(v) Pr(w)ay,

-1 <u,v,w<1

Q?l =

3 (59)
with analogous expressions for vector components D, and D,
where P and P are power expansions in (41) [41], [70]-[72],
[78] or Legendre expansions in (44) [75]. These bases ensure
continuity of the normal component of D across sides shared
by adjacent hexahedra in the model.

Curl-conforming hierarchical vector expansions for FEM
computation on generalized hexahedra are now obtained as
either a 3-D generalization of 2-D curl-conforming bases in
(55) or a curl-conforming version of divergence-conforming
3-D bases in (59)

w—1 Ny Ny
Z ZZ@EE‘:?P (0) Pr(w)a's,
i=0 j=0 k=0
al, = (X\a“ A<uvw<l (60)

with analogous representations for the other two reciprocal
components of E, and versions combining power functions
[102], [104] and Legendre polynomials [103]. The continuity
of tangential fields over junctions of hexahedra is enforced.

G. Higher Order Interpolatory Curl-Conforming Basis
Functions on Generalized Tetrahedra

FEM models based on higher order interpolatory tetrahedral
elements (Fig. 6) [25], [88], [93]-[95] use a 3-D curl-con-
forming version of bases in (48). Labeling by m the face across
vertex m (m = 1,2, 3,4) of a tetrahedron, the 3-D zeroth-order
curl-conforming basis (Whitney form) associated with the edge
shared by faces 1 and 2 (i.e., the edge between vertices 3 and
4) is, from (58) for the 2-D one, given by

D12(61,82,83,84) = aVE — &V

and analogously for the remaining five edges of the tetrahedron.
The function €25 has tangential components only on faces 1
and 2, which are continuous across the boundary into adjacent
elements (curl-conformity). Following (48), the resulting basis
function of order N corresponding to the interpolation node
(4,7, k,1) is then [25], [24]

Q2 (61, 2,65,60)
= CUDRN T2 (&) RY P (&) RY (&)
. Rfv+2(f4)912(51-, &2,&3,84)

0§€17€27€37£4§17 i;j:0717"'7
i+j+k+l=N+2=K

(61)

N+1
(62)

N, kil=1,2,...,
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Fig. 9. Shifting of interpolation nodes in Fig. 7 away from faces 3 and 4 of
the tetrahedron to form a subset of nodes used in (62) for N = 2, for bases
associated with the edge shared by faces 1 and 2.

and analogous expressions, with permutations of indices, can
be written for higher order bases associated with other edges.
The same shifting of interpolation nodes actually used in (62),
away from the faces over which the tangential components of
Q15 vanish (faces 3 and 4 for this function), as in Fig. 8 in the
2-D case, applies here as well, which is illustrated in Fig. 9.

As for 2-D interpolations in (48), many of the basis functions
provided by (62) have to be discarded as linearly dependent with
other functions for the same interpolation node. In fact, the elim-
ination rule for nodes at tetrahedron faces is exactly the same
as for the triangular element and (48) — one basis function per
node has to be eliminated, since tangential components of E
have only two degrees of freedom. In addition, (62) provides
six basis functions for an interior interpolation node (as there
are a total of six edges), so three of them have to be discarded
(E has three degrees of freedom throughout the volume of the
element). With a similar calculation to that in the 2-D case, this
results in a total of (N + 1)(N 4 3)(N + 4)/2 unknowns per
tetrahedron.

Note that a hierarchical counterpart of bases in (62) for higher
order tetrahedral finite elements is also available [91].

H. Higher Order Spatial/Temporal Field Expansions for
TD-FEM Modeling

In higher order TD-FEM formulations, such as the one in
(22), the spatially and temporally varying electric field can be
approximated using higher order curl-conforming interpolatory
spatial bases € in (62), defined on generalized curved tetra-
hedral elements, with time-dependent field-distribution coeffi-
cients [97]

N

> () (r)

=1

E(r, 1) = (63)

where Vg denotes the total number of spatial functions in the
model. The coefficients {«} are determined from the following
set of second-order ordinary differential equations in time [97]:

d*{a} d{a} _
pTE —q T [SHa} + {w) = {0} (64

where the elements of matrices [T, [R], and [S] are the corre-
sponding volume integrals, and [@)] and {w} surface integrals,
with bases € in integrands, e.g., integrals over V and S in (22)

[T]

+ (7] + QD)
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with E substituted by the appropriately indexed functions . In
[97], (64) is discretized in time by a standard central-difference
scheme, and is solved in a time marching fashion.

1. Higher Order Singular Bases Incorporating Edge Effects

Finally, if the structure under consideration possesses sharp
edges, the accuracy and efficiency of higher order current and
field expansions near these edges can be improved by explicitly
incorporating in basis functions the terms that exactly model
the singular edge behavior of currents/fields. For instance, it is
known that the component of the electric surface current den-
sity vector, Jg, parallel to the edge of a PEC wedge defined
by an angle ¢ is proportional to p*~1, p being the normal dis-
tance of the current element (on the wedge) from the edge and
b = w /(2w — ¢) the quasistatic singularity coefficient (note that
b =1/2for ¢ = 0, ie., for a free edge of a plate — so-called
knife edge) [138]. Therefore, modifying a given existing set of
higher order basis functions for the approximation of Js such
that this edge condition is satisfied, higher order singular bases
are formed that provide higher order convergence of results near
edges in a general PEC model.

Taking the set of higher order hierarchical divergence-con-
forming basis functions on generalized quadrilaterals in
(40)—(41) as an example, the singular quasistatic effects asso-
ciated with the edge u = —1 of the quadrilateral element in a
PEC model are taken into account by multiplying the v-directed
regular (nonsingular) basis functions fl-(;)) in (40) by the edge

term for u = —1 [3], [39]
[fi(;’)] o= (1 ~|—u)b_1.fi(;’) (edge singularity at u=—1)
singular (65)
and analogously for other edges of the element. Of course, for
b = 1, thatis, ¢ = 7 (no edge), the singular functions reduce to
regular ones.

As another example, for higher order interpolatory diver-
gence-conforming bases on generalized triangles in (48), a
similar transformation for the singularity at the edge 1 (for
& = 0) in the trlangle 1r1 Fig. 3 %wes the following singular
version of functions A k and A® (that are tangential to this
edge) [101]:

[Ag’)“} singular =& 1A”2’)"

(edge singularity at & = 0)

7k

Eb 1A3)

17k

[A5] e

(66)

with analogous expressions for singularities at edges 2 and 3 of
the triangle. In [101], this concept is expanded to also include
the singular behavior of the normal component of Js and the
associated surface charge density near the sharp edge. In fact,
[101] provides complete sets of singular higher order interpola-
tory vector bases that incorporate the edge conditions on both
generalized triangles and quadrilaterals in both divergence-con-
forming and curl-conforming formats. It as well provides a com-
prehensive survey of techniques for treating edge singularities
in CEM, some being of higher order nature (e.g., an extension
of higher order scalar hierarchical triangular basis functions for
2-D FEM analysis to better cope with edge singularities in wave-
guide problems [110]).
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V. HIGHER ORDER SOLUTION TECHNIQUES

A. Higher Order Galerkin Testing Procedures

In higher order CEM, both IEs (in MoM) and DEs (in FEM)
are most frequently tested by means of the Galerkin method, i.e.,
using the same higher order functions used for current or field
expansion. Taking the general SIE formulation in (6) and (7) as
an example, the electric/electric and electric/magnetic general-
ized Galerkin impedances (the system matrix elements) corre-
sponding to the electric-current testing functions Jg,, defined
on the mth surface element (S,,) and the electric- and mag-
netic-current basis functions Jg,, and Mg,, defined on the nth
element in the model, for one of the material domains, are given
by [43]

zee, :n/ Jom - L(J0n)dS,,
Sim

sm
=jwu/ /
S J S,

j
_E/ / (Vs -Jem)(Vs-Ten)gdSndS,,  (67)

zem = / J
S
_ / / (M

S /S

with dual expressions for magnetic/magnetic and mag-
netic/electric generalized impedances. These expressions
can be implemented for any type of surface discretization and
any adopted set of divergence-conforming basis functions in the
context of the Galerkin method. In the case of using generalized
curved parametric quadrilaterals in (25) in conjunction with
higher order basis functions in (40)—(44), all elements of the
Galerkin impedance matrix can be found as linear combina-
tions of the following basic Galerkin potential and scalar field
integrals [43]:

TS B TS |
Cp:/ / / / wyrvlm gy vlr g( R)duy, dvy, dty, dog,
—1J-1J-1J

Jsm : angdSndSm

m - K(Mgy, )dSm,

sn X Jsm) - VgdS,dS,, (68)

(69)
Cf:/_ll'/_ll ./_11'/_ ulmpdmy ey % di(R )d ndv,du, do,
(70)

where the source-to-field distance R is computed as
= |ty (U Vi) — T (Un, V)] (71)

When R is zero or small, a special treatment of singular (or
nearly singular) integrals is needed. Typical FEM Galerkin inte-
grals are those in (18). The numerical integration is practically
exclusively carried out using the Gauss—Legendre integration
formula.

In TDIE analysis using spatial/temporal basis functions in
(51), Galerkin testing in space (over surface elements in the
model) is combined with point matching at times kAt, k =
1,2,..., Ng, resulting in a set of Ny matrix equations of order
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Ny with Ny Ng unknowns «, which is solved in a MOT iterative
fashion [53].

To ensure that the CPU time per unknown in higher order so-
lutions is comparable to that in low-order solutions, rapid and
accurate recursive procedures are needed for evaluation of ele-
ments of MoM and FEM matrices. It is important for the effi-
ciency of the solution that computation algorithms avoid redun-
dant operations related to the indices for basis and testing func-
tions [e.g., indices ¢ and j in (69) and (70)] and for geometrical
representations [e.g., indices m and n in (25)] within all of the
interactions in the MoM/FEM solution, as well as the summa-
tion indices in the integration formulas. All these numerical “de-
tails” are essential for making the higher order CEM approach
an efficient and practical analysis and design tool for engineers.

B. Evaluation of Singular Integrals

The techniques for dealing with singular integrals (arising for
zero or small source-to-field distances) can be classified into
singularity extraction or subtraction techniques and singularity
cancellation or coordinate transformation techniques. The sin-
gularity extraction techniques have been traditionally used for
low-order IE solutions since the first MoM implementations
in analysis of wire antennas, and have been more recently ac-
commodated for higher order IE methods [41], [71], [2], [3],
[139]-[141]. Although being known for quite long time, the co-
ordinate transformation techniques have started to gain attention
in CEM since relatively recently, most notably in the various
forms of the Duffy method [142]-[144], [139], [140], [50].

As an illustration of the singularity extraction (subtraction)
approach, we refer to a combined numerical/analytical pro-
cedure for evaluation of potential integrals over generalized
curved quadrilaterals with polynomial basis functions involved
in Galerkin integrals (69) [41], [3]. It consists of analytical
integration of a principal singular part of the integrand over
a (generally not rectangular) parallelogram whose surface is
close to the surface of the generalized quadrilateral near the
singular point, and numerical integration of the rest using
Gauss—Legendre quadrature formulas

I, = / 1 / 1 u'v? g(R)dudv

(72)

where ug and vg are the coordinates of the singular point. The
parallelogram is defined by the unitary vectors a,, and a,, of the
generalized quadrilateral, (42), at the singular point, and I, is
the source-to-field distance for integration over the surface of
the parallelogram. Note that this technique remains practically
the same when I is a near-singular integral, namely, when the
projection of the observation (field) point onto the parametric
surface in (25) does not belong but is close to the generalized
quadrilateral (at least one of the parametric coordinates of the
projection point is outside the range —1 < u,v < 1), in which
case the singular point (ug, vg) is the nearest point on one of the
edges of the quadrilateral.
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singularity

0 1 u

Fig. 10. Parametric u-v representation of one of the three subtriangles defined
by the singular point and the vertices of a source generalized curved triangle
in (31) — for evaluation of singular potential integrals in (73) using the Duffy
singularity cancellation method.

As an illustration of the singularity cancellation approach
[142], [50] consider potential integrals associated with interpo-
latory basis functions (48), on generalized curved triangles in
(31). The first step is to subdivide the triangle into three subtrian-
gles defined by the singular point and the vertices of the triangle.
Each subtriangle, having the singular point as one of its vertices,
is then independently represented by local parametric coordi-
nates 0 < u < 1and 0 < v < w, as illustrated in Fig. 10, using
the appropriate Jacobian () for the transformation, so that the
singularity is at the origin (u = v = 0). Next, a Duffy coordi-
nate transformation v = u p (dv = u dp) is used to transform
the integration to a unit square and express the source-to-field
distance as R = uR’. Hence, the integral over the subtriangle is
expressed as

1 u f
I :/ / =& dvdu
0o Jo R
1 1 f 1 1 f N
— (&3 —
—/0 /o m\sudpdu—/0 /0 ﬁ\sdpdu (73)

which removes (cancels) the singularity, since R’ # 0 for all
p € [0, 1] and » € [0, 1], and the integration can be carried out
numerically, using quadrature formulas. Finally, the contribu-
tions of individual subtriangles are added up for the total poten-
tial integral. Note that this technique appears not to work well
for near-singular integrals (when the projection point is outside
the source triangle but close to it). On the other hand, the im-
proved singularity cancellation technique in [144] accurately
and efficiently handles both singular and near-singular poten-
tial integrals.

C. Higher Order Nystrom Discretization

As an alternative to higher order Galerkin MoM solutions to
SIEs, the Nystrom method [137], [28], [32], [55]-[58] is based
on a point-based discretization of the given SIE employing a
higher order sampling of unknown surface currents at the ab-
scissa points of a quadrature rule (most frequently, the Gauss-
Legendre rule) over curvilinear surface elements, as in (53) or
(54), and point-matching testing procedure at the same points.
The scattered electric field sample at the ¢th quadrature point
on the mth surface element (field matching point), the position
vector of which is r,,;, has the following form:

N. P,
E(m,n,i,j) = Z anjG(rmivrnj)Js(rnj)
n=1 j=1
m=1,2,....,No, i=1,2,...,Pn (74
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where G is the integral kernel of the SIE, N, the total number
of elements in the model, P,, (F,,) the number of quadrature
points on the mth (nth) element, and r,,; and w,,;, respectively,
the abscissa (position vector) and weight of the jth quadrature
point on the nth element (source point). This leads to a square
system matrix with current samples as unknowns.

The higher order accuracy of the Nystrom method in (74) can
be achieved only with a proper treatment of singularities in the
kernel G, leading to locally corrected Nystrom (LCN) schemes.
In LCN techniques [28], [32], [55]-[57], the impedance matrix
is locally corrected in regions where the source-to-field distance
is small (or zero) using specialized (adjusted) quadrature rules
that integrate singular kernels to high order, whereas simple
single-point evaluations of GG suffice for the remaining matrix
entries. This is why the system matrix fill time for a higher order
LCN method is dramatically reduced when compared to the cor-
responding Galerkin MoM. The corrected weights for the spe-
cialized local quadrature rule are derived from a MoM proce-
dure. A higher order LCN scheme with a local correction based
on the Lagrange interpolation of the unknown function and sin-
gularity extraction and Duffy transformation for singular ker-
nels is also developed [58].

D. Higher Order MLFMA and PWTD Techniques

Using the multilevel fast multipole algorithm (MLFMA),
the memory requirements and computational complexity
of the large-scale MoM can be reduced from O(NZ)) to
O(N,, log N,,.), where N, is the total number of unknowns
in the model [5]. This acceleration is achieved by taking advan-
tage of small or negligible coupling between the currents on
nonadjacent and especially very distant surface elements in the
model, and is essentially based on breaking the IE interaction
matrix into near and far zone sections based on the distance
between testing and source locations

2] = (210 + (2] (75)
and introducing appropriate simplifications and approximations
in treating the far zone interactions at different levels. More
specifically, while the sparse matrix [Z](™*2) is computed
explicitly in a standard MoM fashion, [Z]®) is computed
implicitly, using the multipole expansion of Green’s function.
The procedure consists of grouping the basis functions and
expressing the interaction between groups by a translation
operator, which speeds up the matrix-vector multiplication in
the iterative solution of the MoM matrix equation. Furthermore,
the algorithm is recursively organized across multiple levels,
by grouping smaller groups into larger ones, and reusing the
translation operator to compute the interactions between groups
at each level.

The MLFMA can be used to accelerate the solution of
higher order Galerkin-type MoM, as in the MLFMA-accel-
erated SIE technique employing higher order interpolatory
divergence-conforming basis functions (48) on generalized
curved triangular patches [50]. However, in such arrangements,
implementing higher order discretizations to reduce the number
of unknowns and MLFMA to reduce the computational com-
plexity, as the two general approaches to enhance the efficiency
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of the MoM and reduce the CPU time and memory require-
ments, are somewhat contradictory. Namely, since the number
of levels in the MLFMA is determined by the size of elements
in the model, the use of large elements associated with the use
of higher order basis functions implies the reduction of the
number of levels and thus limited performance of the higher
order MLFMA in conjunction with Galerkin-type solutions. A
remedy here is to use point-based higher order basis functions,
such as those in (53) or (54), which is equivalent to replacing
a continuous current distribution by point sources (samples),
and the associated point-matching testing, which can be inter-
preted as a reduction of the Galerkin-based formulation to a
Nystrom-type discretization. The MLFMA is applied to cal-
culate the point-to-point interactions, rather than the standard
basis-to-basis MoM interactions [47]. Since the point bases
have no spatial extent, the number of levels in the MLFMA can
be made the same as with low-order Galerkin solutions, e.g., if
using RWG basis functions in (45).

On the other side, the TDIE solutions can be accelerated
by the multilevel plane-wave time-domain (PWTD) algorithm
[145], which is the time-domain counterpart of the MLFMA (in
the frequency domain). The reduction in the computation com-
plexity with the PWTD, analogous to that with the MLEMA,
is achieved, in far zone interactions, through expansion of
transient fields radiated by temporally bandlimited surface
currents in terms of a discrete set of time-gated uniform plane
waves that is characterized by a diagonal translation operator.
In [97], the multilevel PWDT scheme is applied to accelerate
the BI part of the higher order TD-FE-BI technique, formulated
in (22).

E. Matrix Solvers

In all described classes of higher order CEM techniques, the
resulting system of linear equations is solved using either direct
solvers, such as those based on the Gaussian elimination or
lower—upper (LU) decomposition, for relatively small problems
in terms of the required number of unknowns (V) or itera-
tive solvers, like those based on the conjugate gradient (CG)
method [146], for large problems. Some of the extensively
used iterative solvers are the biconjugate gradient stabilized
(BiCGStab) [147], conjugate gradient squared (CGS) [148],
generalized minimum residual (GMRES) [149], and trans-
pose-free quasi-minimum residual (TFQMR) [150] methods.
In MoM, the computation time for the solution is proportional
to N3 with direct solvers, to N2 with iterative solvers,
or to N, logN, with accelerated iterative solvers (e.g.,
MLFMA-accelerated solvers). With higher order discretiza-
tions, however, IV, can be quite small even for electrically
relatively large problems, so that direct solvers suffice for a
variety of practical applications. In FEM, the matrices are
sparse, and hence sparse direct solves, such as the multifrontal
method [151], and sparse iterative solvers, usually based on
the CG method, are used. In addition, by only storing the
nonzero entries, the memory requirements in FEM can be
reduced from O(N2,) to O(N,,). For both MoM and FEM
techniques, as well as hybrid solutions, the convergence rate of
iterative solvers can be greatly enhanced employing appropriate
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preconditioners. Some of the routinely utilized preconditioners
in CEM are incomplete LU (ILU), sparse approximate inverse
(SPAI), and block Jacobi preconditioners [152].

F. Code Validation and Error Estimates

In addition to various standard verification and validation
tests of the results obtained by a newly developed numerical
technique and code, against analytical results, results obtained
by other numerical methods, and experimental results, in higher
order CEM the principal attention must be paid to numerical
convergence properties of the solution. Namely, it must be ver-
ified that the computed results for different quantities converge
(the error in the computed solution decreases) rapidly and
smoothly to the correct answer as the current/field approxima-
tion orders are increased and the discretization scales (element
sizes) are decreased. Assuming a uniform discretization over
the entire structure, defined by the element size h (the same
in all dimensions), for very small values of A (theoretically,
in the limit of h — 0) the error (for different error measures)
should in general scale asymptotically as O(hP), where p is
the order of convergence of the method that increases with the
current/field approximation orders in the model; large values
of p mean a high-order algorithm. Moreover, convergence
properties of the solution in terms of higher geometrical orders
of elements for surfaces with pronounced curvature need to be
tested. Sometimes, in cases when analytical, experimental, or
numerical (already verified) reference results are not available,
the error of a particular computed solution is given taking the
“best” result by the technique under test (e.g., with extremely
high current/field approximation orders and/or overly fine
mesh) as the “correct” answer.

Along with benchmarking, i.e., numerical validations of the
code using collections of test cases, accuracy and convergence
properties of the method can be assessed, in some cases, by
means of theoretical error estimates [153]-[159]. Ideally, the
theoretical error analysis of the CEM algorithm employed
and the problem under consideration should provide a general
proof that the numerical solution converges to the exact so-
lution as the model is refined, and enable a quantification of
the solution error in terms of the numerical parameters of the
algorithm (types of the geometrical elements and basis func-
tions, discretization density, current/field approximation orders,
quadrature rule orders, iteration counts, etc.) and physical
properties of the problem (electrical size, shape, and material
composition of the structure, excitation, etc.). Although quan-
titative error estimates in CEM are currently available only for
problems of quite limited scope (mostly canonical problems)
[154]-[159] and are seldom given for higher order property of
the solution [153], [155], they are much needed and very useful,
as they not only place a CEM technique on solid theoretical
ground, but also offer important conclusions on the accuracy
and convergence behavior of the technique that can often be
extrapolated to more general problems of practical interest. For
instance, such estimates may provide theoretical understanding
of factors that cause solution errors in simulations, as well as
theoretical insights into error trends obtained from empirical
numerical observations (benchmarking). CEM error analysis
also includes a posteriori residual error estimates (available
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after the numerical analysis of the problem) [160], [161], used
in adaptive algorithms.

Ultimately, the goal is to create as precise as possible quanti-
tative (theoretical or empirical) recipes for “dialing” accuracy of
the solution, i.e., for determining minimal current/field expan-
sion orders and other numerical parameters of the model needed
for the specified level of desired accuracy or acceptable uncer-
tainty of the results in practical implementations. Additionally,
explicit tradeoffs between accuracy and efficiency, i.e., the cost
of getting the results, should be established and made accessible
to the CEM modeler.

G. Adaptive Higher Order Solutions

The accuracy of an existing CEM solution to a given problem
can be improved by refining the mesh (h-refinement), increasing
the current/field approximation orders over elements without
subdividing the elements (p-refinement), or combining the two
approaches (hp-refinement). Of course, p- and hp-refinements
are possible only with higher order basis functions. In adap-
tive CEM schemes, the solution is refined step by step, auto-
matically, according to an error indicator. Interpolatory diver-
gence- or curl-conforming higher order bases are not suitable
for p-based adaptions, since they do not allow selective p-refine-
ment (orders of current/field approximation must be the same in
all interpolatory elements). Hierarchical higher order techniques
enable not only selective variation of current/field approxima-
tion orders and element sizes throughout the mesh to optimize
the model performance but also efficient systematic updating
of MoM and FEM matrices in the adaption process, where the
matrix at each step consists of the old entries for lower orders,
which are already known from the previous step, and new en-
tries for the increased orders.

The error indicators are most frequently a posteriori error es-
timates, computed from the existing numerical solution at each
step. For instance, one can use the residual of (17) to estimate
the error over each element in an FEM discretization [10], or
check power conservation within the structure under considera-
tion [162]. Local errors in numerically satisfying different con-
tinuity boundary conditions across edges/sides shared by adja-
cent surface/volume elements in the model can also be used.

Within the IE framework, an example of adaptive solutions
is a p-adaptive hierarchical MoM technique for SIE analysis
of PEC structures using divergence-conforming curvilinear tri-
angular meshes in [37], where the numerical discontinuity of
the tangential component of the current density vector Jg on
common edges between elements is implemented as an a pos-
teriori error indicator (normal component of Jg is continuous
in any numerical solution due to divergence-conformity of the
basis functions). On the other side, as an example of DE (and
hybrid) adaptive algorithms, we refer to an hp-adaptive higher
order hierarchical tetrahedral FE-BI technique in [117], where
the selective assignment of new element sizes and/or polyno-
mial orders is based on a posteriori error estimates for indi-
vidual elements, in order to reduce the global error uniformly
throughout the mesh. The element error is estimated separately
for the electric and magnetic fields, via their respective energies
within the element, namely, the element energy integrals of the
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error-indication electric and magnetic fields, defined as the dif-
ference of E when computed directly (by the FE-BI code) and
indirectly from the direct solution for H and Ampere’s law, and
vice versa for the magnetic energy integral.

H. Higher Order Meshing Techniques

Since higher order geometrical elements are much more
complex and flexible in shapes and sizes than the low-order
ones, generation of optimal meshes for practical 3-D elec-
tromagnetic problems based on any particular class of higher
order finite or boundary elements is a difficult and challenging
task. Most frequently, higher order meshes (with curvilinear
elements) are generated starting from low-order meshes (with
flat surface elements or flat-sided volume elements), and then
a posteriori adapting (curving) them by placing additional
points at the curved edges and surfaces describing the actual
geometry [163], [164]. An alternative approach is direct higher
order mesh generation, as in a quadrilateral surface meshing
technique using a recursive decomposition of the domain into
polygonal shapes (templates), and then meshing the polygons
into a minimum number of connected bilinear quadrilaterals
(27) [165]. Another example is a semi-automatic algorithm for
the higher order large-domain hexahedral mesh generation that
represents a combination of the domain decomposition and
mapped meshing techniques [166], where a parametric mesh of
topologically equivalent elements with correct connections is
created first (based on the problem topology and adopted orders
of elements), and parts of the structure are then mapped from
the parametric space to the curved hexahedral elements (35) in
the real 3-D space. These forms (sub-meshes) are connected
together appropriately into an optimal large-domain mesh that
can be further refined if necessary.

VI. NUMERICAL EXAMPLES

As the first numerical example of higher order CEM mod-
eling, consider the convergence of the results for the bistatic
scattering cross section (BCS) of a spherical PEC scatterer of
radius 4.5\. The results obtained by a higher order MLFMA-ac-
celerated MoM solution [50] to the CFIE in (4) using diver-
gence-conforming interpolatory basis functions (48), on gen-
eralized curved triangles in (31), are compared with the ana-
Iytical solution in the form of Mie’s series. Fig. 11 shows the
rms error in the BCS over a number of observation angles as a
function of the number of unknowns per wavelength squared,
for both E- and H-planes [50]. The results are obtained using
several different (refined) meshes of the sphere (h-refinement),
with different (refined) orders of basis functions (p-refinement)
inindividual meshes. We observe a dramatic improvement in the
convergence and efficiency of the solution when using higher
order bases. The advantage of higher order solutions is partic-
ularly pronounced when a higher accuracy is desired. For in-
stance, the total numbers of unknowns in the model to obtain a
solution with the rms BCS error less than 0.2 dB in the F-plane
amount to about 43 200, 9600, and 7000 with zeroth-, first-, and
second-order basis functions, respectively. On the other side, the
corresponding numbers of unknowns for a 0.1 dB rms accuracy
are about 80 688, 14 440, and 8400. In this latter case, the mesh
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Fig. 11. RMS error in the bistatic scattering cross section of a spherical PEC
scatterer of radius 4.5, as a function of the number of unknowns per wave-
length squared, computed by higher order MLFMA-accelerated MoM solution
to (4) using basis functions (48) on elements (31) and several meshes (h-refine-
ment) with different orders of basis functions (p-refinement) [50].
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Fig. 12. RMS error versus the total number of unknowns in the BCS of a di-
electric spherical scatterer with relative permittivity ¢, = 2.6 and radius 0.25A
computed by the MLFMA SIE discretization of (6) and (7) withae = 3 = 1
using the same elements and bases and similar /- and p-refinements as in Fig. 11
[52].

densities are about 330, 55, and 33 unknowns per A? using the
zeroth-, first-, and second-order basis functions, respectively.

The next example illustrates the higher order convergence of
the MLFMA technique [52] applied to a SIE model for arbitrary
material structures with the PMCHWT (a0 = 8 = 1) version of
(6) and (7), triangular patches in (31), and interpolatory bases in
(48). In a similar numerical experiment to that in Fig. 11, shown
in Fig. 12 is the rms error in the simulated BCS of a dielectric
spherical scatterer (taking the Mie’s series solution as a refer-
ence) with the relative permittivity e, = 2.6 and radius 0.25)\
versus the total number of unknowns in the model [52]. Again,
a dramatic improvement in accuracy and convergence proper-
ties of the solutions when using higher order basis functions is
observed, with the improvement being more pronounced if a
higher accuracy is required.

Next, the numerical advantages of a higher order TD-FEM
discretization of (22) using spatial/temporal field expansion in
(63) [97], with curl-conforming interpolatory spatial bases (62)
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Fig. 13. RMS error and phase error, against the number of unknowns per wave-
length cubed, in computing the total field near a PEC sphere illuminated by a
Neumann pulse using a higher order TD-FEM discretization of (22) with basis
functions (62)—(63) on elements (38), and /- and p-refinements [97].

on generalized curved tetrahedra in (38), are illustrated on an
example of a PEC sphere, 1 m in radius. The incident wave is a
Neumann pulse with the maximum frequency fp.x = 1.5 GHz
(and the corresponding minimum wavelength Ay, = 0.2 m),
and a PWDT-accelerated TD-FE-BI scheme is applied [97]. The
computations are carried out using three FEM meshes around
the sphere with the average edge length of tetrahedral elements
equal to 0.1\ ip, 0.5Amin, and 1Ay, respectively, and zeroth-,
first-, and second-order basis functions for each mesh. Fig. 13
shows the normalized rms error and the accumulated phase error
for the component of the total electric field with the same polar-
ization as the incident field observed at a near-field point of the
sphere (compared to the exact Mie’s solution), plotted against
the number of unknowns per the wavelength cubed [97]. We
clearly observe the higher order convergence of the results due
to the use of bases in (62). In addition to the achieved accu-
racy and enhanced convergence rate of the field amplitude cal-
culation, the well known problem of phase error accumulation
using low-order (zeroth-order) FEM schemes, which severely
impedes the analysis of late time responses, is effectively miti-
gated using higher order elements.

As an illustration of numerical benefits of using the higher
order Nystrom methodology, consider a higher order Nystrom
scheme for PEC structures [58], based on the SIE discretization
in (74) and point-based basis functions (54) on generalized tri-
angular patches. Fig. 14 presents the rms error in the simulated
radar cross section (RCS) in the HH polarization, based on the
EFIE in (1), of a PEC ogive scatterer whose geometry is shown
in the figure inset with @ = 1 in and d = 5 in at the frequency
f = 1.18 GHz, as a function of the number of unknowns per
wavelength [58]. The results are given for five different (h-re-
fined) meshes of the structure, and three different (p-refined)
Gauss—Legendre quadrature rules, namely, the second-, third-,
and fourth-order rules, respectively, according to [167], for each
mesh. The reference solution corresponds to a very fine dis-
cretization of the geometry (360 patches) and the highest-order
quadrature rule, resulting in a total of 2160 unknowns (or 71.6
unknowns per wavelength). The error curves clearly demon-
strate the higher order convergence of the solution, with the
error being reduced at a much higher rate as the mesh is refined,



2270

10
2nd @
0 3 d @
10 ih m 3
5 f
S
wn 100 F 3
=
o~
107 F 3
10‘3 L 1 1 1 1
10 15 20 25 30 35 40

Number of unknowns per wavelength

Fig. 14. RMS error in the radar cross section (HH polarization) of a PEC ogive
scatterer shown in the inset (¢« = 1in,d = 5 in, f = 1.18 GHz), versus
the number of unknowns per wavelength, computed by a higher order Nystrom
scheme based on (1) and (74) with basis functions (54) on elements (31), using
different (h-refined) meshes and different (p-refined) Gauss—Legendre quadra-
ture rules [58].

if higher order quadrature rules, or, equivalently, higher order
point-based basis functions, are used.

To illustrate the advantages of higher order hierarchical FEM
modeling, we consider a discretization of (18) [102] using gen-
eralized hexahedral elements in (35) and curl-conforming hier-
archical basis functions in (60), as applied to eigenvalue analysis
of electromagnetic cavities. Fig. 15(a) shows the error (with re-
spect to the analytical solution) in calculating k¢ of the dominant
degenerate eigenmodes of a cubical cavity against the number
of unknowns, for three higher order models [102] and two low-
order models [168]. In the first higher order solution, the cavity
is represented by a single trilinear hexahedron with the field-ex-
pansion orders being varied from 2 to 7 (p-refinement). Note that
this is literally an entire-domain FEM model (an entire compu-
tational domain is represented by a single finite element). The
other two higher order solutions are shown to indicate the model
behavior when the number of elements is increased as well,
which corresponds to an h-refinement of the model. We ob-
serve great superiority of higher order FEM solutions. Fig. 15(b)
shows a similar analysis for a spherical cavity, where the an-
alytical solution is available as well. Here, the number of un-
knowns for 1% accuracy with the low-order model [169] (1840)
is 17 times that (108) with both single-element (entire-domain)
curvilinear models. We also note that it is impossible to p-re-
fine the single-element model of the second geometrical order
(with a triquadratic hexahedron) below about 1% error, whereas
approximately 0.1% accuracy can be achieved using as little as
240 unknowns with a single-element model of the fourth geo-
metrical order. In turn, more than 1728 unknowns and at least
27 elements are necessary for getting the same level of accuracy
with the second-order geometrical modeling.

For an additional insight into h- and p-refinements in con-
junction with higher order hierarchical FEM simulations,
Fig. 16 shows the convergence of the results for the effective
dielectric constant of a circular waveguide computed by a 2-D
FEM technique [105] using curl-conforming hierarchical ex-
pansion (55) on generalized quadrilaterals in (25) and taking the

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 56, NO. 8, AUGUST 2008

Error [%o]
2

105 —a— Higher-order hex. (1 element)
—A— Higher-order hex. (8 elements)
w07k —e— Higher-order hex. (27 elements)
_ —A— Low-order tetrahedra
108 —— Low-order bricks
109 F T~
1 L 1 n 1 n 1 n 1 L 1 n 1 n 1
0 250 500 750 1000 1250 1500 1750
Number of unknowns
(a)
—&— Second order geometry (1 element)
—a— Second order geometry (8 elements)
100 ¢
—e— Second order geometry (27 elements)
—w— Fourth-order geometry (1 element)
—0— Low-order tetrahedra
10
S
S
e
St
0
3
01 F v
L1 L L L I
0 500 1000 1500 2000
Number of unknowns
(b)

Fig. 15. Error in kq of the dominant degenerate eigenmodes of (a) a cubical
cavity and (b) a spherical cavity, against the number of unknowns, computed
by a higher order hierarchical FEM discretization of (18) using elements (35)
and basis functions (60), for several higher order models [102]. Results using
low-order models in [168] (for the cubical cavity) and [169] (for the spherical
cavity) are also shown [102].

analytical solution as the reference. The points on the broken
line correspond to h-refined solutions with low-order bases,
using meshes with 1, 5, 12, 48, and 320 elements, respectively,
as indicated in the figure inset; the points on the solid lines
are obtained by p-refining the respective initial models. It can
be observed that, in this example, the p-refinement represents
a better choice in terms of achieving a certain level of accu-
racy with lesser computation cost. However, the figure also
shows that an arbitrarily high accuracy cannot be achieved
by performing the p-refinement alone; instead, a combined
hp-refinement should be utilized in order to obtain an optimal
modeling performance. This conclusion holds generally, in
a sense that there exists a low-error bound beyond which a
p-refinement in arbitrarily coarse meshes does not improve
further the accuracy of the solution and the size of elements
needs to be reduced as well. Another 2-D FEM example [105]
is a simulation of two coupled microstrip lines on a cylindrical
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Fig. 16. Error in the effective dielectric constant averaged for the four dominant
modes of a circular waveguide, against the number of unknowns, computed by
a 2-D FEM technique using basis functions (55) on elements (25), with k- and
p-refinements [105].
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Fig. 17. Dispersion curves of two coupled microstrip lines on a cylindrical sub-
strate, the cross section of which is shown in the inset (@ / b=10.9, c/ h = 10,
s/h =1, w/h =1,h =b—a,s = 9.6), computed by the 2-D FEM tech-
nique used in the analysis in Fig. 16 [FEM (a)], with a 14-element quadrilateral
mesh also shown in the inset with designated field-approximation orders (where
not shown, the adopted order is 2) [105]; FEM results [FEM (b)] from [82] and
solution using Green’s function method [170] are also shown [105].

substrate using a 14-element higher order mesh consisting
of both large and small elements of very different shapes, as
depicted in Fig. 17, which illustrates the flexibility of mesh
generation provided by higher order hierarchical bases.

The next example uses a higher order Galerkin MoM solution
[43] to the EFIE in (1) with divergence-conforming hierarchical
basis functions in (40) and (41), defined on generalized curved
quadrilaterals in (25), to illustrate the advantages of combining
higher order geometrical modeling and higher order hierarchical
current modeling in SIE computations. Fig. 18 depicts three ge-
ometrical models of a spherical PEC scatterer using bilinear
quadrilaterals in (27) in conjunction with the second-order cur-
rent approximation and two geometrical models using quadri-
laterals of the fourth geometrical order in (28) with the eighth-

2271

Fig. 18. Three geometrical models of a spherical PEC scatterer constructed
from (a) 216, (b) 384, and (c) 600 bilinear quadrilaterals in (27) and two models
constructed from (d) 6 and (e) 24 generalized quadrilaterals of the fourth geo-
metrical order in (28) [43].

and sixth-order current approximation for 6- and 24-element
models, respectively [43]. The total numbers of unknowns for
models (a)—(e) amount to 1728, 3072, 4800, 768, and 1728, re-
spectively. From Fig. 19(a), showing the simulated RCS of the
sphere using models (a)—(c) in Fig. 18, we observe a good agree-
ment between the numerical results obtained with model (¢) and
analytical results (Mie’s series) in the entire frequency range
considered, whereas models (a) and (b) provide acceptable re-
sults only at lower frequencies. Note that an increase in the cur-
rent-approximation orders in models (a) and (b) does not yield
better results at higher frequencies, meaning that the errors in
the RCS prediction are a consequence of the inaccuracy in ge-
ometrical modeling of the sphere surface. In Fig. 19(b), a good
performance of model (d) is observed up to the frequency at
which the curved quadrilateral elements in the model are ap-
proximately 2\ across, while model (e) agrees well with the
exact solution at all frequencies. Generally, optimal modeling
is achieved by keeping the elements as large as possible — of
course, within certain limits. Based on this and many other nu-
merical experiments across different higher order techniques, a
length of 1.5\ can be adopted to be the maximal dimension of
elements and the general limit in the CEM procedure beyond
which the structure is subdivided into smaller elements (note
that the corresponding low-order limit is 0.1X).

We next present the analysis of a parabolic reflector antenna
with a pyramidal horn feed, shown in the inset of Fig. 20,
using a higher order hierarchical MoM-PO technique for
solving the EFIE/MFIE system in (1) and (16) [44], to illustrate
the efficiency of a hybridization of a numerically rigorous
method (MoM) and asymptotic high-frequency technique (PO)
in a higher order computational framework. The reflector is
modeled by 420 generalized quadrilaterals (25) of the second
geometrical order, that are between 0.88) and 1.11\ on a side.
The total number of unknowns using the two-fold symmetry of
the problem is 5458. The simulated co-polarization normalized
pattern in the 45-degree plane is shown in Fig. 20 [44], where
an excellent agreement of the MoM-PO results (horn in the
MoM region, reflector in the PO region) and pure MoM results
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Fig. 19. Normalized radar cross section of a PEC sphere computed by a
higher order Galerkin MoM solution to (1) with basis functions (40)—(41) on
elements (25), for (a) models with first-order geometrical approximation in

Fig. 18(a)—(c) and (b) models with fourth-order geometrical approximation in
Fig. 18(d)—(e) [43].

is observed, with the only considerable disagreements occur-
ring in the deep shadow region behind the reflector (which
can be overcome by introducing a rim in the form of a single
layer of MoM patches along the reflector edge). However, the
hybrid analysis is more than 25 times faster than the full MoM
analysis. Note also that the low-order technique with RWG
basis functions and the use of two-fold symmetry would require
more than 33 000 unknowns for the same problem.

The last example illustrates the effectiveness of higher order
tetrahedral FEM modeling in frequency-domain scattering sim-
ulations, as applied to analysis of scattering by jet engine in-
lets [95]. Fig. 21 shows the RCS (¢¢-polarization) of an en-
gine inlet model (shown in the figure inset) in the form of a cir-
cular metal-backed cavity loaded by an array of straight blades
mounted radially on a cylindrical hub (inlet depth and diameter
are both 8), for a range of incidence angles (6). The discretiza-
tion of the inlet interior using third-order interpolatory curl-con-
forming tetrahedral finite elements in (62), with a BI closure
across the inlet aperture, results in a total of 319 728 unknowns,
and requires very reasonable computational resources [95]. We
observe a very good agreement of the computed RCS with mea-
sured data.
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Fig. 20. Normalized co-polarization far-field pattern in the 45-degree plane of
a parabolic reflector antenna with a pyramidal horn feed (shown in the inset)
computed by a higher order hierarchical MoM-PO technique based on (1) and
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Fig. 21. Higher order FEM simulation of jet engine inlet scattering: compar-
ison of the RCS (¢¢-polarization) of an inlet model shown in the inset (inlet
depth and diameter are both 8\) computed using third-order interpolatory tetra-
hedra (62) [95], for a range of incidence angles, with measured data [95].

VII. CONCLUSION

This paper has reviewed the higher order computational
electromagnetics for antenna, wireless, and microwave en-
gineering applications. These CEM techniques use higher
order current/field basis functions defined on large (e.g., on
the order of A in each dimension) curvilinear geometrical
elements, which greatly reduces the number of unknowns for a
given problem and enhances the accuracy and efficiency of the
analysis. Focusing on frequency-domain techniques, the paper
has presented all major surface/volume integral- and differ-
ential-equation electromagnetic formulations within a higher
order computational framework, including SIE formulations
for PEC and arbitrary material structures, respectively, VIE
and VSIE formulations, SIE-Green’s function formulations for
multilayer media, hybrid MoM-PO formulations, and FEM,
FE-ABC, and FE-BI formulations. With a systematic and as
unified and consistent as possible review of generalized curved
parametric quadrilaterals, triangles, hexahedra, and tetrahedra
used for higher order geometrical modeling and various types
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of higher order hierarchical and interpolatory vector basis
functions, in both divergence- and curl-conforming formats,
used for current/field modeling, a large number of actual
higher order techniques, representing various combinations of
formulations, elements, and bases, have been identified and dis-
cussed. In addition, several important components of the higher
order solution have been addressed, including testing proce-
dures, evaluation of singular integrals, Nystrom discretization,
MLFMA and PWTD accelerations, matrix solvers, error esti-
mates, h-, p-, and hp-refinements and adaptive schemes, and
mesh generation.

Numerical examples have demonstrated the accuracy, effi-
ciency, and versatility of higher order CEM techniques, and
their advantages over low-order discretizations. The results
have shown a much faster convergence of the solution, with
increasing the number of unknowns, when higher order bases
are used. It has been demonstrated that both components of
the higher order modeling, namely, higher order geometrical
modeling and higher order current/field modeling, are essential
for accurate and efficient CEM analysis of general antenna,
scattering, and microwave structures.

The paper has shown a great diversity of higher order formu-
lations, elements, bases, and solution techniques. Although all
these components, as well as their many working combinations
resulting in higher order CEM codes, seem to be completely dif-
ferent, they all have a lot in common. On the other side, they all
show some advantages and deficiencies. The choice of the “best”
method depends on the particular problem that needs to be solved.
Therefore, all presented and/or referenced higher order formula-
tions, elements, bases, and solutions are important and constitute
abody of knowledge in this area. Moreover, it is likely that practi-
cally all future CEM techniques and codes will have some higher
order properties, because such elements and bases exhibit excel-
lent convergence, flexibility, and suitability for refinements and
adaptive simulations. Finally, low-order modeling approachis ac-
tually included in the higher order modeling.
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