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B-Spline Entire-Domain Higher Order Finite
Elements for 3-D Electromagnetic Modeling

Milos D. Davidovié¢, Branislav M. NotaroS, Senior Member, IEEE, and Milan M. 1li¢, Member, IEEE

Abstract—A novel entire-domain finite element technique based
on curvilinear hexahedral geometrical modeling using B-splines in
conjunction with higher order hierarchical polynomial curl-con-
forming vector basis functions for field expansions is proposed for
electromagnetic analysis of microwave devices. The effectiveness of
the technique is evaluated in analysis of microwave cavities and it is
compared with alternative reference solutions and with HFSS. Ex-
amples demonstrate large single-element (entire-domain) models
with p-refined field distributions and better accuracy in curva-
ture modeling than with the Lagrange interpolation. Extraordi-
nary flexibility of the B-spline hexahedral elements, combined with
higher order field expansions, allows accurate modeling of complex
structures with sharp edges using a single finite element.

Index Terms—Cavities, finite element methods (FEMs), mi-
crowave devices, spline functions.

1. INTRODUCTION

HE finite element method (FEM) is a powerful numer-
T ical tool for electromagnetic (EM) modeling, especially
when coupled with the higher order computational approach
[1]. Recently, curvilinear elements for geometrical modeling
of EM structures have been extensively investigated [2]—[8].
Polynomial parametrizations of the curvilinear elements (e.g.,
Lagrange polynomials, Bézier curves, and splines) [2]-[7] are
mostly used, but rational polynomial functions (e.g., rational
Bézier curves and non-uniform rational B-splines or NURBS)
have also been adopted [7], [8], although they are more complex
and less stable [7].

Although some works do combine higher order curvilinear
geometrical modeling with higher order basis functions, none
of them seem to exploit the full potential of the two methodolo-
gies with both orders adopted arbitrarily (but reasonably) high
and independently from each other—except when Lagrange ele-
ments are used, and none offer assessment of benefits and penal-
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ties resulting from the parametrizations more complex than La-
grange interpolation.

This letter proposes a novel FEM technique using B-spline
hexahedral elements in conjunction with higher order hierar-
chical polynomial curl-conforming vector basis functions, and
evaluates the improvements over the existing methods—in anal-
ysis of microwave cavities. This is the first demonstration of
(a couple of wavelengths) large curved B-spline elements with
p-refined field distributions of high (e.g., seventh) approxima-
tion orders in EM. We also show for the first time that the ridged
cavity (challenging due to complex shape and reentrant cor-
ners) can be efficiently modeled using a single finite element (an
entire-domain model). Although automatic applicability of the
proposed method is somewhat hindered, mainly by the absence
of required hexahedral meshers, the method can be efficiently
used whenever the problem can be reduced to swept geometry,
or in conjunction with the semi-automatic “top-down” meshing
approach [9]. The proposed modeling can also motivate devel-
opment of new curvilinear hexahedral meshing algorithms.

II. THEORY AND IMPLEMENTATION

‘We use the following recurrent formula to define the B-spline
functions because it facilitates simple implementation:

B;i1(u)=1,u; <u<u;4; and
B;1(u) =0, elsewhere,
w— U
B = s Pim )
Ui — U
"  Bittmea(u),m>1 (1)
Uitm — Wit1
where 0 < ¢ < m,n > 0,and U = (ug,u1,...,Untm) is a

non-decreasing sequence of real numbers. If division by zero oc-
curs, the term is replaced by zero. The function B; ,, (u) is called
the 2-th B-spline of order m and degree m — 1 with respect to the
knot vector U. The length of U determines the number of func-
tions of the given order, whereas the multiplicities of the knots
(knots with the same value) determine the smoothness of the
spline functions. Division by zero occurs when U contains mul-
tiplicities. The following equations hold for a standard clamped
uniform knot vector:

u; =0,0<e<m—1,
t—m+1,m< 1< n,
n—m+2n+1<i<n+m. 2)

u; and

Uq

Using B-splines, we define a smooth parametric hexahedron
introducing a mapping r : (u,v,w) — (z,y,2), (u,v,w) €

[-1,1] x [-1,1] x [—1,1] (cubical parent domain), such that
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Fig. 1. B-spline functions of order m = 5 used for entire-domain modeling of
a spherical cavity: (a) Model II with the flat knot vector (—1, 1) and (b) Model
III with the knot vector (—1,—2/3,—-1/3,0,1/3,2/3,1).

it is interpolatory at the specified points of the global Cartesian
space. To simplify the parameterization (without loss of gener-
ality) we employ the same order of B-splines (m, = m, =
my, = m) and the same knot vectors in all directions. A point
within a hexahedron is thus defined by

r(u,v,w) = Y Bim(u)Bjm()Bem(w)Cijr ()
,7,k=0

where B; ., Bjm, Brm are the splines over the same knot
vector and C,; ; ;. are the position vectors of the control points,
found by solving the following system of equations:

r = Z Bi (0B} (0") Bie i (W) Ci j i
.5, k=0

where K = (n + 1)3, and with r; and (u!, %', w') being the
(global) position-vectors of the interpolation points of the solid
and their (local) parametric coordinates, respectively. The
choice of interpolation points and a knot vector depends on the
particular solid that needs to be parametrized.

III. NUMERICAL RESULTS AND DISCUSSION

As the first example, consider a spherical air-filled metallic
cavity of radius Ry = 1 cm. We parametrize the sphere using a
direct analytical mapping given by

(:v,y7z) = RO (u\/1 - ’U2/2 - w2/2 +v2w2/3 R
0y/1—u?/2 —w?/2 + vuw? /3,
wy/1 —u2/2—v2/2+u2v2/3) (5)

and the appropriate B-spline functions of order m = 5 (degree
m — 1 = 4), as shown in Fig. 1, with the knot vector for which
the number of interpolation points matches the number of func-
tions. Five models are used for comparisons: tetrahedral model
[10], HFSS model (pre-meshed with 3 496 tetrahedra with 2nd
order basis functions to achieve percentage error close to 1%
for the first mode), Model I (with a 4th order Lagrange hexahe-
dron [3]), and Models II and III [with novel B-spline elements;
Model II is a 5th order B-spline model with 125 interpolation
points (n = 4), and Model III is a 5th order B-spline model
with 1000 interpolation points (n = 9)].

TABLE I
RELATIVE ERROR IN CALCULATING ko FOR A SPHERICAL CAVITY: COMPARISON
OF p-REFINED ENTIRE-DOMAIN B-SPLINE MODELS II [FIG. 1(A)] AND III
[FIG. 1(B)] WITH THE TETRAHEDRAL MODEL [10], HFSS,
AND LAGRANGE MODEL I [3]

|Error] [%]
Mode  Tetrah. HFSS Lagr. B-spline Model II/Model III
[10] Model 1

Unkn. » 300 3,496t 450 240 450 756
Rel. time  N/A 2.16 1 0.19/0.41 0.67/1.42 1.90/4.02
TMy0 2.04 1.15 025 0.0605/0.0121 0.0363/0.0105 0.0363/0.0106
™S 2.11 1.15 025 0.0605/0.0121 0.0363/0.0105 0.0363/0.0106
TM}’ff 2.44 1.15 025 0.0605/0.0121 0.0363/0.0105 0.0363/0.0106
™ 2.02 1.00 0.02 0.12/0.0979 0.0792/0.0071 0.0242/0.0071

021
TMEYen 2.99 1.00 0.02 0.12/0.0979 0.0792/0.0071 0.0242/0.0071

121

0.12/0.0979 0.0792/0.0581 0.0242/0.0075

TMOM 320 100 0.02

TMES 434 1.00 023 0.3628/0.2502 0.0977/0.0581 0.0977/0.0075
TM‘;‘;‘} 4.59 1.00 023 0.3628/0.2502 0.0977/0.0581 0.0977/0.0075
TEq, 1.33 039 028 0.3151/0.2623 0.2218/0.1691 0.0582/0.0127
TESY 0.47 039 028 0.3151/0.2623 0.2218/0.1691 0.0582/0.0127
TEinli;i 1.25 039 0.28 0.3151/0.2623 0.2218/0.1691 0.0582/0.0127

Table I gives the percentage errors (with respect to the an-
alytical solution) of the computed resonant-mode free space
wavenumbers, kg. The number of unknowns for the Models II
and III is increased by p-refinement (N,, = N,, = N,, = N)
[3] from N = 5to N = 7. Note that all three B-spline models
are actually entire-domain models. We observe that (a) the pro-
posed B-spline elements have excellent convergence properties,
(b) the error obtained with Model II (for which the error in nu-
merically computing the volume of the element is 0.1%) is lower
than that with Model I, especially when looking at the first three
resonant modes, (c) when the average relative error of the first
11 modes is compared for Models I and II (with 450 unknowns),
Model II yields on average 1.75 times lower error, (d) Model III
(which computes the volume with a 0.0001% error) achieves
very low error even with only 240 unknowns, and (e) the error
obtained with Model III is on average over 1.6 times (with 450
unknowns) and over 5 times (with 756 unknowns) lower than
the error achieved with Model II. Note that the low (oscillating)
errors (e.g., Model I for modes 4 to 6) fall in the error margin for
the particular mode and the particular numerical discretization,
and they cannot be used as a general estimate of the solution ac-
curacy [3]. Note also that B-spline models yield up to two orders
of magnitude lower errors than the tetrahedral model [10]. Also
shown in the table are computational times expressed in rela-
tive units (Rel. time), where the relative time amounting to 1
stands for the time required to solve Model I. It can be seen that
B-spline models are the most efficient, yielding up to 80% de-
crease in the computational time (Model II with 240 unknowns).
Finally, as it turned out to be rather difficult for us to obtain high
accuracy using HFSS, the shown respective relative time is for
the single adaptive pass in HFSS.

As the second example, consider a ridged air-filled metallic
cavity, shown in Fig. 2(a). The cavity belongs to a class of swept
geometries, i.e., its shape can be extruded from the base shown
in the w-cut in Fig. 2(b), and all of its coordinate lines except one
(v) are straight. The whole cavity can thus be easily modeled by



DAVIDOVIC et al.: B-SPLINE ENTIRE-DOMAIN HIGHER ORDER FES FOR 3-D EM MODELING 499

’ EL. 2542 R o
’ . / i i
s 01emll/ [~ % : :
-6 -4-3-2-1 0 1 2 3 4 5
0.4 cm 0.4 cm Y [mm]
(a) (b)

Fig. 2. Entire-domain modeling of a rigded cavity: (a) geometry and (b) v — v
coordinate lines in one w-cut of the B-spline parametrization of the cavity.

TABLE II
COMPUTED k¢ FOR THE RIDGED CAVITY IN FIG. 2(A): COMPARISON OF THE
SINGLE-ELEMENT (ENTIRE-DOMAIN) B-SPLINE MODEL [FIG. 2(B)]
AND FIVE ALTERNATIVE SOLUTIONS

Computed £k, [em™']

Mode Unkn.

1 2 3 4 5 6 7 8 9
- y
T,[10] 267 4941 7.284 7.691 7.855 8.016 8.593 8906 9.163 9.679
T,[10] 671 4999 7.354 7.832 7942 7959 8.650 8916 9.103 9.757
L;[3] 81 5088 7471 7903 7967 8019 9.001 9.111 9.169 10.08
L, 1,730 5.092 7477 7.855 7.894 8.019 8.902 9.097 9.113 10.02
HFSS 3,017t 5.091 7.469 7.853 7.878 8019 8863 8900 9.087 10.00
B-spl. 276 5.093 7.163 7.886 8.278 8324 9.101 9.290 9.706 10.39

one element. To parametrize the cavity, the same spline families
[of order m = 2 and U = (—1,-1/3,1/3,1)] are used in all
directions. This results in K = 43 interpolation points, which
are equally spaced along the u- and w- directions, and define a
ridge along the v- direction. The geometry in this case is mod-
eled exactly and the main source of error arises from numerical
(polynomial) approximations of the fields, which are particu-
larly tricky near the sharp reentrant corners of the ridge.

The numerical results are summarized in Table II, where the
B-spline results are compared with two tetrahedral models (T
and T) from [10], two Lagrange (trilinear) models [5-element
model L.; and 6-element (h-refined 3-element) model L] from
[3], and with HFSS (with 3 017 pre-meshed tetrahedra). We con-
sider the (h-refined) Lo and HFSS results to be of the highest
accuracy, as it is known that h-refinement is superior to p-re-
finement in the presence of singular fields. We can conclude
from the table that B-spline entire-domain results are excel-
lent (accurate to three significant digits) for the dominant mode
(which is usually the most important one) and very accurate for
the higher modes. Note that the B-spline results are obtained in
60% less amount of time when compared to the HFSS solution
(single pass and meshing time excluded). B-spline results are
also better or comparable with Ty and T's results using similar
or lower number of unknowns. While the L.; model uses fewer
unknowns, it also uses 5 elements (h-refinement), which adds to
the complexity of the FEM formulation in this example. To the
best of our knowledge, this is the first entire-domain model of
a structure geometrically as complex and numerically as chal-
lenging as the ridged cavity and the first demonstration that such
a structure can be efficiently and accurately modeled using a
single finite element with a simple B-spline representation in
combination with the higher order FEM.

IV. CONCLUSION

This letter has proposed and examined a novel entire domain
numerical technique for efficient modeling of electromagnetic
structures based on B-spline geometrical representation and the
higher order FEM. The effectiveness of the proposed technique
has been tested on examples of FEM simulations of a spherical
cavity and a ridged cavity (eigenvalue problems). It has been
shown that the method enables modeling of curved geometrical
shapes with excellent precision, as shown in the spherical cavity
example, resulting in by up to two orders of magnitude lower
errors in computed dominant resonant wavenumbers when
compared to lower order methods and by one order of magni-
tude lower errors when compared to an alternative higher order
method (using Lagrange elements). It has also been demon-
strated (for the first time) that, due to flexibility of the B-spline
geometrical modeling, a ridged cavity can be modeled using a
single finite element while achieving a very good accuracy in
computation of the first several resonant wavenumbers when
paired with the efficient higher order FEM method. In addition,
although entire-domain modeling demonstrated in this work
can be considered as an extreme higher order computation,
since the real-world engineering tasks will certainly require
complex meshes, the entire-domain B-spline FEM modeling
may open new ways of thinking regarding the possible element
shapes and sizes in general. It may also aid a future solution to
the problem of automatic higher order curved hexahedral mesh
generation.
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