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ABSTRACT: Three classes of higher-order hierarchical basis func-
tions, constructed from standard orthogonal polynomials, are pro-
posed and evaluated for the modeling of combined metallic and di-
electric microwave structures. The reduction of the condition number
of moment-method matrices is several orders of magnitude, as com-
pared to the technique using regular polynomial basis functions.
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1. INTRODUCTION

The method of moments (MoM) for discretizing integral equations
in electromagnetics [1] is an extremely powerful and versatile
general numerical methodology for electromagnetic-field simula-
tion in RF and microwave applications. In this paper, we concen-
trate on surface-integral-equation (SIE) methods in the frequency
domain. We address the SIE analysis of combined metallic and
dielectric structures (antennas and scatterers), where both electric
and magnetic surface currents are introduced over boundary sur-
faces between homogeneous parts of the structure, and integral
equations based on boundary conditions for both electric and
magnetic field intensity vectors are solved with current densities as
unknowns [2, 3]. Furthermore, this paper focuses on higher-order
basis functions for current approximation which constitute the
large-domain (entire-domain) MoM approach [3].

For the modeling of all the surfaces in the system (metallic and
dielectric surfaces), we use bilinear quadrilaterals with divergence-
conforming hierarchical polynomial basis functions of local para-
metric coordinates, which are developed by modifying simple
power functions so that the current-continuity condition across the
quadrilateral edges is automatically satisfied. Polynomial degrees
in the current expansions can be high (higher-order expansions), so
that electrically large surface elements can be used (large-domain
method). For instance, the size of patches in the model can be as
large as 2� in each dimension, where � is the wavelength in the
medium [3]. This greatly reduces the overall number of unknowns
for a given problem and significantly enhances the accuracy and

efficiency of the technique, as compared to the traditionally used
low-order basis functions and small-domain (subdomain) methods
[2], where all the patches must be less than approximately �/10 in
each dimension.

Polynomial basis functions adopted for implementation in this
paper are hierarchical functions, that is, each lower-order set of
functions is a subset of all higher-order sets. These functions
enable different orders of current approximation over different
quadrilaterals to be used, which thereby allows a whole spectrum
of quadrilateral sizes (from a very small fraction of � to a couple
of �) and the corresponding current approximation orders to be
used at the same time in a single simulation model of a complex
structure. Additionally, each individual quadrilateral can have
drastically different edge lengths, thus enabling a whole range of
quadrilateral shapes (such as square-shaped, rectangular, trapezoi-
dal, triangle-like, strip-like, etc.) to be used in a simulation model
as well. Hierarchical basis functions, on the other hand, generally
have poor orthogonal properties, which results in MoM matrices
with large condition numbers. This affects the overall accuracy and
stability of the solution. Most importantly, if the linear equations
associated with the MoM are solved using iterative solvers, the
overall computation time is much larger when the MoM matrices
are badly conditioned (for example the number of iterations for
conjugate gradient solvers is proportional to the square root of the
condition number).

The novelty of higher-order basis functions, in general, and the
dilemmas involved in actually using them are tremendously inter-
esting and relevant to computational electromagnetics (CEM).
Problems with the ill-conditioning of the system matrices probably
represent the most important issue in higher-order CEM, especially
if hierarchical bases are used. However, only a very limited num-
ber of publications [4–8] have addressed these problems within
the framework of either the finite element method (FEM) or MoM.

This paper presents investigations that aim to improve the
orthogonality properties of polynomial higher-order hierarchical
basis functions, leading to better conditioned MoM matrices and
more stable solutions in SIE modeling. Four different types of
polynomial basis functions are implemented in the large-domain
Galerkin SIE method to enable cross-validation of the results and
comparison of numerical properties of the four sets of basis func-
tions. Some preliminary results of this research are presented in [6,
7]. We show that by combining the simple 2D power functions of
parametric coordinates in accordance with standard orthogonal
polynomials (namely, ultraspherical and Chebyshev polynomials),
and modifying them so that the current-continuity condition across
the quadrilateral edges is automatically satisfied (divergence-con-
forming functions), higher-order polynomial basis functions are
obtained. These functions lead to much better conditioned matrices
as compared to the “regular” higher-order polynomial basis func-
tions we have used so far in the volume-integral-equation (VIE)
MoM [9], SIE MoM [3], and FEM [10]. The polynomials are
combined in different ways for representing variations of the
current density vector over quadrilateral patches in the direction
along the vector (this variation is relevant for the functions’
divergence conformity) and across the vector, and the resulting
basis functions and corresponding versions of the MoM code are
evaluated. Generally, the new basis functions yield a reduction of
the MoM matrix condition number of several orders of magnitude.
However, this improvement is less pronounced in analyses of
surfaces with curvature and of dielectric (penetrable) structures.

2. SURFACE INTEGRAL EQUATION FORMULATION

Consider a metallic/dielectric structure situated in a vacuum and
excited by a time-harmonic incident electromagnetic field of an-
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gular frequency �. According to the surface equivalence principle
[3], we can break the entire system into subsystems, each repre-
senting one of the dielectric regions (domains), together with their
metallic surfaces, with the remaining space being filled with the
same medium. The scattered electric and magnetic fields in each
domain can be expressed in terms of the equivalent surface electric
and magnetic currents JS and MS, which are placed on the bound-
ary surface S of the domain, with the objective to produce a zero
total field in the surrounding space, given by

E � �j�A � �� �
1

�
� � F, H � �j�F � �U �

1

�
� � A,

(1)

A � � �
S

JSgdS,

F � � �
S

MSgdS,

� �
j

�� �
S

�S � JSgdS,

U �
j

�� �
S

�S � MSgdS,

g �
e�	R

4
R
, (2)

where g is the Green’s function for the unbounded homogeneous
medium of complex parameters � and �, 	 � j����, and R is
the distance of the field point from the source point. The boundary
conditions for the tangential components of the total (incident plus
scattered) electric and magnetic field vectors on the boundary
surface between any two adjacent dielectric domains yield a set of
coupled electric/magnetic field integral equations (EFIE/MFIE) for
JS and MS as unknowns.

As a basic building block for geometry modeling, we adopt a
bilinear quadrilateral [3], defined by

r�u, v� � rc � ruu � rvv � ruvuv, �1 � u, v � 1, (3)

where rc, ru, rv, and ruv are constant vectors that can be expressed
in terms of the position vectors of the quadrilateral vertices. The
surface current density vectors over quadrilaterals are represented
as [3]:

JS�u, v� �
1

J�u, v�

� ��
i�0

Nu �
j�0

Nv�1

�uijfuij�u, v�au�v� � �
i�0

Nu�1 �
j�0

Nv

�vij fvij�u, v�av�u��, (4)

J�u, v� � �au�v� � av�u��, au�v� �
dr�u, v�

du
, av�u� �

dr�u, v�

dv
,

(5)

with analogous representation for MS(u, v), where f are diver-
gence-conforming hierarchical polynomial basis functions of co-
ordinates u and v, Nu and Nv are the adopted degrees of the
polynomial approximation, and �uij and �vij are unknown current-
distribution coefficients. Note that the sum limits in Eq. (4) that
correspond to the variations of a current density vector component
in the direction across that component are smaller (by one order)
than the orders corresponding to the variations in the other para-
metric coordinate. This mixed-order arrangement has been found
to be a preferable choice, in terms of accuracy and efficiency, for
modeling of surface currents in all applications. In order to deter-
mine the unknown coefficients {�}, the EFIE/MFIE system is
tested using the same functions used for the current expansion
(Galerkin-type MoM).

3. THE CHOICE OF BASIS FUNCTIONS

The first class of analyzed basis functions is a set of simple 2D
polynomial functions in the u � v coordinate system that auto-
matically satisfy the current-continuity condition for the normal
components of JS and MS along an edge shared by quadrilateral
elements (divergence conformity) and actually represent a higher-
order generalization of traditionally used rooftop functions. These
functions, hereafter referred to as the regular polynomials, are
given by [3]:

fuij�u, v� � �
1 � u, i � 0
u � 1, i � 1
ui � 1, i 
 2, even
ui � u, i 
 3, odd

�v j �regular polynomials�

(6)

with an analogous expression for fvij(u, v). The basis functions
(1 � u)v j (for i � 0) and (u � 1)v j (for i � 1) in an arbitrary
quadrilateral serve for adjusting the continuity condition on the
side u � �1 and u � 1, respectively, while the remaining basis
functions (for i 
 2) are zero at the quadrilateral edges and serve
for improving the current approximation over the surface. Similar
functions are used in the large-domain VIE MoM [9] and FEM
[10].

We note that, as the polynomial degrees Nu and Nv in Eq. (4)
increase, the basis functions in Eq. (6) become increasingly similar
to one another and, consequently, the condition number of the
MoM matrix built from them deteriorates. The ill-conditioning is
principally caused by a strong mutual coupling between the pairs
of higher-order functions defined on the same (electrically large)
bilinear patch. In order to reduce this coupling (and thus improve
the condition number of the resulting MoM matrix), basis func-
tions with better orthogonal properties have to be utilized. Due to
their simplicity and flexibility, standard orthogonal polynomials
[11] (and their modifications) are adopted as candidate basis func-
tions in this paper. In one dimension, these functions are defined as
classes of polynomials pn( x) of the interval [�1, 1], satisfying the
orthogonality relationship

�
�1

1

w� x� pm� x� pn� x�dx � �mncn, (7)

where w( x) is a weighting function and �mn is the Kronecker
delta.

Note that all the classes of orthogonal polynomials for all
polynomial orders n have nonzero values for x � 	1 (all the zeros
of the polynomials lie in the interior of the interval [�1, 1]), which
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makes the two-dimensional form of these functions not diver-
gence-conforming and not directly applicable to the higher-order
Galerkin SIE method in the fashion suggested by Eq. (4). Note also
that the integral kernels of Galerkin generalized impedances based
on Eqs. (1) and (2) contain the Green’s function g as a “weighting
function” in the inner product, which, of course, cannot be repro-
duced by combining the function w( x) for any of the orthogonal
polynomials. These are the two basic problems that need to be
addressed with regard to the actual implementation of standard
orthogonal polynomials in the higher-order MoM.

So-called ultraspherical polynomials [11] are orthogonal on the
interval [�1, 1] with the weighting function w( x) � (1 �
x2)��1/ 2, where � 
 �1/2. For � � �1/2, the relationship in Eq.
(7) is not satisfied exactly, but the polynomials have zero values
for x � 	1 and n 
 2. Hence, the ultraspherical polynomials with
� � �1/2, although only partially orthogonal to one another,
represent an attractive basis for constructing divergence-conform-
ing 2D polynomial current expansions. Thus, the second class of
divergence-conforming hierarchical MoM basis functions pro-
posed for implementation and investigation in this paper is con-
structed as

fuij�u, v� � �1 � u, i � 0
u � 1, i � 1
Pi�u�, i 
 2

	Pj�v�

�ultraspherical/ultraspherical polynomials�

P0� x� � 1, P1� x� � �x,

nPn�x� � �2n � 3�xPn�1�x� � �n � 3�Pn�2�x�, (8)

analogously for fvij(u, v).
Another attractive basis for constructing current expansions

with improved orthogonality is the class of Chebyshev polynomi-
als [11]; this is because, out of all weighting functions with respect
to which individual standard polynomials are orthogonal, the one
with Chebyshev polynomials of the first kind, w( x) � (1 �
x2)�1/ 2, most closely resembles the 1D version of the Green’s
function in Eq. (2). Furthermore, for these polynomials, all the
maxima are equal to 1 and minima are equal to �1, which also
adds to their flexibility for approximating the current variations on
the interval [�1, 1] and their overall suitability for implementation
in the SIE technique. However, Chebyshev polynomials are non-
zero at the interval boundaries and therefore cannot be directly
used for representing the variation of the current density vectors JS

and MS over quadrilateral patches in the direction along the
vectors. Hence, the third class of proposed basis functions for the
u component of current density vectors incorporates the Cheby-
shev polynomials in the v coordinate (this variation is not relevant
for divergence-conformity of functions), yielding the following
combined ultraspherical/Chebyshev 2D polynomial basis func-
tions:

fuij�u, v� � �1 � u, i � 0
u � 1, i � 1
Pi�u�, i 
 2

	Tj�v�,

�ultraspherical/Chebyshev polynomials�

T0� x� � 1, T1� x� � x, Tn� x� � 2xTn�1� x� � Tn�2� x�. (9)

Similar expressions are constructed for the v component of the
vectors.

Finally, the fourth class of analyzed basis functions is con-
structed entirely from Chebyshev polynomials, which have been
combined in the following way, (similar to that in [8]), to ensure
the divergence-conformity of the expansions:

fuij�u, v� � �1 � u, i � 0
u � 1, i � 1
Ti�u� � Ti�2�u�, i 
 2

	Tj�v�,

�Chebyshev/Chebyshev polynomials�. (10)

Note that using the difference of the polynomials of orders i
and i � 2 as the basis function of order i in approximating the
variation of the current density vectors along the u coordinate (or,
in general, in the direction along the vectors) makes the higher-
order expansions zero across the edges shared by adjacent quad-
rilaterals and allows for the maximum number of basis functions to
be mutually orthogonal with respect to the corresponding 2D
weighting function w(u, v) � (1 � u2)�1/ 2(1 � v2)�1/ 2.

4. NUMERICAL RESULTS

As the first numerical example, consider a square plate metallic
scatterer with sides of 1 m. The scatterer is analyzed from 43 MHz
to 376 MHz, with the plate modeled as a single bilinear quadri-
lateral and current approximation orders ranging from Nu � Nv �
2 (4 unknowns) to Nu � Nv � 7 (84 unknowns). Figure 1 shows
the condition number of the MoM matrix for the scatterer, as a
function of the current approximation order in one dimension
(Nu � Nv), obtained by using the four types of basis functions.
We observe that the use of regular polynomial basis functions, Eq.
(6), yields a severely ill-conditioned MoM matrix, with the con-
dition number rapidly increasing as the current approximation
order increases. On the other hand, using the novel types of basis
functions, Eqs. (8)–(10), the increase of the condition number
caused by the increase of the approximation order is much slower.
Specifically, the use of ultraspherical/ultraspherical basis functions
reduces the condition number at the highest frequency more than
750,000 times, whereas the reduction of the condition number
using ultraspherical/Chebyshev and Chebyshev/Chebyshev basis
functions is almost 107 times, as compared to the regular polyno-
mials at the highest frequency.

As another example of metallic structures with flat surfaces,
consider a cube metallic scatterer of edge length a � 1 m. The
frequency is varied from 100 MHz to 1.6 GHz and the number of
unknowns from 48 to 3888, respectively. Each side of the cube is

Figure 1 Condition number of the MoM matrix for a square metallic
plate scatterer (edge length a � 1 m, frequency range 43–376 MHz), as a
function of the current approximation order in one dimension, for four
classes of basis functions
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modeled by a single bilinear quadrilateral at frequencies below 600
MHz and by nine quadrilaterals at higher frequencies. Figure 2
shows the condition number of the MoM matrix as a function of
the number of unknowns, for the four types of analyzed basis
functions. We observe that the use of ultraspherical/ultraspherical,
ultraspherical/Chebyshev, and Chebyshev/Chebyshev basis func-
tions provides the reduction of the condition number of approxi-
mately 1100, 13000, and 29000 times, respectively, as compared
to regular polynomials at the highest frequency.

As an example of curved metallic structures, consider a spher-
ical metallic scatterer of radius a � 1 m, modeled by 600 curved
bilinear quadrilaterals. The frequency range is 10–600 MHz and
the number of unknowns is 300 to 4,686, using two-fold symme-
try. At the highest frequency, polynomial current approximation
orders are 3, 4, and 5, over quadrilateral patches of different sizes.
The radar cross section (RCS) predictions obtained using the four
types of basis functions appear to be practically identical, and
agree well with the analytical solution in the form of Mie’s series,
as shown in Figure 3. Figure 4 shows the condition number of the
MoM matrix for the sphere obtained using different basis func-
tions. We observe that all the sets of basis functions constructed
from orthogonal polynomials yield a significant reduction of the
condition number, as compared to regular polynomial basis func-
tions; the reduction with Chebyshev/Chebyshev basis functions is
larger than 2000 times. However, the improvement in the condi-
tion number using novel basis functions is less pronounced than
that achieved by analyzing structures with flat surfaces. This may
be attributed primarily to the additional coupling between surface
current density components defined on curved bilinear patches and

also to the fact that the model consists of a large number of patches
with relatively low current approximation orders (quasi-subdo-
main approximation) needed for the sphere surface to be accu-
rately geometrically represented.

As an example of dielectric structures with flat surfaces, con-
sider a dielectric cube of edge length 1 m and relative permittivity
�r � 2.25. The cube is analyzed as a scatterer from 100 MHz to
1000 MHz, and modeled by 6 (up to 500 MHz) or 54 bilinear
quadrilateral patches. The polynomial current approximation or-
ders range from 2 to 7 and the number of unknowns ranges from
96 to 5400, respectively. Figure 5 shows the MoM matrix condi-
tion number as a function of the number of unknowns, for the four
types of analyzed basis functions. As can be observed, the full
coupled system of integral equations for dielectric structures pro-
duces extremely ill-conditioned MoM matrices. While the im-
provement in the condition number using novel basis functions is
significant (the reduction at the highest frequency is 1100 times
with Chebyshev/Chebyshev basis functions, as compared to regu-
lar polynomials), it is not that dramatic as in the case of the
metallic cube. This may be attributed primarily to the additional
coupling between electric and magnetic surface currents defined
on the same electrically large bilinear patch.

As an example of curved dielectric structures, consider a spher-
ical dielectric (�r � 2.25) scatterer, 1 m in radius and modeled by
384 curved quadrilaterals with polynomial current approximation
orders 1, 2, and 3 in the frequency range 10–600 MHz. Using
two-fold symmetry, the number of unknowns ranges from 384 to
2904. The RCS results obtained by the large-domain MoM (all

Figure 2 Condition number of the MoM matrix for a cube metallic
scatterer (edge length a � 1 m, frequency range 100 MHz–1.6 GHz), as
a function of the number of unknowns, for four classes of basis functions

Figure 3 Radar cross section of a metallic sphere: large-domain MoM
solution and analytical solution

Figure 4 Condition number of the MoM matrix for a spherical metallic
scatterer (radius a � 1 m, frequency range 10–600 MHz) for four classes
of basis functions

Figure 5 Condition number of the MoM matrix for a dielectric cube
scatterer (edge length a � 1 m, relative permittivity �r � 2.25, frequency
range 100–1000 MHz) for four classes of basis functions
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four sets of basis functions yield practically identical solutions)
agree well with the analytical solution in the form of Mie’s series,
as shown in Figure 6. However, it is found that the reduction of the
MoM matrix condition number using novel basis functions is
considerably smaller (the reduction with Chebyshev/Chebyshev
basis functions is only 15 times as compared to regular polyno-
mials at the highest frequency) than in cases of the dielectric cube
and metallic sphere. Generally, this is characteristic to all curved
and/or dielectric structures.

Finally, as an example of complex real-life structures, consider
a vehicle (Golf GL) with a cellular-telephone antenna (situated
inside) in the frequency range 500–1000 MHz [12]. Figure 7
shows the simulated geometrical model of the vehicle. The number
of bilinear quadrilaterals in the model ranges from 162 to 354 and
the number of unknowns using symmetry ranges from 1191 to
4475, respectively. Figure 8 shows the condition number of the
MoM matrix as a function of the number of unknowns, obtained by
the four sets of higher-order basis functions. We observe that the
use of ultraspherical/ultraspherical basis functions yields the re-
duction ranging from 200 to 18000 times, as compared to regular
polynomial basis functions. Ultraspherical/Chebyshev basis func-
tions provide approximately further 15-fold reduction. Finally,
Chebyshev/Chebyshev basis functions perform the best, yielding a
reduction range of 8700 to 650000 times, with respect to regular
polynomials in the considered frequency range.

5. CONCLUSION

This paper has presented investigations that aim to improve the
orthogonal properties of polynomial higher-order hierarchical ba-
sis functions, leading to better conditioned MoM matrices in
frequency-domain surface-integral-equation modeling of com-

bined metallic and dielectric RF/microwave structures. The metal-
lic and dielectric surfaces are modeled by electrically large bilinear
quadrilaterals (up to 2� in each dimension) with divergence-
conforming higher-order expansions (up to the 10th order) for
electric and magnetic surface current density vectors. The EFIE/
MFIE system is tested using the Galerkin method. Four different
types of polynomial basis functions are implemented in the same
method, yielding four independent versions of the MoM code. The
results obtained using the four sets of basis functions appear to be
practically identical, and agree well with available analytical so-
lutions. Combinations of basis functions constructed from standard
orthogonal polynomials, both ultraspherical and Chebyshev types,
yield the reduction of the MoM matrix condition number of several
orders of magnitude (for example, 4 to 7 orders of magnitude with
the use of Chebyshev/Chebyshev basis functions for metallic
structures with flat surfaces), as compared to the technique using
regular polynomial basis functions. However, although significant,
the improvement of the conditioning of the MoM matrix using
novel basis functions is considerably less pronounced in the anal-
yses of surfaces with curvature and of dielectric structures (for
example, 1 to 2 orders of magnitude using Chebyshev/Chebyshev
functions for curved dielectric structures).
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ABSTRACT: In this paper the leakage effects in open laterally-
shielded multilayered microstrip transmission lines are investigated. Po-
tential solutions are often reported to be difficult to find, since they are
located in the complex propagating factor plane. To overcome this
problem, a novel iterative algorithm is implemented to relate the solu-
tions in the real axis of closed transmission lines with their correspond-
ing complex open structure modes. The problem of modeling the leaky
behavior of the open top wall is introduced, and a mathematical and
physical explanation of the solutions is proposed. The advantage of this
new technique is that it allows us to easily track the leaky solutions to
their final location in the complex plane. Results are presented, includ-
ing the field and power patterns associated to leaky waves, showing that
the derived technique is indeed effective for the study of the complex
modes excited in this type of structures. © 2003 Wiley Periodicals, Inc.
Microwave Opt Technol Lett 37: 88–93, 2003; Published online in
Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.
10832

Key words: antennas; leaky waves; microstrip structures; numerical
methods; integral equation

1. INTRODUCTION

The leaky modes excited in open microstrip-like structures have
been studied in the past by many researchers [1–13]. This radiation
mechanism can be undesirable for printed-circuit applications,
since it can cause interference and thus deteriorate the system
performance. On the contrary, this radiation mechanism can be
used in the design of leaky wave antennas [5, 11–13]. In any case,
it is always convenient to control this leakage effect.

The properties of the proposed solutions for microstrip config-
urations have also been mentioned in many papers, including the
apparently growing amplitude behavior along the stratification axis
[9]. However, how to mathematically treat this situation in order to
retrieve the field pattern associated with leaky wave solutions is
not easily found. The field associated to a leaky wave mode is
computed in [6], but only over the metal strip, and no details are
given as to how the field in the cross section can be evaluated. In
addition, in [11–13] the field pattern is computed, but the leaky
wave antenna is built using an empty waveguide with no dielec-
trics or printed metal strips. In the structure we propose, a sus-
pended dielectric substrate is used in order to obtain a high gain
behavior following similar ideas as those presented in [5].

Searching the complex poles of the leaky waves is also an
interesting subject [8–10]. This is usually a complex task, since a
search procedure must be implemented in a 2D complex plane.
Yet, simple and efficient search strategies, which can be used to
track the location of the complex leaky modes, are not generally
found. For instance, in [10], the complex poles are found by taking
as initial point in the search algorithm the quasi-static asymptotic
location of the solutions at low frequency [8]. In addition to these
iterative strategies, graphical procedures to approximately locate
the complex leaky wave poles have also been derived [9].

Also, although many investigations have been conducted for
basic printed lines [1–10], the same is not generally true for
laterally shielded configurations. In all previous works, the infinite
nature of the dielectric substrates yields to continuous wavenum-
bers in the spectral domain. For the shielded version, however, the
discrete nature of the wavenumber must be carefully treated.

In this paper, we propose to study for the first time the leaky
effects of a laterally shielded suspended microstrip line (Fig. 1). In
addition to the basic formulation, we propose a novel technique
which can be used to easily track the leaky modes as they move to
the complex plane. This is essentially achieved by relating the
leaky wave modes of the open transmission line with the real
propagating waves of the closed counterpart. Also, the technique
implemented can treat the growing behavior of the modes along
the stratification axis, and this has allowed to obtain for the first
time the field and power density distributions associated with these
leaky wave modes.

The studied structure and the method used are presented in
section 2. The modes in a closed transmission line, what we call
the dielectric-bounded and the dielectric-leaky regimes, are ob-
tained for a given example and properties of both are presented.
The real modes of the closed structure will then be used in the
novel search procedure to find the complex leaky wave solutions
of the open structure. This novel search procedure for the complex

Figure 1 Cross section of the structure and equivalent network. [Color
figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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