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ABSTRACT 14 

Taking advantage of the recent developments in machine learning, we propose an 15 

approach to automatic winter hydrometeor classification based on utilization of convolutional 16 

neural networks (CNNs). We describe the development, implementation, and evaluation of a 17 

method and tool for classification of snowflakes based on geometric characteristics and riming 18 

degree, respectively, obtained using CNNs from high-resolution images by a Multi-Angle 19 

Snowflake Camera (MASC). These networks are optimal for image classification of winter 20 

precipitation particles due to their high accuracy, computational efficiency, automatic feature 21 

extraction, and application versatility. They require little initial preparation, enable the use of 22 

smaller training sets through transfer learning techniques, come with large supporting 23 

communities and a wealth of resources available, and can be applied and operated by non-24 

experts. We illustrate both the ease of implementation and the usefulness of operation the CNN 25 

architecture offers as a tool for researchers and practitioners utilizing in-situ optical observational 26 

devices. A training data set containing 1,450 MASC images is developed primarily from two 27 

storm events in December 2014 and February 2015 in Greeley, Colorado, by visual inspection of 28 

recognizable snowflake geometries. Defined geometric classes are aggregate, columnar crystal, 29 

planar crystal, small particle, and graupel. The CNN trained on this data set achieves a mean 30 

accuracy of 93.4% and displays excellent generalization (ability to classify new data). In 31 

addition, a separate training data set is developed sorting snowflakes into three classes 32 

showcasing distinct degrees of riming. The CNN riming degree estimator yields promising initial 33 

results but would benefit from larger training sets.   34 

 35 
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1. Introduction 36 

The advent of dual polarimetric radar for weather observation and research has increased 37 

our capabilities to access and log vital data points within a given weather event. With excellent 38 

temporal and spatial resolution, researchers can accurately characterize shapes of the 39 

hydrometeors that compose a storm (Straka et al. 2000). Polarimetric radars provide the 40 

horizontal reflectivity, 𝑍h, differential reflectivity,  𝑍dr, and correlation coefficient, 𝜌hv, of a 41 

field the radar is directed toward. This information gives insight to shape and type of 42 

hydrometeors within a storm and is calculated based on models developed by past observations. 43 

Scattering models fall short when left to spheroid approximations for frozen hydrometeors 44 

(Tyynelä et al. 2011). This is especially true at higher frequencies or for larger particles (Kim 45 

2006), and increases the need for accurate accounting of the varying microphysical 46 

characteristics of snow within a storm.  Atmospheric scientists have drawn strong correlation 47 

between the environmental conditions present and the shape snow takes as it forms within a 48 

storm (Libbrecht 2017). Conditions within a storm are not homogenous, resulting in a wide 49 

variety of shapes that continue to change on the hydrometeor’s path to the ground. While 50 

polarimetric radar provides excellent coverage, utilizing ground based (in-situ) devices in tandem 51 

with radar has proven more effective in understanding storm composition (Zhang et al. 2011), 52 

especially in studying riming degree. Riming (the collection of supercooled water droplets onto 53 

an ice crystals surface) is one of the physical metrics that can indicate valuable information about 54 

the internal characteristics of a storm and is of significant interest to the atmospheric science 55 

community (e.g., Kennedy et al. 2018). In-situ devices are often deployed on the ground in the 56 

path of a storm and allow for detailed sampling utilizing high resolution imaging techniques to 57 

capture individual hydrometeors while monitoring local environmental conditions (e.g., 58 
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temperature, humidity, and wind speed). Some examples of in-situ image capturing devices 59 

include the Two-Dimensional Video Disdrometer (2DVD; Schönhuber et al. 2008) or the 60 

Precipitation Instrument Package (PIP; a more advanced version of the Snow Video Imager 61 

described in Newman et al. 2009). Another such in-situ device developed specifically to sample 62 

snowflakes in free fall is the Multi-Angle Snowflake Camera (MASC). The MASC can capture 63 

high resolution images of individual snowflakes, which provides researchers an avenue to study 64 

the microphysical characteristics and make statistical predictions concerning a storm’s 65 

composition. A deployed MASC is capable of capturing thousands of images an hour, and with 66 

typical storms lasting several hours, a fast, accurate and automatic method to organize and 67 

process image data based on shared characteristics is crucial to increased understanding. There 68 

exist several classification algorithms known to atmospheric research communities (e.g., 69 

Chandrasekar et al. 2013; Besic et al. 2016) but they are limited to large swaths of a storm and 70 

not local sampled images. Developing a classifier that functions automatically on a per 71 

snowflake basis would be a critical first step in introducing intelligent post-storm processing 72 

capabilities to in-situ devices, reducing data processing time for research, and allowing devices 73 

to remain in the field for longer periods. 74 

 Machine learning algorithms have made huge strides in the past decade (Minar and 75 

Naher 2018), especially with classification tasks, and have a massive community invested in 76 

improving and expanding existing algorithms. Previous attempts have been made to apply 77 

machine learning to snowflake classification with varying degrees of success. Early 78 

backpropagation neural networks (BPNNs) were used by Feind (2006) and multinomial logistic 79 

regression (MLR) by Praz et al. (2017). Feind (2006) achieved their best results using BPNNs 80 

with 85% accuracy in classifying eight categories of hydrometeors (drops, snow, hail, columns, 81 
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needles, plates, dendrites, and holes). Data was extracted using a PMS 2D-C probe that creates 82 

detailed particle profiles and is mounted on a T-28 aircraft which flies directly through storms. 83 

The images from the PMS 2D-C do not allow for microphysical characteristics of the particles to 84 

be considered, as the data is black and white profiles. Praz et al. (2017) set the standard for 85 

expert research into hydrometeor classification with a separate algorithm for feature extraction 86 

and optimization, and achieved a classification accuracy of 95%. Due to the high-resolution 87 

images used as their sample data, they can consider particle microphysical characteristics, as 88 

well as make estimations regarding degree of riming present. On the other hand, their algorithm 89 

requires external feature extraction and optimization, a process that may limit input complexity 90 

and number of classes due to the computational inefficiencies within the architecture. The feature 91 

extraction process would also need to be repeated with any hardware change as they likely 92 

incorporate hardware bias (imperfections unique to the device) into a data set, thus reducing the 93 

generality and versatility of the method.  94 

This paper takes advantage of the most recent developments in machine learning and 95 

proposes an approach to automatic winter hydrometeor classification based on utilization of 96 

convolutional neural networks (CNNs). It presents the development, implementation, and 97 

evaluation of a CNN-based method and tool for classification of snowflakes using high-98 

resolution images by a Multi-Angle Snowflake Camera. Snowflake classifications based on 99 

geometric characteristics and riming degree, respectively, are described and tested. 100 

Convolutional neural networks by their nature and properties are an excellent candidate for an 101 

algorithm and tool for classification of hydrometeors (and particularly winter precipitation) 102 

based on high-resolution images of particles. They were developed with image processing in 103 

mind, which makes them computationally more efficient for image-based classification when 104 
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compared to other multilayer backpropagation neural networks. CNNs act as a sort of “black 105 

box”, which automatically extract features during training, thus simplifying any system they are 106 

integrated into, with interest in data specific metrics available through further processing. CNNs 107 

can store these features, which increases their versatility as they are capable of transferring 108 

learning from one data set to another and are not limited to specific parameters inherent either to 109 

the data set (e.g., resolution, color, or size) or capturing method (e.g., hardware imperfections 110 

reflected in data). Therefore, a classifier properly trained with a CNN can be utilized by a variety 111 

of image-capturing in-situ devices.  Research into deep learning has extended their ability to 112 

process complex data without major changes to the algorithm. Finally, CNNs are well 113 

understood algorithms that are extremely popular for image processing with a wealth of 114 

resources available, thus reducing a reliance on expert help in implementation (Mathworks 115 

2018a, 2018b).  116 

In this paper, the steps needed to develop a hydrometeor classifier using CNNs are 117 

presented in detail and advantages to in-situ research are highlighted. The intention of this work 118 

is to illustrate the ease of implementation the CNN architecture offers as a tool for researchers 119 

and practitioners utilizing in-situ measurement devices. The CNN method described here 120 

requires less training data [e.g., 1,450 training samples, compared to 2,000 used by Fiend (2006) 121 

or 3,000 used by Praz et al. (2017)],  as well as less image preprocessing, while attaining a 122 

geometric classification accuracy of 93.4%, for instance, which is comparable to other 123 

classifiers. Moreover, the new method provides extra flexibility for expanded functionality (e.g., 124 

additional classes, different hydrometeor types, etc.) that can readily and non-expertly be 125 

achieved as the backend of a deployed measurement device and frontend to further data 126 

processing and analyses. Data preprocessing is reduced to cropping images to remove instances 127 
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where multiple snowflakes are present and a brightness thresholding filter to remove images 128 

which are too dim or blurry. Both steps are handled by a simple script which can then feed the 129 

processed images directly to each classifier. The classifier then organizes the data based on 130 

image features and places data in folders labeled for each class. This process is fast and 131 

computationally efficient; for example, the tool can be deployed in computers typically running 132 

in-situ measurement devices. The classifier in this work is developed using MATLAB™ 2018, 133 

but open-source toolboxes are available if additional flexibility is required.  134 

 135 

2. Snowflake Data Collection and Preparation  136 

This section describes how and under what conditions data was collected. Steps required 137 

in preprocessing of image data are covered.  The classification criteria for geometric shapes and 138 

riming degree estimation are discussed.  139 

 140 

2.1 Data Collection Site 141 

The images that compose the training set were taken primarily from two winter weather 142 

events using a modified MASC system located at a surface instrumentation field site that was 143 

established as part of MASCRAD (MASC + RADar) project (Notaroš et al 2016; Bringi et al. 144 

2017; Kennedy et al. 2018). The MASCRAD field site, Figure 1, is located at the Easton Valley 145 

View Airport, in La Salle, outside of Greeley, Colorado. This site includes a modified MASC 146 

system, a 2DVD, a PLUVIO all-weather precipitation gauge, and a VAISALA weather station, 147 

amongst other advanced in-situ measurement instruments. These devices are situated within a 148 

double fence intercomparison reference (DFIR) and operate under the umbrella of the CSU-149 

CHILL Radar, a state-of-the-art polarimetric weather radar located 12.92 km away.  150 
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The image data was collected during two events in the 2014-2015 deployment season of 151 

the MASCRAD project. The first took place from December 23rd to 31st in 2014, with the highest 152 

density of particles falling during the early morning hours of December 26th. To include enough 153 

graupel images, a second weather event was required (Bang et al. 2016). This event took place 154 

on February 21st – 22nd in 2015.  155 

 156 

2.2 Data Collection Device 157 

The Multi-Angle Snowflake Camera, or MASC, is the centerpiece of the MASCRAD 158 

project. While the finer details of the system are provided in (Garrett et al. 2012), for the 159 

purposes of this study a summary and brief description follows. The original MASC system is an 160 

instrument used to capture high-resolution images and fall speeds of hydrometeors in freefall 161 

from three different coplanar perspectives. These cameras are 5 Megapixel (MP) Unibrain Fire-I 162 

980b digital cameras with identical 12.5-mm Fujinon lenses. The cameras are spaced on a 163 

horizontal ring with 36° separation between adjacent cameras, with camera-to-common focal 164 

center distances of 10 cm.  The system used at Colorado State University, Figure 2, has been 165 

modified to include two additional cameras at an elevated angle of 55° above the horizon. These 166 

are 1.2 MP Unibrain Fire-I 785b cameras with 12.5-mm lenses, included to improve the 3D 167 

virtual reconstruction using the visual hull method (Kleinkort et al. 2017). The system has a 168 

horizontal resolution of 35 μm for the three horizontal cameras and a vertical resolution of 40 169 

μm at 1-m/s fall speed. As hydrometeors fall through the horizontal ring, a near-IR emitter-170 

detector pair sensor array (located on the top rim of the capture volume within the ring) 171 

simultaneously triggers the cameras and a flash (LEDs). The cameras have a maximum 172 

triggering rate of 2 Hz, a hardware limitation within the cameras, not set by the emitter-sensor 173 
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pair array. Finally, measurement of the time between upper and lower near-IR emitter-sensor 174 

triggers by a particle is used to calculate the particle fall speed (which is not the topic of this 175 

work).  176 

 177 

2.3 Image Preprocessing 178 

As a CNN automatically extracts features (numerical descriptors common between 179 

classes) during training that are to be used in classification, the image data base requires minimal 180 

preprocessing. A simple brightness thresholding is utilized to remove the majority of blank, dim 181 

or blurry images. Generally, a MASC is deployed during storming conditions, those with heavy 182 

wind or flurried snow, which can (in spite of the DFIR) cause the MASC to trigger without a 183 

snowflake in the focal area, making the need for thresholding crucial to processing. After 184 

thresholding to remove poor quality images, the creation of a training set requires a one-to-one 185 

correlation between an image of a snowflake and the class the image is being assigned to, i.e., 186 

there can only be one snowflake per image. The task of separating images was automatically 187 

performed using a cropping script developed to find the brightest point of an image, locate the 188 

surrounding edges through their calculated standard deviations, and remove the snowflake to be 189 

saved in another location. The script then performs this action again until all independent bright 190 

spots have been cropped in a given image. This procedure is not perfect (<10% of snowflakes 191 

need repairs) but is dramatically more efficient than cropping images by hand.  192 

 193 

3. Hydrometeor Classification Scheme and Training Sets 194 

With machine learning algorithms, there are two categories of how learning is conducted: 195 

supervised or unsupervised. CNNs are supervised learning algorithms, therefore they require the 196 
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development of a labeled data set, referred to as the training set. This training set allows a human 197 

operator to dictate how the network makes decisions, by providing desired data for the network 198 

to make comparisons against. This contrasts unsupervised learning, where a network runs until it 199 

converges on a pattern or an end condition is reached. As expected, supervised learning is more 200 

efficient but does require additional setup in the development of the learning set and may be 201 

subject the supervisor’s bias in selecting representative data.   202 

The training set is developed by human inspection following a predetermined 203 

classification scheme. The idiom is that every snowflake is unique, therefore it is no surprise that 204 

there are a variety of attempts to classify them (Korolev and Sussman 2000, Grazioli et al. 2014), 205 

with little commonality between schemes. The scheme used in this work was adopted from Praz 206 

et al. (2017), who developed a snowflake classifier using Multinomial Logistic Regression 207 

(MLR) and will be summarized in this section.  208 

The scheme utilizes the nine categories of snowflakes detailed in (Magono and Lee 209 

1966), with some changes due to data availability and simplification. They introduce the 210 

category of Aggregate particles, which are single snowflakes that are the result of the in-air 211 

collision of two or more particles and Small Particles, snowflakes whose feature characteristics 212 

are too small to categorize. They also combine the category of needle and column type 213 

snowflakes, as they share similar characteristics. Their result was 10 individual categories that 214 

include Aggregate (AG), Small Particle (SP), Columnar Crystal (CC; the resulting combination 215 

of needle and column particulates), Planar Crystal (PC), a Combination of Columnar Crystals, a 216 

Combination of Planar Crystals, Combination of Columnar and Planar Crystals, Graupel (GR), 217 

Irregular Snow Crystal, and Germ of Snow. Due to limited sample representation, the training set 218 

used in this paper includes only the most populated five classes, AG, CC, PC, SP, and GR, 219 
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shown in Figure 3, although more classes may be added to the classifier as sample data is 220 

accrued. A different training set is used for each classifier, and therefore their development 221 

considerations are unique to each set.  222 

   223 

3.1 Geometric Training Set 224 

 At the heart of supervised learning is the comparison between the desired value 225 

(established in the training set) and a value calculated by the network, that is later refined 226 

through the learning process. This is an oversimplification, with more in-depth analysis provided 227 

in Section 4, but it is important to understand that the more unique the classes within a training 228 

set are from each other, the better the network will perform, given a limited training set (which 229 

seems obvious but cannot be overstated). The training set for geometric classification was 230 

developed by selecting individual images of the snowflakes that best represented their respective 231 

classes, with decision emphasis placed on discernable snowflake silhouettes. The result is a 232 

training set of ~1,450 samples. 233 

 234 

3.2 Riming Degree Estimation Training Set  235 

 Riming degree estimations attempt to calculate the amount of cloud frozen droplets that 236 

accrue on a snowflake’s surface as the snowflake falls through the atmosphere. The MASC 237 

system captures images with sufficiently detailed resolution that the degree of riming can be 238 

considered a feature of the image. There are two approaches to riming degree estimation 239 

considered in this paper. The first approach divides riming degree into 5 classes utilizing the 240 

classification scheme adapted by Praz et al. (2017). The second approach is a proposal that 241 

capitalizes on the unique nature of CNNs and warrants further exploration.  242 
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 Praz et al. (2017) classify riming degree based on the image criteria summarized in Table 243 

1. These five degrees of riming, 𝑅𝑑, are discrete classes between [1,5] as developed by 244 

(Mosimann et al. 1994) and are then mapped by Praz et al. (2017) to a continuous index, 𝑅𝑐, 245 

between [0,1], using a sinusoidal function:   246 

𝑅𝑐 =
1

2
(sin (

𝜋

4
(𝑅𝑑 − 3)) + 1).                                                  (1) 247 

The degree label decisions are based on educated opinion through the observation of a 248 

captured image. Questions arise when pondering the level of accuracy that a human observer can 249 

achieve in their estimation. For example, the difference between a riming degree estimation of 250 

3.1 and 3.2 is often arbitrary and a matter of opinion or even capability. To address this concern, 251 

it is proposed to utilize the posterior distribution (a result of the classifier) that a CNN uses to 252 

make classification decisions as the deciding factor in riming degree estimation.  The posterior 253 

distribution is a numerical value the classifier assigns to each snowflake describing the 254 

probability that it belongs to a given class or label. If labels are restricted to discrete values, the 255 

probability can be interpreted as the likelihood that a snowflake falls somewhere on that scale, 256 

making a continuous estimation.  257 

Developing the training set for this approach, the classification scheme focuses on the 258 

three easily identified classes for riming estimation, then allows the network to assign probability 259 

estimations (clarified at the end of Section 4.2) for how closely a snowflake resembles those 260 

classes, labeled 𝑅𝑙,𝑐 and characterized in Table 1. The estimate training classes are class 1, where 261 

snowflakes are the least rimed (no riming present), class 3, where a snowflake is rimed but 262 

geometric shape is preserved, and class 5, where the snowflake is fully rimed (graupel). This 263 

simplifies the classification process and increases the consistency in decision making when 264 

applying labels while developing the training set. The result after classification is snowflakes that 265 
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do not fall directly within these three classes are weighted somewhere between. For example, if a 266 

snowflake’s riming degree estimation is 𝑅𝑙,𝑐1 = 32% 𝑅𝑙,𝑐3 = 58% 𝑅𝑙,𝑐5 = 10%, the estimation 267 

on Praz et al.’s (2017) scale is akin to ~2.78. The numerical values are used as an example, with 268 

a simple linear mapping. As more images are processed, a more accurate mapping can be 269 

developed if desired. This provides a continuous riming degree estimation and the opportunity 270 

for greater accuracy in estimation. Attention must be paid to the number of geometric classes 271 

represented in each riming category, as it is important to have uniform representation. This 272 

restriction limits the size of training set available, but the approach looks promising and will 273 

warrant further testing as processed data becomes available.  274 

 275 

4. Convolutional Neural Networks Method and Code  276 

A brief discussion of the network architecture is presented in this section. An overview of 277 

key concepts pertaining to CNNs and deep learning is provided. The software implementation 278 

and input parameters outlined before results of the network training are discussed. 279 

 280 

4.1 Neural Network Architecture 281 

A human brain can process information very quickly, namely, it has an ability to rapidly 282 

take incoming information, assign meaning, and make decisions. This is accomplished through a 283 

complex interconnected system of neurons that process information in parallel. It is no surprise 284 

then that considerable effort has been made to mimic the complex way the brain processes 285 

information with machine learning algorithms.  286 

With artificial neural networks, more commonly known as “neural networks,” the basic 287 

architecture of the brain is recreated in a logical algorithm. The basis for the network architecture 288 
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used in this paper is called the “Multi-Layer Perceptron (MLP),” which is a feed forward neural 289 

network with backpropagation, whose general structure is represented in Figure 4a, and as an 290 

algorithm in Figure 4b. In general, there is an input signal which is passed to the hidden layers 291 

for processing, with final decision making the result of the output layer.  The algorithm is “feed 292 

forward” in reference to the direction of information and the “backpropagation” describes the 293 

learning process, which is detailed below.  294 

Referring to Figure 4b, the forward pass of the learning algorithm applies the input value 295 

𝑥1…𝑁  of training sample p with a weighted bias of w𝑘𝑗
(1)

(𝑝) . This bias serves to both connect the 296 

input j to neuron k and to refine the error estimation of the classifier, 𝐸𝑝, and are generally 297 

random values between a range loosely defined by the number of inputs (Azimi 2018). The 298 

potential of neuron k is represented by  299 

𝑢𝑘
(1)(𝑝) = ∑ w𝑘𝑗

(1)𝑁+1
𝑗=1 (𝑝)𝑥𝑗(𝑝),      ∀𝑘𝜖[1, 𝐾].                                        (2) 300 

The nonlinear activation function is, commonly, the logistic function 𝑓(∙) (Murphy 2012) or, 301 

more recently (and in the case of this paper), the Rectified Linear Unit (ReLU), 302 

𝑓(𝑢) =
1

1+exp (−𝑢)
     or     𝑅𝑒𝐿𝑈(𝑢) = 𝑚𝑎𝑥 (0, u).                                  (3) 303 

This activation function determines the output of the current neuron, which, in turn, becomes the 304 

input of the next layer within the network, 305 

𝑜𝑘
(1)

(𝑝) = 𝑓 (𝑢𝑘
(1)(𝑝)),      ∀𝑘ϵ[1, 𝐾].                                            (4) 306 

This process is repeated until the final layer of the network is reached, labeled “Output” in 307 

Figure 4b. It is at this point that the sum squared error of the classifier can be calculated, 308 

𝐸𝑝 =
1

2
∑ (𝑑𝑚

(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝) − 𝑜𝑚
𝑜𝑢𝑡𝑝𝑢𝑡(𝑝))

2
𝑀
𝑚=1 .                                       (5) 309 
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Our goal is to minimize 𝐸𝑝, such that the desired output, 𝑑𝑚
(𝑜𝑢𝑡𝑝𝑢𝑡)

(𝑝), is as close to the 310 

calculated output, 𝑜𝑚
𝑜𝑢𝑡𝑝𝑢𝑡(𝑝), as possible. It is unlikely that 𝐸𝑝 is within acceptable parameters 311 

on the first pass of learning, therefore there needs to be some method to refine the weights to 312 

approach convergence. This requires calculation of the partial derivative of 𝐸𝑝 with respect to the 313 

weight in the final layer, namely, w𝑚𝑙
(𝑜𝑢𝑡𝑝𝑢𝑡)

 in Figure 4b. The full derivation falls outside the 314 

scope of this paper but can be found in various forms in (Murphy 2012; Haykin 2009; Syozil et 315 

al. 1997). The final result for this example three-layer network is 316 

∆w𝑚𝑙
(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝) = −𝜇∇𝐸𝑝(𝑝) = 𝜇𝑒𝑚

𝑜𝑢𝑡𝑝𝑢𝑡(𝑝)𝑓′ (𝑢𝑚
(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝)) 𝑜𝑙

𝐻−1(𝑝), 317 

 ∀𝑚 ∈ [1, 𝑀] and ∀𝑙 ∈ [1, 𝐿],                                                   (6) 318 

where  319 

𝑒𝑚
𝑜𝑢𝑡𝑝𝑢𝑡(𝑝) = 𝑑𝑚

(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝) − 𝑜𝑚
𝑜𝑢𝑡𝑝𝑢𝑡(𝑝),      𝜇 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟.                    (7) 320 

Repeating this derivation for weight updates within the hidden layers shows that the calculated 321 

layer from the output is back-propagated through the network, 322 

∆w𝑚𝑙
(𝑜𝑢𝑡𝑝𝑢𝑡)

= 𝜇𝑒𝑚
𝑜𝑢𝑡𝑝𝑢𝑡(𝑝)𝑓′ (𝑢𝑚

(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝)) 𝑜𝑙
𝐻−1(𝑝),                           (8) 323 

 ∆w𝑚𝑙
(𝑜𝑢𝑡𝑝𝑢𝑡)

= w𝑚𝑙
(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝 + 1) − w𝑚𝑙

(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝),     ∀𝑚 ∈ [1, 𝑀],                     (9) 324 

∆w𝑙𝑘
(𝐻−1)

= 𝜇𝑓′ (𝑢𝑙
(𝐻−1)(𝑝)) 𝑜𝑘

1(𝑝) ∑ w𝑚𝑙
(𝑜𝑢𝑡𝑝𝑢𝑡)

(𝑝)𝑒𝑚
𝑜𝑢𝑡𝑝𝑢𝑡(𝑝)𝑓′ (𝑢𝑚

(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝))𝑀
𝑚=1 ,  (10) 325 

∆w𝑙𝑘
(𝐻−1)

= w𝑙𝑘
(𝐻−1)(𝑝 + 1) − w𝑙𝑘

(𝐻−1)(𝑝),     ∀𝑙 ∈ [1, 𝐿],                        (11) 326 

∆w𝑘𝑗
(1)

= 𝜇𝑓′ (𝑢𝑘
(1)(𝑝)) 𝑥𝑗(𝑝) ∑ w𝑙𝑘

(𝐻−1)(𝑝)

𝐿

𝑙=1

𝑓′ (𝑢𝑙
(𝐻−1)(𝑝)) 327 

∗ [∑ w𝑚𝑙
(𝑜𝑢𝑡𝑝𝑢𝑡)

(𝑝)𝑒𝑚
𝑜𝑢𝑡𝑝𝑢𝑡(𝑝)𝑓′ (𝑢𝑚

(𝑜𝑢𝑡𝑝𝑢𝑡)(𝑝))𝑀
𝑚=1 ] ,                              (12) 328 

∆w𝑘𝑗
(1)

= w𝑘𝑗
(1)(𝑝 + 1) − w𝑘𝑗

(1)(𝑝),    ∀𝑘 ∈ [1, 𝐾].                                 (13) 329 
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This back and forth is continued until the error stops decreasing or an acceptable value is 330 

reached.  331 

 332 

4.2 Convolutional Neural Networks 333 

 With image classification, the input value of 𝑥1…𝑁 is a pixel of the image in the training 334 

set and this presents a major limitation to typical MLP architectures. Each input has an individual 335 

weight value per neuron in the network, so for even a moderately deep network (the number of 336 

hidden layers in the network refers to how deep a network is), the result is upwards of hundreds 337 

of thousands of weights that require refinement, or even millions for very high resolutions, 338 

making this computationally inefficient for modern practical purposes. CNNs solve many of the 339 

problems MLPs experience for image processing and have proven useful with other data types 340 

(e.g., Collobert and Weston 2008, O’Shea et al. 2016). A visual representation of the CNN 341 

architecture is shown in Figure 5.  342 

The defining features of the CNN architecture are the inclusion of the convolution layer, 343 

a pooling layer, and the fully connected layer. The convolution operator introduces several 344 

advantages to the architecture, namely sparse interactions, parameter sharing and equivariance to 345 

translation (Goodfellow et al. 2016). As is depicted in Figure 5, the convolution layer creates a 346 

series of feature maps by scanning a weight matrix of size [i,j] over the surface of the input data. 347 

This reduces the number of parameters the network must consider and introduces weight sharing. 348 

Comparing to Figure 4b, the inputs are blocked or shared between units with shared weights. The 349 

result is a reduction in memory requirements and an improvement of statistical efficiency 350 

(Goodfellow et al. 2016). After the convolution is performed, the linear activations that result are 351 

then passed through a nonlinear activation function, like the ReLU which has largely replaced 352 
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other activation functions, as it improves efficiency without a reduction in accuracy (Goodfellow 353 

et al. 2016). The convolution layer can be repeated with different sized weight matrices to extract 354 

more and more abstract features. LeCun et al. (1998) introduced the pooling, or subsampling, 355 

layer to their model LeNet5 to achieve shift invariance (Murphy 2012). This is accomplished by 356 

either averaging or producing a max over a small window of the convolution layer. This step is 357 

especially vital for image classification, as it allows the network to extract features without 358 

concerning exactly where the features are located (Goodfellow et al. 2016). An additional benefit 359 

of this property is that it makes transfer learning with pretrained networks possible (Torrey and 360 

Shavlik 2009), which significantly reduces the size of training set necessary for new 361 

classification schemes. LeNet5 followed every convolution with a pooling layer, but this is 362 

unnecessary. It has been shown that the best results for complex data sets apply a few pooling 363 

layers after the first series of convolution layers and a final pooling layer after the next to last 364 

convolution layer (Romanuke 2017). The final few layers of the network will consist of fully 365 

connected layers which are akin to those in regular neural networks. The output of these layers 366 

after activation are passed to a softmax operator 𝜎(∙) where high-level decisions are made, and 367 

after several passes, a class label is applied. The learning process is summarized as 368 

𝑦𝑗 = 𝜎(𝑜)𝑗 =
exp (𝑧𝑗)

∑ exp (𝑧𝑘)𝐾
𝑘=1

,      ∀𝑗 ∈ [1, 𝐾] ,                                         (10) 369 

where 𝑦𝑗 = 𝑝(𝐶𝑗|𝑥), a posterior distribution over the available classes, with 𝐶𝑗 standing for the 370 

class and 𝑥 for the input vector. In Section 3.2, a term “likelihood” is used to provide a label to 371 

the degree of riming present for a given snowflake, for added clarity, 𝑦1 = 𝑅𝑙,𝑐1, 𝑦3 = 𝑅𝑙,𝑐3, and 372 

𝑦5 = 𝑅𝑙,𝑐5. If 𝒲 is the set of all parameters for the network, and the set of training samples is 373 

{𝑥𝑝, 𝑑𝑝}𝑝−1
𝑃 , then using 𝑦𝑗 as an input to a cost function 𝜀(∙), whose minimization is achieved 374 

through a modified error backpropagation (Azimi 2018), 375 
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𝜀(𝒲) =
1

𝑁
∑ ||𝑑𝑝 − 𝑦(𝑥𝑝; 𝒲)||

2
𝑃
𝑝=1 .                                            (11) 376 

 377 

4.3 Residual Networks 378 

For complicated data sets, network comparisons have shown that increased depth 379 

improves network accuracy (Simonyan and Zisserman 2015, Szegedy et al. 2015). Deep 380 

networks have more capacity for different level (low/mid/high) features (Zeiler and Fergus 381 

2014), and the top performing networks on the ImageNet dataset have employed deep models 382 

(He et al. 2016). The tradeoff is that the deeper the network becomes, the more the accuracy 383 

saturates and begins to quickly decline (He et al. 2016). To combat this, a group of researchers 384 

from Microsoft Research, He et al. (2016), have utilized the residual network architecture. A 385 

residual network architecture is very similar to a convolutional neural network, with one 386 

addition. Namely, every few convolutional layers, a short cut identity is included, Figure 6, 387 

which fits the layers to a residual mapping, instead of hoping that they would come to a desired 388 

mapping naturally (He et al. 2016).  389 

 390 

4.4 Software Implementation 391 

A major benefit to utilizing convolutional neural networks for hydrometeor classification 392 

based on high-resolution images is their (recent) widespread popularity for image processing in 393 

general. As a result of this popularity and widespread use, there are extensive software toolboxes 394 

available, both commercial and open source, with detailed walkthroughs for a variety of tasks 395 

and applications. Due to the automatic feature extraction inherent to their algorithm, CNNs can 396 

be applied and operated by non-experts, increasing their functionality as a preprocessing 397 
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frontend for big data tasks. The toolboxes and setup utilized in this study are described as 398 

follows.  399 

The same network architecture is used for geometric classification and riming degree 400 

estimation and can be run in parallel. The network was implemented using MATLAB™ 2018, 401 

with the Deep Learning and Machine Learning Toolboxes at Colorado State University. The 402 

network architecture is the ResNet-50, which was chosen over AlexNet (Krizheysky et al. 2012)  403 

or GoogleNet (Szegedy et al. 2015) due to its balance between accuracy and speed (Mathworks 404 

2018c) and has been pretrained on the ImageNet database (Russakovsky and Deng et al. 2015) to 405 

reduce the size of the training set data necessary to be an effective classifier. The more 406 

complicated the classification task, the larger the data set needed to extract relevant features (He 407 

et al. 2016). Geometric classification, however, is a common problem in image classification, 408 

and therefore it is an ideal candidate for pretraining. A network pretrained for image 409 

classification can reuse many of the features extracted and made task specific on a reduced 410 

training data set (del-Rio et al. 2018). Each class in the training set is limited to the smallest 411 

populated class, for instance, the Planar Crystal class is the least populated and has 290 images, 412 

this then sets an upper limit of 290 on all classes. This is done so overrepresentation does not 413 

occur in the training phase. The entire training data set is divided into two categories, “training” 414 

and “validation”. As is customary, 70% of the entire training data set is randomly selected and 415 

stored in the “training” category, with the remaining 30% saved for validation of the network 416 

performance. This separation reduces the likelihood of the network overfitting to data and allows 417 

for an accurate test for generalization. The training images are randomly reflected, translated and 418 

scaled within a defined range to improve the networks invariance to small changes (Murphy 419 

2012).  A technique known as Dropout (Srivastava et al. 2014) is employed on the pretrained 420 
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network weights to further reduce any overfitting that may occur. The network performance is 421 

determined by mean square and the loss function is calculated as stochastic gradient descent. 422 

Validation occurs every three iterations over 10 epochs (one epoch is a training phase where all 423 

training data is considered), although experimentation has shown that 6 epochs are enough to 424 

improve training time without loss of performance as is adopted for later tests. The learning rate 425 

for both networks is 0.0003.  426 

 427 

5. Results and Discussion 428 

 This section presents and discusses the results of the geometric classification and riming 429 

degree estimation using the described method for classification of snowflakes based on images 430 

by a multi-angle snowflake camera by means of convolutional neural networks. The learning 431 

curves for each network are presented, along with an associated confusion matrix calculated 432 

from blind data to highlight the network’s generalization (the ability for a network to classify 433 

new data). 434 

 435 

5.1 Geometric Classification  436 

 The results of network training for geometric classification are shown in Figure 7. The 437 

training data set included ~1,450 images and training occurred over 900 iterations. The network 438 

achieves a mean accuracy of 93.4% with a loss function of ~0.2 and little variance between runs. 439 

Training time was 13 minutes and 23 seconds. This is very good accuracy given the size of the 440 

data set and the training time is reduced when limited to 6 epochs (from ~13 min to ~8 min). To 441 

test the generalization of the network, it is then used to classify ~400 snowflakes not included in 442 

training, the results of which are shown in Figure 8. 443 
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 The relevant information from the confusion matrix can be seen in the bottom row and 444 

right-most column. The bottom row is the percentage value of when the network was presented 445 

with an image and correctly classified it on a per class basis. The right-most column is out of 446 

class accuracy, i.e., how often the network confused an image within a class for something else. 447 

The confusion matrix shows that the network has some issues making decisions between planar 448 

crystal and aggregate snowflakes. This is consistent with established reasoning, as the planar 449 

crystal class is most visibly similar to aggregate snowflakes and was also the smallest 450 

represented class for training which limited the diversity of available samples. Increasing the 451 

number of samples should enhance the network’s ability to differentiate between the two classes.  452 

 453 

5.2 Riming Degree Estimation 454 

 With riming degree estimation, two networks were trained for comparison. One of the 455 

networks keeps the discrete five classes determined using Praz et al’s (2017) [1,5] classification 456 

scheme (Table 1), while the other network removes the two classes labeled 2 and 4, relying 457 

instead on the posterior distribution, or “likelihood” estimation, to assign a continuous label to 458 

snowflakes that fall within the edge cases.  Comparing the learning curves of the two networks 459 

(Figure 9), it is clear that classes 2 and 4 are difficult for the network to analyze. The result of 460 

training is a mean accuracy of 68.8% and a loss of ~1 for the network trained on five classes 461 

(Figure 7a) and a mean accuracy of 92.4% with a loss of <0.3 for the network with only three 462 

classes (Figure 7b). The second network is then tasked with classifying a data set that includes 463 

samples from all five classes. Results of the applied “likelihood” percentage, 𝑅𝑙,𝑐#, are shown in 464 

Figure 10. Here we show the network’s capability to apply a riming degree estimation 465 

determined by features found in the edge case classes used in training. In Figure 10, examples of 466 
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individual degree estimations are depicted in the top-most row, while the network’s capability to 467 

distinguish between snowflakes with similar characteristics is showcased on the bottom. An 468 

inherent benefit of this estimator is that it removes some of the guesswork involved when a 469 

human user classifies snowflakes individually. While the human processor may introduce error 470 

through fatigue or the result of an immediacy bias, a network will not suffer from these potential 471 

pitfalls and may catch misclassified images (Figure 11). Note that a larger, more diverse training 472 

data set will be required before more accurate and conclusive tests can be performed.    473 

Developing a riming degree estimator relies almost entirely upon features that are unique 474 

to images of snowflakes. Best results will be derived from training sets where features unrelated 475 

to riming degree estimation are equally represented, so that they are effectively removed from 476 

the decision-making process. Without equal representation, the network can develop a bias based 477 

on which feature is more prevalent. An example of this bias shown in Figure 12 is a result of 478 

columnar crystal images being overrepresented in the “no riming” category. In Figure 12a, the 479 

estimator gives an accurate prediction indicated by the 𝑅𝑙,𝑐# values, but the bias is evident in 480 

snowflakes in Figures 12b and 12c, resulting in a severe underestimation and overestimation, 481 

respectively. In the storms sampled, snowflakes demonstrating no degree of riming were 482 

relatively rare, which is why columnar crystal snowflakes compose the bulk of the data set.  To 483 

achieve equal representation of unrelated snowflake features, a wider variety of storms from 484 

different seasons will need to be processed.  485 

 486 

6. Conclusions  487 

This paper has applied recent developments in machine learning to the problem of 488 

automatic winter hydrometeor classification. Utilizing convolutional neural networks, the task of 489 

Accepted for publication  in Journal of Atmospheric  and  Oceanic  Technology. DOI 10.1175/JTECH-D-19-0055.1.



Hicks and Notaroš – Journal of Atmospheric and Oceanic Technology, April 7, 2019 

 

23 
 

classifying snowflakes based on geometric characteristics and riming degree has been 490 

undertaken. Convolutional neural networks are ideal for image classification due to their 491 

efficient data handling, automatic feature extraction, versatility, and relative ease of application. 492 

A training set has been developed primarily from two winter precipitation events and consists of 493 

1,450 snowflakes. Six geometric classes have been defined based on observable physical 494 

characteristics of the snowflakes. These classes are aggregate, columnar crystal, planar crystal, 495 

small particle, graupel, and a combination of columnar and planar (although the latter is 496 

discarded due to rarity until further data is processed). Geometric training has focused on 497 

individual snowflakes that are easily identifiable as members of a single class. The result of 498 

training is a network with 93.4% classification accuracy. This performance is sufficient to begin 499 

processing the many hours of recorded data from the MASCRAD project and begin growing the 500 

training data set for continued network development. Currently, our CNN is best equipped for 501 

small-batch processing (few hundred snowflakes per batch) due to the size of its training data set. 502 

By processing more data with diverse environmental conditions, the network will eventually be 503 

able to process bulk data that number in the thousands and tens of thousands, and more. With 504 

additional snowflake variety, geometric sub-classes and rarer classes may be introduced to the 505 

network, expanding from the five classes currently utilized. 506 

The results obtained by the riming degree estimator using a CNN have shown promise. 507 

The training set is composed of images from all geometric classes separated (where applicable) 508 

into three categories: no riming, rimed, and graupel. The network has achieved 92% accuracy 509 

when estimating snowflakes that fall into these categories of riming. The probabilistic estimation 510 

that results at the output layer of the CNN has then been used to gauge where a snowflake falls 511 

within these three degrees of riming (classes 2 and 4 from Praz et al.). The high degree of 512 
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accuracy has been maintained by the network in determining whether a snowflake is more rimed 513 

or less rimed (belonging in class 2 or 4) but more sample data must be developed to increase 514 

precision of estimation and remove the influence of feature bias. Feature extraction requires a 515 

large number of images and features unique to snowflake images cannot be compensated for by 516 

pretraining on unrelated images. More diverse snowflakes will help remove any bias the network 517 

develops. For example, a method for mapping the estimation to fit Mosimann et al. (1994) can be 518 

developed as more output data becomes available. Finally, processing data from different 519 

seasons may lead to additional classification tasks, such as wet vs. dry snow, and may be 520 

considered in future applications of the CNN classification approach.   521 

The classification network developed and presented in this paper will be used in the 522 

processing of MASCRAD data, but the architecture is suitable for any solid hydrometeor 523 

classification task and is suitable as a preprocessing frontend to any image-based particle 524 

recording instrument/device or system. The network is fitting for users with limited experience in 525 

image processing, machine learning or atmospheric research. Organized data by geometric and 526 

microphysical characteristics and accurate riming degree estimations will help further research 527 

into hydrometeor scattering. An example of future work is related to linking the microphysical 528 

characteristics of snowflakes to the scattering properties through 3D shape reconstruction and 529 

modeling (Kleinkort et al. 2017), followed by the realistic scattering computation (Chobanyan et 530 

al. 2015). Overall, this and many other applications of automatic CNN-based winter hydrometeor 531 

classification will potentially improve propagation models as higher frequencies continue to be 532 

explored, whether for use in remote sensing of hydrometeors, communication or other related 533 

fields.  534 

 535 
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Tables 706 

Table 1. Physical descriptions characterizing the degree of riming, 𝑅𝑑, on a given snowflake, 707 

with numerical representations as described by Mosimann et al. (1994), in column 2. Column 1 708 

contains degree estimations, 𝑅𝑐, utilized by Praz et al. (2017). Column 3 gives the probability 709 

estimates, 𝑅𝑙, used in this paper.  710 

𝑅𝑐

∈ [0,1] 
𝑅𝑑

∈ [1,5] 
𝑅𝑙 ∈ [1,5] Coverage 

of the 

surface 

Description 

0 1 (none) 1.0   

(𝑅𝑙,𝑐1  ≥ 99%) 

0% No cloud droplets on the surface. 

Snowflakes are detailed and delicate in 

appearance. 

0.15 2 

(rimed) 

1.01 to 2.99 
(𝑅𝑙,𝑐1 , 𝑅𝑙,𝑐3  > 𝑅𝑙,5) 

−̃  50% Up to half of the surface is covered with 

cloud droplets. There may be delicate 

features, but some clumping has 

occurred. 
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0.5 3 

(densely 

rimed) 

3.0 

(𝑅𝑙,𝑐3 ≥ 99%) 

 −̃ 100% The entire snowflake is covered with 

cloud droplets, but the general shape is 

conserved.  

0.85 4 

(graupel-

like) 

3.01 to 4.99 
(𝑅𝑙,𝑐5 , 𝑅𝑙,𝑐3 > 𝑅𝑙,𝑐1) 

> 100% The entire snowflake is heavily covered 

with cloud droplets, to the point where 

the original shape is barely recognizable 

1.0 5 

(graupel) 

5.0  
(𝑅𝑙,𝑐5 ≥ 99%) 

≫ 100% The entire snowflake is heavily covered 

with cloud droplets. Original shape is no 

longer distinguishable and has entered the 

class of graupel.  

 711 

 712 

Figure Caption List 713 

 714 

Figure 1. MASCRAD Snow Field Site at Easton Valley Airport, near Greely, Colorado, under 715 

the umbrella of CSU-CHILL Radar. MASC (top right), along with other surface instrumentation, 716 

is contained in the 2/3-scaled DFIR. 717 

 718 

Figure 2. Multi-Angle Snowflake Camera (MASC), with three cameras in the horizontal plane 719 

for capturing high-resolution photographs of winter precipitation (top left); The CSU MASC 720 

system has been modified to included two cameras situated on an elevated plane, poised at 55° 721 

above the horizon to aid in the visual hull 3D particle shape reconstruction (top right); Example 722 

images from each camera, the first three columns are from the horizontal cameras and the final 723 

two are from the lower-resolution raised cameras (bottom two rows, from left to right). 724 

 725 

Figure 3. Examples of MASC images characterizing the geometric classes (top row) and riming 726 

degree estimations (bottom row). 727 
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 728 

Figure 4. (a) Feed Forward Network architecture demonstrating how each neuron is connected 729 

to every neuron in the previous layer. (b) Algorithm for feed forward learning process within the 730 

network. 731 

 732 

Figure 5. Highlighting the key steps within a typical convolutional neural network: The input 733 

layer is scanned with a [i,j] weight matrix to create the feature map; The feature map is averaged 734 

or maxed to increase network efficiency in the pooling layer; Decision making occurs at the final 735 

fully connected layer.  736 

 737 

Figure 6. Additional Residual step introduced to a typical neural network architecture. 738 

 739 

Figure 7. A mean average is validated every three iterations (black dots) over 10 epochs with a 740 

mean average of 93.4% (top), the same parameters are shared by the loss function evaluation 741 

with a final value of ~0.2 (bottom). 742 

 743 

Figure 8. The network was tasked with classifying 395 snowflakes to test generalization. The 744 

left axis is what the network labeled the input data as, and the bottom axis is what the input data 745 

was. Green boxes represent correctly classified images, with total number in bold and percentage 746 

of total immediately below. Green text represents a correct classification, while the red 747 

percentage is the misclassification of the network. The overall network accuracy is shown in the 748 

bottom right corner. 749 
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 750 

Figure 9. (a) A network was trained using classes composed of images representing the five 751 

discrete riming degree values [1,5] described in Table 1; (b) A separate network was trained 752 

using the same image data, only removing the images comprising classes 2 and 4. 753 

 754 

Figure 10. The values represent the output of the riming degree estimation network: the top row 755 

highlights the network’s range, while the bottom mostly demonstrates its ability to differentiate 756 

between similar snowflakes. 757 

 758 

Figure 11. Utilizing a neural network for riming degree estimation has the advantage of 759 

quantified data driven decision making. 760 

 761 

Figure 12. (a) An image of a correctly labeled image by the Riming degree estimator. (b) The 762 

network underestimates the degree of riming in the image due to feature bias present in the “no 763 

riming” class. Expected results for this image should be a higher value for 𝑅𝑙,𝑐3. (c) The network 764 

overestimates the degree of riming due to feature bias from the “graupel” class.  765 

 766 

  767 
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Figures 768 

 769 

  770 

Figure 1. MASCRAD Snow Field Site at Easton Valley Airport, near Greely, Colorado, under 771 

the umbrella of CSU-CHILL Radar. MASC (top right), along with other surface instrumentation, 772 

is contained in the 2/3-scaled DFIR.  773 

 774 

 775 
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 776 

Figure 2. Multi-Angle Snowflake Camera (MASC), with three cameras in the horizontal plane 777 

for capturing high-resolution photographs of winter precipitation (top left); The CSU MASC 778 

system has been modified to included two cameras situated on an elevated plane, poised at 55° 779 

above the horizon to aid in the visual hull 3D particle shape reconstruction (top right); Example 780 

images from each camera, the first three columns are from the horizontal cameras and the final 781 

two are from the lower-resolution raised cameras (bottom two rows, from left to right). 782 

 783 

 784 

2 Additional Cameras
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 785 

Figure 3. Examples of MASC images characterizing the geometric classes (top row) and riming 786 

degree estimations (bottom row). 787 

 788 

 789 
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 790 

Figure 4. (a) Feed Forward Network architecture demonstrating how each neuron is connected 791 

to every neuron in the previous layer. (b) Algorithm for feed forward learning process within the 792 

network. 793 

 794 

 795 

 796 

 797 

 798 
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 799 

Figure 5. Highlighting the key steps within a typical convolutional neural network: The input 800 

layer is scanned with a [i,j] weight matrix to create the feature map; The feature map is averaged 801 

or maxed to increase network efficiency in the pooling layer; Decision making occurs at the final 802 

fully connected layer.  803 

 804 

 805 

 806 

Figure 6. Additional Residual step introduced to a typical neural network architecture. 807 
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 808 

 809 

Figure 7. A mean average is validated every three iterations (black dots) over 10 epochs with a 810 

mean average of 93.4% (top), the same parameters are shared by the loss function evaluation 811 

with a final value of ~0.2 (bottom). 812 

 813 
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 814 

Figure 8. The network was tasked with classifying 395 snowflakes to test generalization. The 815 

left axis is what the network labeled the input data as, and the bottom axis is what the input data 816 

was. Green boxes represent correctly classified images, with total number in bold and percentage 817 

of total immediately below. Green text represents a correct classification, while the red 818 

percentage is the misclassification of the network. The overall network accuracy is shown in the 819 

bottom right corner. 820 

 821 

 822 
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 823 

 824 

Figure 9. (a) A network was trained using classes composed of images representing the five 825 

discrete riming degree values [1,5] described in Table 1; (b) A separate network was trained 826 

using the same image data, only removing the images comprising classes 2 and 4. 827 

a)

b)
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 828 

 829 

Figure 10. The values represent the output of the riming degree estimation network: the top row 830 

highlights the network’s range, while the bottom mostly demonstrates its ability to differentiate 831 

between similar snowflakes. 832 

 833 
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 834 

Figure 11. Utilizing a neural network for riming degree estimation has the advantage of 835 

quantified data driven decision making.  836 

 837 

 838 

 839 

 840 

Figure 12. (a) An image of a correctly labeled image by the Riming degree estimator. (b) The 841 

network underestimates the degree of riming in the image due to feature bias present in the “no 842 

riming” class. Expected results for this image should be a higher value for 𝑅𝑙,𝑐3. (c) The network 843 

overestimates the degree of riming due to feature bias from the “graupel” class.  844 

Accepted for publication  in Journal of Atmospheric  and  Oceanic  Technology. DOI 10.1175/JTECH-D-19-0055.1.




