
2379-8793 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JMMCT.2020.3044011, IEEE Journal
on Multiscale and Multiphysics Computational Techniques

1

Abstract—We propose and experimentally validate a new ray

spawning and associated double count removal (DCR) technique

for shooting bouncing ray tracing (SBR). This technique allows,

for the first time, efficient parallelization of ray DCR, the major

bottleneck and least parallel aspect of modern SBR ray-tracing

relying on the ray-cone approximation (RCA). We define non-

self-adjacent (NSA) ray classes on a recursively sampled

icosahedron, guaranteeing removal of mutual adjacency data

dependencies between rays that previously prevented efficient

parallelization of ray double count removal and, by extension,

SBR. Using a GPU-parallelized implementation of the technique,

we demonstrate speedups of DCR over 300×, limited in our

testing only by the available hardware. As DCR is the

asymptotically dominant contributor to the computation time of

SBR-RCA, with respect to the number of parallel processes

available, the achieved speedup applies to parallel SBR-RCA as a

whole.

Index Terms—Electromagnetic propagation modeling,

asymptotic high-frequency techniques, high-performance

computing, parallelization, GPUs, ray tracing method, shooting

bouncing rays techniques, double count removal, ray-cone

approximation, ray classes, large-scale simulations.

I. INTRODUCTION

ay tracing is an old and simple computational

electromagnetics (CEM) technique that has seen renewed

interest in recent years due to increased computing power

and demand for fast propagation modeling in electrically-

large, complicated environments. A frequency-asymptotic

technique, ray tracing is well-suited to the types of

propagation problems to which classical full-wave techniques

like method of moments (MoM), finite difference (FD), and

finite element method (FEM) are least suited. As such, ray

tracing fills an important gap in the toolkit of methods

available to CEM researchers and practitioners for diverse

applications including 5G planning, propagation modeling in

tunnel environments, and received signal strength (RSS)

Manuscript received January 21, 2020, revised May 11, 2020. This work

was supported by the National Science Foundation under grant ECCS-

1646562.
Cam Key, Blake Troksa, Stephen Kasdorf, and Branislav M. Notaroš are

with the Department of Electrical and Computer Engineering, Colorado State

University, Fort Collins, CO 80523-1373 USA (e-mail:
camkey@rams.colostate.edu, blake.troksa@gmail.com, skasdorf@rams.

colostate. edu, notaros@colostate.edu).

mapping [1]-[4]. As ray tracing is applied to a broader suite of

increasingly demanding applications, the efficiency and

scalability of the technique is now, more than ever, paramount

to its usefulness.

For electrically-large propagation environments with linear,

homogeneous media, ray tracing techniques have

predominantly relied on image theory (IT) or the shooting-

bouncing rays method (SBR); see [5] for an overview of these

methods. In both cases, rather than explicitly solving

variational formulations of Maxwell’s equations and resulting

linear systems, as full-wave techniques do, ray tracing

iteratively constructs an approximate solution by propagating

rays, each representing radiation from a source over a

differential solid angle, and recording their interaction with the

environment constrained as modeled by high frequency

approximations like the Fresnel coefficients and theory of

geometric optics (GO). For an excellent historical and

theoretical background, see [6].

Image theory computes the paths rays follow from a source

to a given receiver by recursively reflecting a source over all

boundaries visible from that source to produce a set of image

sources—each image source then treated as a new source. This

process is continued to some maximum number of reflections,

𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 , at which point any valid paths from source to

receiver with up to 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 reflections can be computed

from the set of image sources—see [6] for a good overview.

The advantage of this approach is that all possible paths

between source and receiver with 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 or fewer are

captured exactly, reducing phase error. However, the

computational complexity of IT is 𝑂(𝑁𝑓𝑎𝑐𝑒𝑠
𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠), where

𝑁𝑓𝑎𝑐𝑒𝑠 is the number of flat surfaces used to represent material

discontinuities in the propagation environment. Since, for

modern problems, 𝑁𝑓𝑎𝑐𝑒𝑠 is large, IT quickly becomes

computationally untenable, even for small numbers of

reflections. We note, however, that some techniques like

reflection spaces or illumination zones can somewhat reduce

the computational cost of IT.

SBR overcomes the computational shortcomings of IT by

instead choosing a set of ray directions and a fixed number of

rays a priori, then propagating each ray through the

environment until it has made 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 reflections or some

other stop criterion is met, e.g., the ray leaving some region of

interest. This yields linear complexity with the number of rays,

and, using domain partitioning methods like the binary space

partition (BSP), logarithmic complexity with respect to the

Non-Self-Adjacent Ray Classes for

Parallelizable Shooting Bouncing Ray Tracing

Double Count Removal

Cam Key, Student Member, IEEE, Blake A. Troksa, Student Member, IEEE, Stephen Kasdorf, and

Branislav M. Notaroš, Fellow, IEEE

R

Authorized licensed use limited to: Branislav Notaros. Downloaded on December 15,2020 at 05:35:49 UTC from IEEE Xplore. Restrictions apply.

2379-8793 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JMMCT.2020.3044011, IEEE Journal
on Multiscale and Multiphysics Computational Techniques

2

number of facets [7]. However, this does not produce a set of

exact paths between source point and receiver point,

necessitating a method to decide which rays’ field

contributions should be counted at a given receiver. This is

typically resolved by applying either the ray-cone

approximation (RCA) [8]-[9] or ray-tube launching (RTL)

[10]. Note that we only consider flat, triangular facets in this

paper.

RTL has the advantage of exactly tiling the sphere of

possible initial ray directions with no overlap. However, RTL

introduces cases where ray tubes are split when only part of a

tube’s subtended solid angle reflects from a given face.

Handling such cases introduces computational overhead and

heavily-conditional execution, yielding a ray count that grows

dynamically with reflection order in a way that cannot quickly

be predicted a priori. RTL can therefore not be parallelized in

an efficient, synchronous manner, making it a poor choice for

modern SBR applications where scalability on synchronous,

parallel hardware like graphics processing units (GPUs) is

critical [11].

RCA also suffers from a barrier to efficient and complete

parallelization: double count removal (DCR). DCR is

necessary when using RCA due to inherent overlap between

ray cones in the three-dimensional (3D) domain [11]. If a

receiver point falls within the overlap of two cones from the

same source, the field contribution from that source may be

counted twice, leading to significant error in the resulting

received power [11]. This necessitates a method to either

prevent such cases a priori or detect them and remove them

during computation. Many DCR approaches have been

proposed in the past, but none have been developed with

scalability on modern parallel hardware in mind. In [12], the

authors present a DCR method by which rays are described by

a characteristic sequence of planes hit, such that two rays with

the same characteristic sequence when arriving at the same

receiver are duplicates, necessitating the removal of one. This

requires a comparison of characteristic sequences between all

rays that arrive at a receiver to detect identical characteristic

sequences—leading to a worst case complexity of 𝑂(𝑁𝑟𝑎𝑦𝑠
2)

and producing a mutual data-dependency between rays that

prevents effective parallelization. This also suffers from

additional computational overhead where multiple coplanar,

adjacent facets are present and therefore need to be tracked as

the same object to maintain uniqueness of the characteristic

sequence of a unique ray. A similar method is described in

[13] that relies on information about each ray’s number of

reflections, distance traveled, and angle of transmission to

detect and remove double counts. This is essentially a

continuous version of the characteristic sequence from [12],

with which we identify ray paths by continuous-valued

properties of their propagation paths rather than discrete

indices. The method in [13] suffers from the same mutual

data-dependency between rays that hinders the method in [12]

from effective parallelization. The most common type of DCR

is described well in [14], which uses explicit geometric

calculations to determine if two rays that have arrived at the

same reception sphere contain the reception point in the

overlap of their ray cones, indicating a double count. This

approach is fast and reliable for sequential execution, but, as

with previous methods, suffers from a mutual data dependency

between rays that hinders its parallel performance and

scalability. A useful structured sampling method is described

in [8] that constrains the number of neighboring rays for any

given ray, limiting double count checks to a known set of

neighbor rays by sampling recursively on the icosahedron.

This is useful to reduce the worst-case complexity of DCR to

𝑂(𝑁𝑟𝑎𝑦𝑠). However, the DCR method described in [8] still

introduces a mutual data dependency between neighboring

rays that prevents efficient parallelization. We elaborate on

what we mean by a data dependency and why it makes

efficient parallelization difficult in Section V.C.

This paper proposes an efficient method of double count

removal in SBR ray tracing that is highly parallelizable and

removes the last major bottleneck to efficient parallel scaling

of SBR applied to CEM. We take a similar sampling approach

as [8] to limit potential double counts for each ray to a set of

known neighbor candidates and maintain an 𝑂(𝑁𝑟𝑎𝑦𝑠) worst

case run time, but introduce a new DCR method that does not

suffer from the mutual data dependency between rays that

prevents effective parallelization of previous DCR methods.

We introduce non-self-adjacent (NSA) classes of rays on the

structured icosahedral and octahedral samplings such that no

two rays in the same class are neighbors. When only one NSA

class is processed at a time, no ray has mutual data

dependency with any other ray currently being processed,

removing the major barrier presented by previous methods to

effective parallelization of SBR. Due to the structure of the

sampling we use and the way we define the NSA classes,

information from at most six neighbor rays needs to be

checked for double counting at the time a given ray is

processed. The number of neighbor rays that need to be

checked and their indices is known a priori for any ray. The

NSA classes we introduce have useful properties like

symmetry, asymptotic inter-class isotropy, and simple

definition yielding easy implementation. We present a four-

class NSA formulation on the icosahedron, maintaining

complete non-self-adjacency at the minor expense of inter-

class isotropy. We also present two three-class NSA

formulations: one on the icosahedron maintaining inter-class

isotropy but only asymptotic NSA, and one on the octahedron,

maintaining inter-class isotropy and full NSA at the expense

of decreased global sampling regularity.

In the rest of the paper, we introduce these NSA classes and

associated DCR methodology. We begin with a review of the

icosahedral sampling technique, followed by a description of

the introduced NSA classes, along with their definition, useful

properties, and relative advantages. We next discuss

application of the introduced NSA classes to highly-scalable

DCR, offering a theoretical discussion of the asymptotic

correctness of our simple DCR method in terms of sampling

the SBR image space. We introduce the image space with

motivating examples to facilitate this theoretical discussion.

We then present speedup, computation time, and scaling

results demonstrating efficacy of the proposed method,

achieving over 300× speedup. We conclude by further

outlining the potential of the new DCR technique using NSA

classes for efficient and scalable SBR.

Authorized licensed use limited to: Branislav Notaros. Downloaded on December 15,2020 at 05:35:49 UTC from IEEE Xplore. Restrictions apply.

2379-8793 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JMMCT.2020.3044011, IEEE Journal
on Multiscale and Multiphysics Computational Techniques

3

II. MATHEMATICAL DEFINITIONS

To facilitate simple discussion of NSA classes, we make a

variety of useful definitions and assumptions while noting a

few important consequences. We begin denoting by 𝑅 the set

of all rays to be processed and by 𝑟𝑖 ∈ 𝑅 the ith ray in R. We

assume here that each ray is unique, or formally that 𝑟𝑖 ≠
𝑟𝑗 , 𝑖 ≠ 𝑗. We then define the total number of rays, 𝑁𝑟𝑎𝑦𝑠 = |𝑅|.

We also denote by K the set of ray classes, and by 𝐶𝑖 ∈ 𝐾 a

specific ray class. A ray class is a set of rays. The total number

of classes is 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = |𝐾|. For all classes, we enforce

completeness ⋃ 𝐶𝑖
𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠
𝑖=1 = 𝑅, and independence 𝐶𝑖 ∩ 𝐶𝑗 =

∅, 𝑖 ≠ 𝑗. In general, we denote the neighborhood (set of

neighbors) of 𝑟𝑖 as 𝑁𝑖 with only the constraint that 𝑟𝑖 ∉ 𝑁𝑖. The

most useful choice of 𝑁𝑖 for RCA is the set of spherical

Voronoi neighbors of 𝑟𝑖, denoted here 𝑉𝑖. However, we

maintain generality in the choice of neighbors wherever we

use 𝑁𝑖. We formally define the NSA property as

{𝑟𝑖|𝑟𝑖 ∈ 𝑁𝑗, 𝑟𝑖 ∈ 𝐶𝑘, 𝑟𝑗 ∈ 𝐶𝑘} = ∅, ∀𝐶𝑘 ∈ 𝐾, (1)

and similarly, the asymptotic NSA property as

lim
𝑁𝑟𝑎𝑦𝑠→∞

|{𝑟𝑖|𝑟𝑖∈𝑁𝑗,𝑟𝑖∈𝐶𝑘,𝑟𝑗∈𝐶𝑘}|

|{𝑟𝑖|𝑟𝑖∈𝐶𝑘}|
= 0, ∀𝐶𝑘 ∈ 𝐾. (2)

III. NON-SELF-ADJACENT RAY CLASSES

NSA ray classes are those that satisfy (1). Structured DCR

methods like ours or [8] limit the DCR data dependency to a

known neighbor set. For such DCR methods, ray classes that

satisfy (1) guarantee that no rays within a given class are

dependent, allowing all members of a class to be processed in

parallel. Any ray class can satisfy (1) with the correct neighbor

sets, most simply and least usefully 𝑁𝑖 = ∅, ∀𝑟𝑖 ∈ 𝑅. In

competition with this, the specific choice 𝑁𝑖 = 𝑉𝑖 , ∀𝑟𝑖 ∈ 𝑅 is

geometrically correct for detecting SBR double counts but

constrains the possible classes that satisfy (1) for a given

sampling pattern. Satisfaction of (2) gives an easy solution to

this problem. For ray classes with 𝑁𝑖 = 𝑉𝑖 , ∀𝑟𝑖 ∈ 𝑅 that satisfy

(2) but not (1), we can ignore possible double counts between

neighbors in the same class, allowing members of the same

class to be processed in parallel while introducing only

minimal error. In practice, this is done by excluding from the

neighbor set of a ray any Voronoi neighbors that share the

class of that ray. Because of this, ray classes based on 𝑁𝑖 =
𝑉𝑖 , ∀𝑟𝑖 ∈ 𝑅 that satisfy only (2) are almost as useful as those

that satisfy (1). We show three useful ray class definitions

based on 𝑁𝑖 = 𝑉𝑖 , ∀𝑟𝑖 ∈ 𝑅 that satisfy (2) or (1).

Among the possible methods to define NSA ray classes for

SBR, the simplest is to assign each ray to its own class. Since,

for removal of the SBR DCR data dependency, we require ray

classes to be processed sequentially, assignment of each ray to

its own class is equivalent to fully sequential SBR. This may

seem trivial but reveals an important consideration for the

number of rays per class: if the number of rays per class is less

than the number of rays our given hardware can process in

parallel, then ray classing presents a computational bottleneck.

To maximize the minimum value of 𝑁𝑟𝑎𝑦𝑠 for which this

bottleneck occurs, it is desirable to choose the minimum

number of ray classes possible—the fewer ray classes, the

more rays per class. In choosing the minimum number of ray

classes, it is easy to see that neither one class nor two classes

can give us the necessary NSA property. For 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 1, (1)

is not satisfied unless 𝑁𝑖 = ∅, ∀𝑟𝑖 ∈ 𝑅, otherwise a ray and its

neighbors are in the same class. For 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 2, (1) is not

satisfied unless neighbors of a ray are themselves never

neighbors, or in other words, the graph, 𝐺, constructed by

connecting each 𝑟𝑖 ∈ 𝑅 to its neighbors contains no

topological triangles. 𝐺 with no topological triangles can exist

in general, but for the most useful case of 𝑁𝑖 = 𝑉𝑖 , ∀𝑟𝑖 ∈ 𝑅 , 𝐺

is the spherical Delaunay triangulation of 𝑅, which contains

only triangles for 𝑁𝑟𝑎𝑦𝑠 > 2.

For (1) to hold when 𝑁𝑖 = 𝑉𝑖 , ∀𝑟𝑖 ∈ 𝑅 , neighbors of any

𝑟𝑖 ∈ 𝑅 cannot be in the same class as 𝑟𝑖 and no adjacent

neighbors can be in the same class as each other. This

requires, at minimum, 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3 to fully satisfy (1). Since

𝑉𝑖 lie on a topological circle around 𝑟𝑖 we require

|𝑉𝑖| 𝑚𝑜𝑑 2 = 0, ∀𝑟𝑖 ∈ 𝑅, (3)

or in other words, an even number of neighbors for each ray.

A few regular neighborhoods with varying neighbor counts

are shown in Fig. 1.

 (a) (b) (c) (d)

Fig. 1. Examples of uniform local topology with three classes: (a) triangular,

(b) square, (c) pentagonal, and (d) hexagonal. Neighbors of central cell lie on
a topological circle.

For global sampling uniformity, we desire the Voronoi cells

of all rays to be identical, regular polygons. In the Euclidean

plane, we could simply tile with either squares (Fig. 1b) or

regular hexagons (Fig. 1d) and the class patterns from Fig. 1 to

satisfy sampling uniformity and (1). However, satisfying

sampling uniformity on the sphere is only possible for the five

platonic solids, offering at most 20 sample points in the case

of the dodecahedron (sampled on vertices) or the icosahedron

(sampled on face centroids). This motivates methods like the

icosahedral subdivision approach in [8] that, more generally

speaking, sample at the vertices of high-frequency geodesic

polyhedra to maximize sampling uniformity in a structured

way.

A. Three Classes in Icosahedral Topology

Unfortunately, geodesic polyhedra with icosahedral

Authorized licensed use limited to: Branislav Notaros. Downloaded on December 15,2020 at 05:35:49 UTC from IEEE Xplore. Restrictions apply.

2379-8793 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JMMCT.2020.3044011, IEEE Journal
on Multiscale and Multiphysics Computational Techniques

4

symmetry never emit a topology that can satisfy (1) with

𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3; they contain 12 vertices with 𝑁𝑖 = 5,

necessitating 𝑁𝑖 ∩ 𝑁𝑗 ≠ ∅, 𝑖 ≠ 𝑗 in some cases. However, this

defect need only occur at the edges of the original (pre-

subdivision) icosahedron. The number of samples that lie on

the original icosahedral edges grows linearly with the number

of subdivisions while the total number of sample points grows

quadratically. The asymptotic NSA property (2) is therefore

satisfied with 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3. We show a simple method here.

We can easily define a set of possible sample points on any

triangle and three associated classes that satisfy (1) when only

points on that triangle, 𝑡, are considered. We denote by

{𝑎𝑡 , 𝑏𝑡 , 𝑐𝑡} the set of vertex locations of the triangle, and by

𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 the desired number of subdivisions (an edge of 𝑡 is

split into 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 new edges). Each sample point on the

triangle is then given by

𝑠𝑖,𝑗
𝑡 = 𝑎𝑡 +

𝑖

𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠
(𝑏𝑡 − 𝑎𝑡) +

𝑗

𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠
(𝑐𝑡 − 𝑎𝑡), (4)

with indices defined by

𝑖, 𝑗 ∈ ℕ0, 𝑖, 𝑗 ≤ 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 + 1, 𝑖 + 𝑗 ≤ 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 + 1. (5)

The classes on 𝑡 are then given by

𝐶𝑘
𝑡 = {𝑠𝑖,𝑗

𝑡 |(𝑗 − 𝑖) 𝑚𝑜𝑑 3 = 𝑘 − 1}, 𝑘 ∈ {1,2,3}. (6)

Figure 2 shows these classes on a triangle for 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 11.

Fig. 2. NSA classes defined by (6) for 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 11.

Since (6) may assign different classes to a point lying on an

edge depending on which adjacent triangle we consider, we

require an extra step to maintain class independence 𝐶𝑖 ∩ 𝐶𝑗 =

∅, 𝑖 ≠ 𝑗 and expand classes from (6) to the entirety of a

geodesic polyhedron by a union of (6) over its triangles.

We denote by 𝐺 the set of edges, by 𝑃 the set of vertices,

and by 𝑇 the set of triangular facets of an arbitrary polyhedron

with triangular faces. Each vertex 𝑝 ∈ 𝑃 has a set of incident

edges. We specify that a given 𝑝 is a member of only one of

its incident edges. Similarly, each edge 𝑔 ∈ 𝐺 separates two

triangular faces. We specify that points on a given 𝑔 are a

member of only one of the two triangles it separates. By these

definitions, each point on the geodesic polyhedron is a

member of one and only one 𝑡 ∈ 𝑇. If 𝑠𝑖,𝑗
𝑡 ∈ 𝑡, we say 𝑡 is the

parent triangle of 𝑠𝑖,𝑗
𝑡 . The parent triangle of any sample point

is unique. The classes on the geodesic polyhedron are then

given by

𝐶𝑘 = ⋃ 𝐶𝑘
𝑡

𝑡∈𝑇

, (7)

where indices are as defined in (5). Figure 3 shows these

classes on the icosahedron with 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 13.

Fig. 3. Asymptotically-NSA classes on the icosahedron with 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 13

and 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3. Voronoi-adjacent rays in the same class are common here

due to very low ray count.

This choice of classes and sample points offers an excellent

foundation for parallel SBR-DCR. Although only (2) is

satisfied, the points that violate (1) are constrained to those

lying on the edges of the original icosahedron and their

immediate neighbors. These points represent a proportion of

the total 𝑁𝑟𝑎𝑦𝑠 that decreases linearly with increased

𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠. This makes double counting between adjacent

same-class neighbors inconsequential at the high ray counts

typically used in most SBR applications.

B. Three Classes in Octahedral Topology

The presence of twelve points with five neighbors on

geodesic polyhedra with icosahedral topology prevents such

Authorized licensed use limited to: Branislav Notaros. Downloaded on December 15,2020 at 05:35:49 UTC from IEEE Xplore. Restrictions apply.

2379-8793 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JMMCT.2020.3044011, IEEE Journal
on Multiscale and Multiphysics Computational Techniques

5

Fig. 4. Perfect NSA classes on the icosahedron with 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 17 and

𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3. No Voronoi-adjacent rays are in the same class.

polyhedra from satisfying (3) at all vertices. Octahedral

geodesic polyhedra, on the other hand, contain only points that

satisfy (3), making them a good option for sampling where

perfect non-self-adjacency is desired with the minimum

number of classes.

Figure 4 shows (6) and (7) applied to the octahedron with

𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 3. We use an ordering of {𝑎𝑡 , 𝑏𝑡 , 𝑐𝑡} for each

triangle that maintains class independence on edges between

triangles regardless of parent triangle assignment. Many such

orderings exist on the octahedron, so we do not specify one

here. These octahedral classes have the advantage of fully

satisfying (1) with only three classes, but at the cost of

somewhat reduced sample uniformity compared to the

icosahedron.

C. Four Classes in Icosahedral Topology

To achieve both high sampling uniformity and satisfaction

of (1), we can define fully NSA classes on the icosahedron

with 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 4. We choose one of many four-color vertex

colorings of the icosahedron, with colors corresponding to

class indices 𝑘 ∈ {1,2,3,4}. This assigns to each of the

icosahedron’s twelve vertices one of four classes, such that no

adjacent vertices share a class.

On a given triangle, we again denote by {𝑎𝑡 , 𝑏𝑡 , 𝑐𝑡} the set

of vertex locations, and now by {𝑘𝑎𝑡
, 𝑘𝑏𝑡

, 𝑘𝑐𝑡
} the set of

corresponding class indices. For simplicity, we define the

vector ℎ = 〈𝑘𝑎𝑡
, 𝑘𝑏𝑡

, 𝑘𝑐𝑡
〉, with ℎ(𝑙) denoting its lth entry.

Sample points are again defined by (4) with indices defined by

(5). However, instead of (6), the classes on 𝑡 are now given by

𝐶ℎ(𝑙)
𝑡 = {𝑠𝑖,𝑗

𝑡 |(𝑗 − 𝑖) 𝑚𝑜𝑑 3 = ℎ(𝑙) − 1}, 𝑙 ∈ {1,2,3}. (8)

Assigning parent triangles as before to maintain class

Fig. 5. Perfect NSA classes on the icosahedron with 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 13 and

𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 4. No Voronoi-adjacent rays are in the same class.

independence, the four classes on the icosahedral geodesic

polyhedron are again given by (7). Note that 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 must

be one less than an integer multiple of 3 to maintain class

independence. Figure 5 shows (7) and (8) applied to the

icosahedron with 𝑁𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠 = 13 and 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠 = 4. These

classes fully satisfy (1) and have the same sampling

uniformity as those from Fig. 3, but each class no longer

samples the entire sphere.

IV. SBR AS A SAMPLING OF THE IMAGE SPACE

To facilitate a discussion of SBR DCR, we introduce the

concepts of the environment space and image space. The

environment space, 𝐸, is the physical space in which we are

modeling propagation. Any point 𝑒 ∈ 𝐸 is given by a scalar

real-valued triplet with spherical coordinates 〈𝜌, 𝜃, 𝜙〉, 𝜌 ∈
[0, ∞), 𝜃 ∈ [0, 𝜋], 𝜙 ∈ (−𝜋, 𝜋]. A ray, 𝑟, with initial

direction 〈𝜃0, 𝜙0〉 follows a curve, 𝑠, through 𝐸, parametrized

by 𝑑 such that 𝑠(𝑑) = 𝑒 is the point on 𝑠 at which the ray has

traveled 𝑑 distance along 𝑠. The curve 𝑠 is a straight line

radiating from the origin if no reflections occur, a continuous

path composed of line segments of reflections occur in

homogeneous media, or a general continuous, curved path in

inhomogeneous media. We consider only the first two cases

here. The image space, 𝑄, represents the space in which paths

taken by rays follow straight lines radiating from the origin

regardless of their reflections in the environment space. Note

that we consider only reflections here, not transmission. Any

point 𝑞 ∈ 𝑄 is also given by a real-valued triplet with

spherical coordinates 〈𝑑, 𝜃0, 𝜙0〉, 𝑑 ∈ [0, 𝐷𝑚𝑎𝑥], 𝜃 ∈ [0,2𝜋],
𝜙 ∈ (−𝜋, 𝜋], where 𝑑 is the distance traveled in 𝐸 for the ray

with initial direction 〈𝜃0, 𝜙0〉. 𝐷𝑚𝑎𝑥 gives the maximum

propagation distance considered. The ray source is the origin

Authorized licensed use limited to: Branislav Notaros. Downloaded on December 15,2020 at 05:35:49 UTC from IEEE Xplore. Restrictions apply.

2379-8793 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JMMCT.2020.3044011, IEEE Journal
on Multiscale and Multiphysics Computational Techniques

6

of both spaces. We define a map 𝑀 such that 𝑀(𝑞) = 𝑒 =
𝑠(𝑑). Note that 𝑀 is in general not invertible: ∃𝑒 ∈
𝐸 𝑠. 𝑡. {𝑞|𝑀(𝑞) = 𝑒} = ∅; we call such 𝑒 occluded. Note that

𝐸 = 𝑄 in homogeneous media with no reflections and 𝐷𝑚𝑎𝑥 =
∞. Note also that the concepts of 𝐸 and 𝑄 apply to SBR as a

whole and are not specific to the NSA or DCR methods we

present in this paper.

For clarity, we give a few examples, shown in Fig. 6, in two

dimensions of 𝐸 and the associated 𝑄. To produce these plots,

we constrained 𝜙 = 0 and uniformly distributed initial ray

directions in 𝜃. Since a given ray only samples 𝐸 along a

given path, in turn sampling 𝑄 only along a straight radial path

from the origin, we interpolate 𝑄 between rays using RCA and

assigning any 𝑞 not on a ray path the properties of the nearest

𝑞 on a ray path. This produces a piecewise approximation of

𝑀: �̃�. Rays were propagated for a fixed, constant distance.

We chose 𝑁𝑟𝑎𝑦𝑠 = 1000 so no defects due to the �̃�

approximation are visible at the chosen figure resolution and

propagation distance. To demonstrate the relationship between

𝐸 and 𝑄, we assign hues to 𝑒 ∈ 𝐸 corresponding to 𝜃 and

opacity increasing with 𝜌. Each 𝑞 ∈ 𝑄 is then assigned the

hue and opacity of �̃�(𝑞).

Fig. 6. Examples of environment and associated image spaces. Reflectors are

shown in black. The left column shows three examples of environment spaces:

a single plane, a triangle, and a pentagon. The right column shows the

associated image spaces.

 We quantify the geometric error introduced by

approximating the mapping 𝑀 as

𝜀𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 =
3

4𝜋𝐷𝑚𝑎𝑥
4

∫‖𝑀(𝑞) − �̃�(𝑞)‖

𝑄

𝑑𝑞.

(9)

Note that the 4th rather than 3rd power in (9) comes from

normalizing with respect to 𝐷𝑚𝑎𝑥
 in addition to the volume of

integration. We define geometric convergence of SBR as the

property that

lim
𝑁𝑟𝑎𝑦𝑠→∞

𝜀𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 = 0. (10)

SBR has geometric convergence if, for an arbitrary region, Ω,

in 𝜃, 𝜙 on the sample sphere surface,

lim
𝑁𝑟𝑎𝑦𝑠→∞

|{𝑟|〈𝜃0, 𝜙0〉 ∈ Ω}| = ∞. (11)

It is easy to show from (4) that the sampling patterns in

Section III enforce (11) and therefore (10).

V. EFFICIENT, PARALLEL DOUBLE COUNT REMOVAL

A. The Proposed Method

To present our DCR method, we first make some

definitions for clarity. We have a set of observation points 𝑂

with 𝑜 ∈ 𝐸, ∀𝑜 ∈ 𝑂 and 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = |𝑂|. We denote by

𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 the maximum number of reflections considered

for all rays. The goal of SBR is to compute the field at all

observation points due to a set of source points. We consider

only one source point at a time, combining fields at

observation points by superposition when multiple source

points are present. To compute from which rays contributions

are considered at a given 𝑜 ∈ 𝑂, we use the dynamically-sized

sphere intersection method from [14]. We choose 𝛼 from [14]

for a given 𝑟𝑖 ∈ 𝑅 as the maximum angle between 𝑟𝑖 and any

𝑟𝑗 ∈ 𝑉𝑖. This prevents any gaps between ray cones, allowing

errors only in the form of overlap (double counts) between

neighbors.

Our DCR technique is more straightforward than those in

[8]-[14] and can be summarized simply when implementation

details are ignored: We process only one ray class and only the

nth reflection for rays in that class at a time, recording any ray-

observation pairs for sphere intersections that occur between

the nth and (n+1)th reflection. We only keep a ray-observation

pair containing 𝑟𝑖 and 𝑜𝑗 if no neighbors of 𝑟𝑖 are members of

pairs containing 𝑜𝑗. Note that, for NSA classes like those in

Section III.A that satisfy (2) but not (1), we do not consider

Voronoi-neighboring rays in the same class as neighbors for

the purpose of DCR. This introduces an error that is

asymptotically negligible, as discussed in Section III.A.

This DCR method is extremely simple, and with the NSA

classes from Section III, highly parallelizable and scalable.

Authorized licensed use limited to: Branislav Notaros. Downloaded on December 15,2020 at 05:35:49 UTC from IEEE Xplore. Restrictions apply.

2379-8793 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JMMCT.2020.3044011, IEEE Journal
on Multiscale and Multiphysics Computational Techniques

7

We give a comparison to existing DCR methods as well as a

pseudocode example for one possible implementation in

Section V.C. First, however, we consider the glaring omission

we make in defining such a simple method. Our method

introduces an obvious error that previous methods have

mitigated with more-complicated techniques. Where

neighboring rays hit different, non-coplanar facets but

intersect the same observation sphere with the same reflection

count, our method will detect a false double-count not

detected by more-rigorous DCR methods. A simple example

of the type of false double count detected by our method is

shown in Fig. 7. If rays 𝑟1 and 𝑟2 are neighbors, only one of

their field contributions will be counted at 𝑜 after having

reflected one time, even though these reflections were from

different, non-coplanar facets. The field contributions of 𝑟1

and 𝑟2 in this case represent different image sources, so both

should be counted.

Fig. 7. A simple example of how a false double count may be detected by our

method. If the two rays are neighbors, our method will count only one of their

contributions at 𝑜, despite the rays representing unique images.

 Production of false double counts, superficially, seem like a

major flaw with our DCR method. However, we show here

that the proportion of false double counts drops asymptotically

to 0 with increased 𝑁𝑟𝑎𝑦𝑠, and by extension the asymptotic

correctness of our DCR method.

B. Asymptotic Correctness of the Proposed Method

To show asymptotic correctness of our method, it suffices

to show the proportion of neighboring rays that hit the same

triangular facets in the same order after having traveled some

finite maximum distance 𝐷𝑚𝑎𝑥
 approaches 1 asymptotically as

𝑁𝑟𝑎𝑦𝑠 → ∞. Satisfaction of this property can be shown using

the notion of the image space as follows.

Denote by 𝐸𝐺 the set of points in 𝐸 on facet edges and

𝑄𝐺 = {𝑞|𝑀(𝑞) ∈ 𝐸𝐺}. Projecting 𝑄𝐺 in the 𝑑 direction onto

the unit sphere gives 𝑄𝐺′. If the domain contains a finite

number of reflecting facets and 𝐷𝑚𝑎𝑥
 is finite, 𝑄𝐺′ partitions

the unit sphere into a finite number of polygonal regions. Note

that these partitions correspond to the largest possible

polygonal cone boundaries of ray tubes in RTL after splitting

if rays are only traced until 𝐷𝑚𝑎𝑥
 . By (11) and the observation

that the region boundaries subtend only an infinitesimal solid

angle, the proportion of neighboring rays that hit the same

triangular facets in the same order by their 𝐷𝑚𝑎𝑥
 approaches 1

and our DCR method introduces a proportion of false double

counts that decreases to 0 as 𝑁𝑟𝑎𝑦𝑠 → ∞.

Convergence is also apparent from (11) and the perspective

of image theory. Since (11) implies the solid angle subtended

by each ray cone decreases asymptotically toward zero as

𝑁𝑟𝑎𝑦𝑠 → ∞, the probability of neighboring rays hitting

different facets at their first reflection (necessary but not

sufficient for a false double count) also decreases toward zero.

In the case where rays hit the same facet at their first

reflection, the resulting reflected rays can be considered to

radiate from the same image source. The rays’ second

reflection can then be treated as a first reflection, yielding an

inductive proof of convergence for arbitrary reflection count

or 𝐷𝑚𝑎𝑥
 .

C. Pseudocode and Comparison to Existing DCR Methods

To understand our DCR approach with NSA classes and

why it allows for efficient parallelization, it is useful to

understand why existing approaches make this more difficult.

Generically speaking, existing DCR methods attempt to apply

some function 𝐷𝐶𝑅(𝑟𝑖 , 𝑜, 𝑐), to determine whether a ray

causes a double count at a given observation 𝑜 for a given

context 𝑐 and, if so, resolve that double count in some data

structure that tracks ray-observation intersections. All ray-

observation intersections remaining after DCR are counted in

the final field computations for the corresponding observation.

Our method is no different in this regard. Consider the case,

however, where 𝑟1, 𝑟2, and 𝑟3 are mutual neighbors; i.e.

𝑟1, 𝑟2 ∈ 𝑁3, 𝑟1, 𝑟3 ∈ 𝑁2, 𝑟2, 𝑟3 ∈ 𝑁1. As noted in Section III, the

correct neighbor choice 𝑁𝑖 = 𝑉𝑖 , ∀𝑟𝑖 ∈ 𝑅 yields the spherical

Delaunay triangulation for 𝐺, so cases like this occur for every

ray regardless of the sampling method chosen. Consider also

that 𝑜 falls in the overlap of all three rays’ cones. Only one of

these rays should be counted, although each of the three is

equally valid under RCA. For a given context, we have three

potential instances of 𝐷𝐶𝑅 to process: 𝐷𝐶𝑅(𝑟1, 𝑜, 𝑐),

𝐷𝐶𝑅(𝑟2, 𝑜, 𝑐), and 𝐷𝐶𝑅(𝑟3, 𝑜, 𝑐). To correctly resolve this

situation by counting only one of the three rays, the outputs of

the three processes must be consistent, e.g. if 𝑟1 is counted, 𝑟2

and 𝑟3 cannot be counted. This requires that, for instance,

computation of 𝐷𝐶𝑅(𝑟2, 𝑜, 𝑐) and 𝐷𝐶𝑅(𝑟3, 𝑜, 𝑐) is dependent

on the result of 𝐷𝐶𝑅(𝑟1, 𝑜, 𝑐), so the three processes cannot

complete execution simultaneously. This is equally true if

𝐷𝐶𝑅 constitutes a simple comparison of characteristic

sequences [12] as it is for geometric computations between

rays [14]. The problem lies in how synchronization

mechanisms like mutexes that allow such data dependencies to

be handled in a parallel execution environment delay process

completion; a given thread must wait for others on which it is

dependent. Such parallelization approaches are inefficient,

since processor cycles are wasted while waiting, or, in more

complicated approaches, while switching between threads.

To further illustrate the problem presented by adjacent ray

data dependencies, we give below two examples of

pseudocode, one for our DCR approach with NSA classes, and

another for a generic DCR approach without NSA classes. For

both examples, we assume that neighbor sets are defined and

known ahead of time, as in our method or e.g. [8], since this is

already a common approach in recent literature to limit the

data dependency to only a small neighbor set. We also assume

that indices of observations intersected by a given ray, 𝑟𝑖, are

recorded in a hitlist denoted 𝐻𝐿𝑖 . We denote a generic

observation point index as 𝑖𝑑𝑥. There are many ways to

Authorized licensed use limited to: Branislav Notaros. Downloaded on December 15,2020 at 05:35:49 UTC from IEEE Xplore. Restrictions apply.

2379-8793 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JMMCT.2020.3044011, IEEE Journal
on Multiscale and Multiphysics Computational Techniques

8

manage this information, but we consider this the simplest and

most illustrative.

1 for 𝑘 ∈ [1. . 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠] do

2 for 𝑖 ∈ [1. . |𝐶𝑘|] do in parallel
3 for 𝑟𝑗 ∈ 𝑁𝑖 do

4 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 ← {𝑖𝑑𝑥|𝑖𝑑𝑥 ∈ 𝐻𝐿𝑖, 𝑖𝑑𝑥 ∈ 𝐻𝐿𝑗}

5 for 𝑖𝑑𝑥 ∈ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 do
6 𝐻𝐿𝑖 ← 𝐻𝐿𝑖\{𝑖𝑑𝑥}

Using NSA classes as above, only non-neighboring rays are

processed in parallel, so 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 can be readily computed

for each parallel instance. Note that lines 3 through 6 are

effectively an implementation of 𝐷𝐶𝑅(𝑟𝑖 , 𝑜, 𝑐). Consider, in

contrast, if we use no NSA classes. We must somehow resolve

cases like 𝑟1, 𝑟2 ∈ 𝑁3, 𝑟1, 𝑟3 ∈ 𝑁2, 𝑟2, 𝑟3 ∈ 𝑁1. One way to do

this could be:

1 for 𝑖 ∈ [1. . 𝑁𝑟𝑎𝑦𝑠] do in parallel

2 for 𝑟𝑗 ∈ 𝑁𝑖 do

3 if 𝑖 > 1 then
3 while not 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑗 do

4 wait

5 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 ← {𝑖𝑑𝑥|𝑖𝑑𝑥 ∈ 𝐻𝐿𝑖, 𝑖𝑑𝑥 ∈ 𝐻𝐿𝑗}

6 for 𝑖𝑑𝑥 ∈ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 do
7 𝐻𝐿𝑖 ← 𝐻𝐿𝑖\{𝑖𝑑𝑥}

8 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑖 ← 𝑡𝑟𝑢𝑒

Rays processed in parallel may now be dependent on each

other, so we define the Boolean variable 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑗 to keep

track of whether double count removal has been completed for

𝑟𝑗. Here, lines 2 through 8 are effectively an implementation of

𝐷𝐶𝑅(𝑟𝑖 , 𝑜, 𝑐). The process for 𝑟1 can execute immediately, but

other threads must wait until their dependencies are resolved.

In fact, in this implementation, most threads will spend most

of the total computation time waiting.

For simplicity, both examples intentionally ignore context.

This is appropriate for our DCR method, but not for existing

methods. Context is information other than ray index and

observation index that identifies a unique field contribution.

For instance, in [12], 𝑐 is a characteristic sequence of facets hit

by a ray before registering a hit for an observation. To

consider context in general, updates to 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠 would

require comparison of e.g. characteristic sequences [12] or

geometry information [14], adding a layer of complexity and

reducing performance. Our DCR method avoids this by

defining 𝑐 as the number of reflections taken by a ray before

encountering an observation sphere. We then only calculate

hits for the nth reflection of all rays simultaneously, resetting

hitlists before the (n+1)th reflection. Since all entries in 𝐻𝐿𝑖

correspond to the same 𝑐, our method allows 𝑐 to be ignored

during DCR. A simple example of how we order our DCR

method relative to other SBR processes is presented below.

1 for 𝑛 ∈ [1. . 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠] do

2 initialize 𝐻𝐿𝑖 to empty ∀𝑖 ∈ [1. . 𝑁𝑟𝑎𝑦𝑠]

3 for 𝑘 ∈ [1. . 𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠] do
4 for 𝑖 ∈ [1. . |𝐶𝑘|] do in parallel
5 trace 𝑟𝑖 to n

th reflection

6 compute sphere intersections

7 fill 𝐻𝐿𝑖

8 DCR

VI. RESULTS AND DISCUSSION

To demonstrate the scalability of the proposed NSA class-

based parallel DCR method and its practical advantages over

inherently sequential approaches, we produced an efficient

GPU-based implementation. As a baseline, we also produced

an efficient but fully sequential CPU-based implementation of

the method. The CPU-based implementation performs the

same operations from Section V, but processes only one ray at

a time, rather than rays in each class in parallel. Both

implementations used the same parallel, GPU-based SBR ray

propagation, sphere intersection, and field computation

implementations, the computation times of which were

included in the total computation time. We show results using

the 3- and 4-class icosahedral schemes from Section III,

denoted Ico3 and Ico4, respectively. Our intention in

presenting results for both Ico3 and Ico4 here is to

demonstrate the bottleneck introduced by NSA classes does

not occur for 3-class or 4-class schemes over the range of

typical parameters tested (as low as 𝑁𝑟𝑎𝑦𝑠 = 103). Note that,

since our DCR technique requires fewer operations to detect

and handle double counts than existing methods, its use as a

sequential benchmark here likely underestimates the

computation time of most existing DCR approaches. Also note

that, with good implementation, no pre-process step is

required for management of ray class designations. Each ray’s

class can be determined in constant time from its parent

triangle index and its indices within that triangle. All results

were produced on a mid-range (as of 2019) consumer

workstation equipped with an Intel i7-3770 3.4 GHz CPU and

an NVIDIA GeForce GTX 1060 6GB GPU with 1280 CUDA

cores. A 4×4×1000-meter waveguide was used as the

propagation environment. Since our initial implementation is

targeted to CUDA-enabled GPUs, we are not able to include a

strong scaling plot (i.e., scaling with respect to core count)

since threads are automatically distributed to GPU streaming

multiprocessors in the CUDA paradigm, offering us little

control over how many are used simultaneously. We hope to

present a strong scaling plot in future work once we have an

efficient CPU implementation.

Figure 8 shows the computation time taken only by DCR for

both the sequential and parallel implementations with respect

to increasing 𝑁𝑟𝑎𝑦𝑠. We chose to test a wide range of 𝑁𝑟𝑎𝑦𝑠

values that we believe is representative of the range of ray

counts used for most practical applications. We see vastly

improved performance and scaling of parallel DCR over the

sequential implementation, with parallel DCR outperforming

sequential for all 𝑁𝑟𝑎𝑦𝑠 tested and a maximum observed

speedup over 300×. We observe the largest speedups for the

highest 𝑁𝑟𝑎𝑦𝑠 tested, with the speedup for lower ray counts

likely constrained by host-device communication overhead

below 𝑁𝑟𝑎𝑦𝑠 = 106.

Figure 9 shows the fraction of the total computation time

taken by DCR for each approach with respect to 𝑁𝑟𝑎𝑦𝑠. The

sequential example takes roughly 50% of the total

computation time by 100 million rays. The parallel examples,

meanwhile, take less than 1% of the total time. Measuring the

time proportionality of DCR is useful because it offers a

simple, relative comparison of DCR to other important steps

of the SBR algorithm. Encouragingly, the results of Fig. 9

Authorized licensed use limited to: Branislav Notaros. Downloaded on December 15,2020 at 05:35:49 UTC from IEEE Xplore. Restrictions apply.

2379-8793 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JMMCT.2020.3044011, IEEE Journal
on Multiscale and Multiphysics Computational Techniques

9

Fig. 8. Computation time of sequential vs. parallel DCR with respect to

𝑁𝑟𝑎𝑦𝑠. Other parameters were constant: 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 20, 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 =

500.

Fig. 9. Proportion of total SBR computation time taken by sequential vs.

parallel DCR with respect to 𝑁𝑟𝑎𝑦𝑠. Other parameters were constant:

𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 20, 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 500.

indicate that time taken by our parallel implementation is

asymptotically non-dominant with respect to increasing ray

count. Furthermore, the fact that Ico3 and Ico4 agree almost

perfectly shows that no bottleneck is introduced by NSA ray

classing over the wide range of ray counts tested.

We also note that the time proportionality peak in Fig. 9

around 𝑁𝑟𝑎𝑦𝑠 = 106 lends evidence to our belief that non-

asymptotic effects like communication overhead constrain the

speedup in Fig. 8 below this value.

 Figure 10 shows similar results to figure 8, but with respect

to the maximum number of reflections simulated for any given

ray. We again chose a range of values that we consider typical

for most practical applications. The parallel examples are once

again faster in all cases, even at high reflection orders, with a

maximum observed speedup over 100× for the parameter

values tested. We note that the observed speedup becomes

lower at higher reflection orders. We believe this is due to

memory limitations of our GPU hardware at high reflection

orders necessitating host-device communication.

Fig. 10. Computation time of sequential vs. parallel DCR with respect to

𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠. Other parameters were constant: 𝑁𝑟𝑎𝑦𝑠 = 2,505,000,

𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 500.

Fig. 11. Proportion of total SBR computation time taken by sequential vs.

parallel DCR with respect to 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠. Other parameters were constant:

𝑁𝑟𝑎𝑦𝑠 = 2,505,000, 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 = 500.

Figure 11, analogous to Fig. 9, shows the proportion of the

total computation time taken by each example. Although it

appears in Fig. 11 that asymptotic behavior of the time

proportionality has begun to dominate (we observe a linear

trend on the semilog scale by around 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 100), this

is unlikely to be the case. The proportion of the total time

taken by DCR is limited to 1, so the observed trend is

misleading (all three curves must level out at some point). As

with Fig. 10, we believe the reduced efficiency at higher

reflection orders can be attributed to memory limitations of

our GPU hardware and associated host-device communication

overhead.

Figures 12 and 13 are analogous to figures 8 and 9 but with

respect to the number of field observation points. The parallel

examples tested for Fig. 12 achieve a maximum observed

speedup over 10,000×, although this is for very low

𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 . At high 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 , the observed speedup

levels out to about 10× on our test hardware. Like Figs. 10 and

11, we believe the reduced efficiency in Figs. 12 and 13 for

Authorized licensed use limited to: Branislav Notaros. Downloaded on December 15,2020 at 05:35:49 UTC from IEEE Xplore. Restrictions apply.

2379-8793 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JMMCT.2020.3044011, IEEE Journal
on Multiscale and Multiphysics Computational Techniques

10

Fig. 12. Computation time of sequential vs. parallel DCR with respect to

𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠. Other parameters were constant: 𝑁𝑟𝑎𝑦𝑠 = 2,505,000,

𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 20.

Fig. 13. Proportion of total SBR computation time taken by sequential vs.

parallel DCR with respect to 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠. Other parameters were constant:

𝑁𝑟𝑎𝑦𝑠 = 2,505,000, 𝑁𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 20.

high 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 is due to host-device communication

overhead.

VII. CONCLUSION

This paper has introduced non-self-adjacent ray classes for

efficient, parallelizable shooting-bouncing-ray tracing double

count removal. Unlike previous DCR methods, the approach

made possible by the NSA ray classes introduced in this paper

can take advantage of modern, parallel computing hardware,

e.g., GPUs, that was not available in ray tracing’s theoretical

infancy. Predominantly geometric aspects of SBR like ray

path computation and ray intersection tests have long been

efficiently parallelizable, and most modern SBR approaches

have taken advantage of this. However, the parallel approach

to DCR enabled by the present work removes the last and final

barrier to fully parallel, large-scale SBR simulations. This is

crucial as problem sizes continue to grow, necessitating highly

parallel and efficient CEM algorithms.

REFERENCES

[1] F. Hossain, T. Geok, T. Rahman, M. Hindia, K. Dimyati, S. Ahmed, C.

Tso, and N. Abd Rahman, “An efficient 3-D ray tracing method:

prediction of indoor radio propagation at 28 GHz in 5G network,” MDPI
Electronics, vol. 8, no. 3, pp. 286-306, Mar. 2019.

[2] B. Troksa, C. Key, F. Kunkel, S. Savic, M. Ilic, and B. Notaros, “Ray

tracing using shooting-bouncing technique to model mine tunnels:
theory and verification for a PEC waveguide,” ACES Journal, vol. 34,

no. 2, Feb. 2019.

[3] N. Sood, L. Liang, S. V. Hum, and C. D. Sarris, "Ray-tracing based
modeling of ultrawideband pulse propagation in railway tunnels", Proc.

IEEE APS/URSI Int. Symp., pp. 2383-2386, Jul. 2011.

[4] L. Kanaris, A. Kokkinis, M. Raspopoulos, A. Liotta, and S. Stavrou,
“Improving RSS fingerprint-based localization using directional

antennas,” Antennas and Propagation 8th European Conference, pp.

2174-2177, Aug. 2014.
[5] M. Catedra and J. Perez, Cell Planning for Wireless Communications,

Norwood, MA, USA: Artech House, 1999.

[6] D. McNamara, C. Pistorius, and J. Malherbe, Introduction to the
Uniform Geometrical Theory of Diffraction, Norwood, MA, USA:

Artech House, 1990.

[7] T. Ize, I. Wald, and S. Parker, “Ray tracing with the BSP tree,” Proc.
IEEE Symp. on Interactive Ray Tracing, pp. 159-166, 2008.

[8] S. Seidel, T. Rappaport, “Site-specific propagation prediction for

wireless in-building personal communication system design,” IEEE
Trans. on Veh. Technol., vol. 43, no. 4, pp. 879-891, Nov. 1994.

[9] S. Chen and S. Jeng, “An SBR/image approach for radio wave

propagation in indoor environments with metallic furniture,” “IEEE
Trans. on Antennas and Propag., vol. 45, no.1, pp. 98-106, Jan. 1997.

[10] C. Yang, B. Wu, and C. Ko, “A ray-tracing method for modeling indoor

wave propagation and penetration,” IEEE Trans. on Antennas and
Propag., vol. 46, no. 6, pp. 907-919, Jun. 1998.

[11] Z. Yun and M. Iskander, “Ray tracing for radio propagation modeling:

Principles and applications,” IEEE Access, vol. 3, pp. 1089-1100, Sep.
2015.

[12] Z. Yun, M Iskander, and Z. Zhang, “Development of a new shooting-

and-bouncing ray (SBR) tracing method that avoid ray double
counting,” IEEE APS Int. Symp. Dig., vol. 1, pp. 464-467, Jul. 2001.

[13] D. Didascalou, T. M. Schäfer, F. Weinmann, and W. Wiesbeck, "Ray

density normalization for ray-optical wave propagation modeling in
arbitrarily shaped tunnels", IEEE Trans. Antennas Propag., vol. 48, no.

9, pp. 1316-1325, Sept. 2000.

[14] N. Noori, A. A. Shishegar, E. Jedari, "A New Double Counting
Cancellation Technique for Three-Dimensional Ray Launching

Method", Proc. IEEE Antennas and Propag. Society Inter. Symp., pp.

2185-2188, 2006.

Cam Key (S’16) was born in Fort Collins, CO in
1996. He received his B.S. (2018) and his Ph.D.

(2020) in Electrical and Computer Engineering

from Colorado State University. His current
research interests include uncertainty

quantification, error prediction, and optimization

for computational science and engineering;
computational geometry, meshing, data science,

machine learning, artificial intelligence, remote

sensing and GIS, and novel applications of
numerical methods across disciplines.

Blake Troksa was born in Boulder, CO in 1996.

He received his B.S. (2018) and his M.S. (2019) in

Electrical and Computer Engineering from
Colorado State University. He is currently working

as a software development engineer in the area of

cloud computing. His research interests include
hardware acceleration and distributed systems.

Authorized licensed use limited to: Branislav Notaros. Downloaded on December 15,2020 at 05:35:49 UTC from IEEE Xplore. Restrictions apply.

2379-8793 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JMMCT.2020.3044011, IEEE Journal
on Multiscale and Multiphysics Computational Techniques

11

Stephen Kasdorf Received B.S. (magna cum
laude) degrees in 2019 in both electrical

engineering and applied physics from Colorado

State University. He is currently working towards
a PhD in electrical engineering at Colorado State

University. His research interests include high

frequency asymptotic electromagnetics methods
such as ray optics and physical optics, as well as

their hybridization with traditional numerical

techniques.

Branislav M. Notaroš (M’00-SM’03-F’16) received
the Dipl.Ing. (B.S.), M.S., and Ph.D. degrees in

electrical engineering from the University of

Belgrade, Belgrade, Yugoslavia, in 1988, 1992, and
1995, respectively. From 1996 to 1999, he was

Assistant Professor in the School of Electrical

Engineering at the University of Belgrade. He was
Assistant and Associate Professor from 1999 to 2006

in the Department of Electrical and Computer

Engineering at the University of Massachusetts

Dartmouth. He is currently Professor of Electrical and

Computer Engineering, University Distinguished

Teaching Scholar, and Director of Electromagnetics Laboratory at Colorado
State University. Dr. Notaroš serves as General Chair of the 2022 IEEE

International Symposium on Antennas and Propagation and USNC-URSI
National Radio Science Meeting and is Associate Editor for the IEEE

Transactions on Antennas and Propagation. He serves as Vice President of

Applied Computational Electromagnetics Society (ACES) and as Vice-Chair of
USNC-URSI Commission B. He was the recipient of the 2005 IEEE MTT-S

Microwave Prize, 1999 IEE Marconi Premium, 2019 ACES Technical

Achievement Award, 2015 ASEE ECE Distinguished Educator Award, 2015
IEEE Undergraduate Teaching Award, and many other research and teaching

international and national awards.

Authorized licensed use limited to: Branislav Notaros. Downloaded on December 15,2020 at 05:35:49 UTC from IEEE Xplore. Restrictions apply.

