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It is difficult and expensive to match the sensitivity of the most sensitive vertebrate ears with off-

the-shelf microphones due to the self-noise of the sensor. The extremely small apertures of micro-

electromechanical microphones create options to use horn waveguides to amplify sound prior to

transduction without resulting in an unacceptably narrow directivity. Substantial gain can be

achieved at wavelengths larger than the horn. An analytical model of an exponential horn embed-

ded in a rigid spherical housing was formulated to describe the gain relative to a free-field receiver

as a function of frequency and angle of arrival. For waves incident on-axis, the analytical model

provided an accurate estimate of gain at high frequencies as validated by experimental measure-

ment. Numerical models, using the equivalent source method, can account for higher order modes

and comprehensively describe the acoustic scattering within and around the horn for waves arriving

from any direction. Results show the directivity of horn receivers were adequately described by the

analytical model up to a critical wavelength, and the mechanisms of deviation in gain at high fre-

quencies and large angles of arrival were identified. VC 2017 Acoustical Society of America.
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I. INTRODUCTION

Autonomous recording technology is increasingly

applied to efficiently monitor wildlife behavior1 and abun-

dance.2 Animal presence is often more easily heard than

seen3 and passive monitoring of sound is a noninvasive alter-

native to visual observations or physical capture.4 Passive

acoustic monitoring can also provide information on physio-

graphic conditions, human activity, and noise pollution on a

wide range of spatial and temporal scales.5 Microphone self-

noise is the primary limiting factor for this technology; it

compromises the spatial coverage of the instruments and the

signal-to-noise ratios of the recordings.

Sensitive microphones are also essential to document

the adventitious sounds of nature and the degree to which

noise pollution degrades wildlife awareness of these sounds.

Noise pollution is pervasive, extending beyond urban areas

and transportation corridors into many rural and protected

areas such as United States National Parks.6 The behavior

and health of humans, as well as non-human animals, is

affected by the sounds of their surroundings; the increase of

environmental noise levels worldwide has motivated

research on the effects of noise on humans7 and wildlife.8

This paper analyzes horns as receivers to introduce gain

and control directivity for passive acoustical monitoring in

terrestrial environments. Acoustical measurements are a pri-

mary data source for the methods of noise control, acoustic

ecology,9 bioacoustics, and other disciplines. Most measure-

ments could be broadly lumped into two categories: encom-

passing all sources over a large area (environmental

monitoring) and directed at a single acoustic source or direc-

tion (focused measurements). Environmental monitoring

requires receivers with omnidirectional sensitivity for both

coverage and calibration whereas focused measurements can

benefit from unidirectional sensitivity. Because natural

sounds are often significantly quieter than human caused

noise, measurements in both categories can be limited by the

noise-floor of recording equipment.

The instruments developed to address urban noise prob-

lems present some significant limitations for environmental

monitoring in very quiet areas, remote settings, and studies

requiring dense sampling. For example, the Unites States

National Park Service uses type-1 sound level meters for

measurements of acoustical resource conditions, which have

a direct implication to visitor experience and wildlife fitness.

The self-noise,10 cost, and power consumption, and limited
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data storage of precision sound level meters constrain the

scope of their application, though they serve as valuable ref-

erence instruments. Figure 1 shows one-third octave band

L90 sound pressure levels from 491 seasonally-averaged

observations at sites located in diverse acoustical environ-

ments throughout the United States. Environmental sound

levels often exhibit a 1=f power spectrum and therefore

lower levels at higher frequencies.11 Because natural acous-

tical conditions are quiet relative to urban areas, the self-

noise of the sound level meter exceeds that of the acoustical

environment in the upper one-third octave bands. Each con-

centration of traces in Fig. 1 indicates the self-noise of a par-

ticular generation of equipment and device configuration

over years of monitoring. Although Fig. 1 shows daytime

levels, nighttime levels are often quieter and therefore more

difficult to measure. From a resource protection standpoint,

the inadequacy of available hardware results in the inability

to document existing conditions in the quietest places and

quantify the extent to which polluted areas have been

degraded.

Focused measurements typically target a single vocaliz-

ing animal or area, such as that in the field of view of a cam-

era trap. Most work in the field of bioacoustics has studied

intentional vocalizations; however, animals also produce and

respond to incidental sounds such as movement. These

sounds are typically much quieter than intentional vocaliza-

tions and efforts thus far have been limited to on-animal

recordings and large animals.12 However, incidental sounds

are critical to many predator-prey interactions and can offer

valuable information about physiological, behavioral, and

ecological processes. For example, some gleaning bats hunt

by passively listening for subtle sounds produced by the

movement of insects.13 Remote measurement of incidental

sounds requires extremely sensitive measurements. In fact,

the amplitude and characteristics of these incidental sounds

are largely unknown because the self-noise of available

equipment limits our ability to measure them. However,

invertebrate audiograms show that some animals have hear-

ing more sensitive than the quietest available microphones14

and the evolutionary investment in this ability strongly sug-

gests that there is information worth sensing. The study of

animal behavior, and especially bioacoustic interactions

involving incidental sounds, can benefit from the ability to

measure the very quiet signals that the animals themselves

can hear and produce.

The measurement of extraordinary phenomena requires

extraordinary tools. There are several strategies that can

increase the effectiveness of a receiver system including

microphone arrays, parabolic reflectors, and horns.

Measurement systems designed to acquire acoustical data

commonly consist of a microphone, signal conditioning,

audio-digital conversion, and storage of data. While all of

these components can contribute noise, the microphone is

often the limiting factor. Fundamentally, the voltage output

from a microphone is proportional to the area of the dia-

phragm. However, the larger the diaphragm the greater the

reduction in high frequency response as wavelength becomes

comparable to diaphragm diameter. Additionally, the stiff-

ness will decrease and the increased inertia makes it slow to

respond to high frequency sound. Arrays are typically con-

structed for localization and beamforming. Coherent meas-

urements from an array of multiple microphones can also

provide gain relative to incoherent sensor noise at a rate of

3 dB per doubling of elements. Theoretically, adequate

measurements are possible with a copious number of sen-

sors, but the cost and complexity of hardware and array

processing makes this approach practically prohibitive in

applications requiring high gain or dense spatial sampling.

Another class of approaches is to amplify the acoustic

energy before it reaches the microphone, as in parabolic

dishes and horns. The geometry of a parabolic dish is such

that it focuses sound on a microphone oriented at the focal

point of a dish. A microphone securely orientated at the focal

point of a parabolic dish will receive multiple coherent

reflections of a wave incident on the dish area. If large, para-

bolic dishes can provide high gain and have been effective in

focused monitoring that target a single source (e.g., wildlife

studies) and therefore benefit from high directivity.15

However, environmental monitoring requires uniform direc-

tivity as discussed above. We find horns to have significant

advantages for acoustic monitoring that requires measure-

ments with low-self noise, low power, portability, low cost,

and control of directivity. Whereas the gain of most acoustic

devices is proportional to area, the gain of a horn is propor-

tional to the ratio of the mouth to throat areas. Therefore, a

horn can produce more gain than a parabolic dish of equiva-

lent size, as well as allowing for control of directivity.

The horn is a waveguide with cross sectional area that

increases along its length from the throat to the mouth. A

horn increases the radiation efficiency of an acoustic source

positioned at the throat and affects the directivity of radiated

sound. The horn is a fundamental acoustic device, with

widespread use throughout human history as well as by non-

human animals.16 Today, horns are primarily used for

transmission of sound in applications such as public address

systems, sound reinforcement systems, and musical
FIG. 1. 491 seasonal observations of background sound levels (L90 dB

sound pressure level) from type-1 measurements in US national parks.
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instruments. Alternatively, horns can be used as a receiver in

which sound is incident on the mouth and travels to a micro-

phone located at the throat. The horn acts like a hydraulic

press that multiplies force over a change in area; to a first

order approximation, the gain provided is proportional to the

ratio of the mouth to throat area.

Historically in the early age of microphone technology,

the horn as a receiver had been considered to overcome

the self-noise of the microphone and amplifier.17 While this

mode of operation persists in biological systems, with few

exceptions18 the horn as a receiver has fallen out of interest

because advancements in electrical technology have made

equipment that is suitable for most applications widely avail-

able. Furthermore, given the size of conventional microphone

diaphragms, horns must be very large to achieve any benefit.

In addition to the logistical difficulties, a large receiver is

acoustically very directive. Considering the objectives of

environmental monitoring, very small transducers are required

to make horn receiver systems feasible. In the past few deca-

des, micro-electro-mechanical technology has matured to the

point where very small, well-performing, microphones are

widely available and cost-effective. The potential for further

increases in performance rises with progressively smaller

transducers.19

In this paper, we analyze the horn as an acoustic pressure

receiver in which the geometry can be designed to control the

directivity and frequency response of acoustical measure-

ments. The study of horn theory and the one-dimensional

approximation known as Webster’s horn equation has a long

history.20 Here, we incorporate this approximation into a

direction-dependent analytical model to analyze the horn as a

receiver of far-field acoustic waves. Using numerical models,

we show the applicability of the analytical approach as it

applies to direction, frequency, and horn geometry. While the

limitations of Webster’s approximation have been shown for

transmission,21 the characteristics of the horn as a receiver is

less well known. Studies have investigated the relative utility

of an analytical approximation and numerical method to

describe the internal sound field of the human ear canal.22

Here, we examine the case of an exponential horn embedded

in a rigid spherical housing for its generality. A spherical

housing also possesses excellent diffraction characteristics

considering the omnidirectional requirement of environmen-

tal sound monitoring. Section II details the analytical, experi-

mental, and numerical methods used to analyze the horn

as a receiver of far-field acoustic waves. A comparison of

results from each approach is presented in Section III and the

range of parameters over which an analytical model is appli-

cable to accurately describe the gain and directivity of an

exponential horn receiver are identified. A summary of pre-

liminary results and design applications have been presented

previously.23

II. METHODS

A. Analytical model

Given a far-field source at angular frequency x and

angle h relative to the microphone axis, the horn gain is the

mean-squared pressure at the horn-loaded microphone, ph,

relative to a free-field microphone, pf ,

G x; hð Þ ¼ 10 log10

ph
2 x; hð Þ

pf
2 x; hð Þ : (1)

Solving for the gain can be recast into a radiation problem

by employing the reciprocity of the wave equation: the pres-

sure at a given point in the far field due to a source at the

throat is the same as the pressure that a source at that point

in the far field will produce at the throat, assuming every-

thing else equivalent.24 Therefore, the gain was derived by

modeling the radiation from the mouth to the free-field.

A useful approximation for the radiation from the mouth

of the horn is the radiation from a spherical cap set in a

sphere.25 The geometry of the spherical cap within a sphere

is shown in Fig. 2. The spherical cap is a curved diaphragm

set in a rigid sphere of radius aS and moves with axial veloc-

ity u. a is the half-angle of the arc formed by the cap. It has

often been assumed that the impedance of the air load upon

one side of a vibrating piston in an infinite baffle is a good

approximation for the mouth of a horn.26 The radiation

impedance of the spherical cap is similar and there are addi-

tional advantages to this model; it captures the wavelength

dependent transition from whole-space to half-space radia-

tion and provides the far field pressure in any direction,

including behind the radiating surface. Using the boundary

value method, the far field pressure is

p r; hð Þ ¼ �ikqcS
u

4pr
D hð Þ; (2)

where i is the imaginary unit, k is the wavenumber, q is the

density of air, c is the speed of sound, S is the dome effective

area of the cap, and DðhÞ is the directivity function.27 The

horn serves to alter S and u relative to the free field

microphone.

The exact analysis of a radiating horn is severely limited

by its complexity, and rigorous analytical solutions do not

exist for horns of finite length.28 Through a series of simplifi-

cations,29 Webster’s horn equation can be derived: a one-

FIG. 2. Geometry of the spherical cap set within a rigid sphere radiation

model (adapted from Ref. 27).
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dimensional approximation that describes the axial wave

motion inside a rigid duct of continuously varying cross sec-

tional area. The primary assumption is that the pressure over

any plane perpendicular to the horn axis is uniform in both

amplitude and phase, inside and outside the horn. A useful

way to write the equation is

@2/
@x2
þ @

@x
lnS

@/
@x
� 1

c2

@2/
@t2
¼ 0; (3)

where / is the velocity potential and S is the cross sectional

area at a point x along the axis of the horn.17 Analytical solu-

tions to Webster’s horn equation exist for only a few shapes

with consistent change in area along the horn length.28

Herein, we focus on horns with an exponential flare rate

only. The acoustical impedance rapidly reaches unity at a

lower frequency than conical or parabolic shapes, resulting

in more gain over a wider bandwidth for horns of otherwise

similar size.19,26

Consider a finite exponential horn with throat at

x ¼ 0, mouth at x ¼ L, flare rate m, and cross sectional

area S ¼ S0emx as shown in Fig. 3. Assume an axisymmet-

ric horn with circular cross section and radius a. Subscripts

0 and L identify quantities at the throat and mouth, respec-

tively. Solving Eq. (3) yields the following general expres-

sions for pressure and particle velocity in terms of

traveling waves A and B:

pðx;xÞ ¼ �ixqe�mx=2ðAe�ibx þ BeibxÞ; (4)

uðx;xÞ ¼ e�mx=2 ð�m=2� ibÞAe�ibx
�

þð�m=2þ ibÞBeibx
�
; (5)

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � m2=4

p
and eixt has been removed assum-

ing harmonic time dependence. A dispersive standing wave

field will exist within the horn. For k < m=2, b is imaginary

and the waves within the horn are evanescent and rapidly

decay with distance. This transition is the cutoff frequency

fc ¼
mc

4p
: (6)

The specific acoustic impedance within the horn can be

written in terms of the pressure reflection function, R ¼ B=A,

z x;xð Þ ¼ �ixq
e�ibx þ Reibx

�m=2� ibð Þe�ibx þ �m=2þ ibð ÞReibx
:

(7)

At x ¼ L the mouth impedance zm is given by the radiation

impedance of the radiating spherical cap. An expression for

the reflection coefficient R can be solved for in terms of the

impedance at the mouth

RL ¼
e�ibL zm

�ixq
�m=2� ibð Þ � 1

� �

eibL 1þ zm

ixq
�m=2þ ibð Þ

� � : (8)

Combining Eqs. (8) and (5) gives an expression for the axial

velocity at L,

uL ¼
u0 �m=2� ibð ÞeL �m=2�ibð Þ þ RL �m=2þ ibð ÞeL �m=2þibð Þ
� �

�m=2� ibþ RL �m=2þ ibð Þ : (9)

Finally, Eq. (9) can be substituted into Eq. (2) to yield the

far field pressure. The cutoff frequency and frequency

dependent response can be specified by manipulating the

horn geometry parameters a0, aL, and L.

B. Experiment

The substitution method, as specified by IEC 60268-4,30

was used to measure the frequency-dependent gain of a

horn-loaded microphone relative to a free-field microphone.

The substitution method is commonly used for calibration

and involves placing the system of interest in a known

acoustic field as measured by a reference system. Golay

complementary sequences31 were used to obtain the impulse

response of the horn-loaded and free-field microphone to an

on-axis plane wave.

An axisymmetric exponential horn was fabricated with

geometry parameters a0 ¼ 3:7 mm, aL ¼ 50:2 mm, and L
¼ 141 mm. An electret microphone (Sonion 6297) with 1 mm

diameter inlet port was used for both the horn-loaded and

free-field reference measurements; the excess space in the

horn throat was sealed with clay. Measurements of this horn

were made to validate the analytical model in an anechoic

chamber in the Electromagnetics Laboratory at Colorado

FIG. 3. Geometry of the finite exponential horn.
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State University. While this chamber was designed to be

anechoic to electromagnetic energy in the radio-frequency

range, the absorbent pyramidal cone panels that cover the

walls, ceiling, and floor of the chamber also attenuate acoustic

energy. The suitability of the chamber for acoustic measure-

ments was evaluated per IEC 60268-430 and free field condi-

tions were found to exist above 400 Hz.

C. Numerical model

Because analytical solutions are rarely available, the

solution of most scattering problems requires a numerical

method. The equivalent source method (ESM) is an inverse

method that allows for the calculation of the radiation and

scattering from objects in a free-field at a reduced computa-

tional load relative to the boundary element method.32 This

is achieved by enclosing an array of “equivalent sources”

within the surface and computing the source strengths neces-

sary such that the superposition of acoustic fields satisfies

the specified boundary conditions. The boundary conditions

are often specified in terms of the acoustic particle velocity

on the surface of the object.

Given a far-field source at angle h, the scattered field of

a horn embedded in a rigid sphere was calculated using a

matrix formulation of the ESM.33 The spherical housing is

in accordance with the analytical model and also results in a

closed system which is more convenient to model. The

numerical model was executed in the MATLAB computing

environment. Practically, four surfaces were defined: the

spherical housing, horn wall, throat, and chamfer. A thin

chamfer was added to the interface between the horn mouth

and spherical housing to avoid sharp edges on the boundary

surface. A rigid boundary was assumed for all surfaces and

monopole sources were used for both the incident field and

equivalent sources. Figure 4 is a schematic showing the con-

figuration for the equivalent source method using N equiva-

lent sources placed within the boundary jointly defined by

the position and normal vectors of M evaluation positions.

ub is an M � 1 vector of total normal particle velocities

at the boundary due to contributions from the far-field

source, ubf , and the equivalent sources, ubq,

ub ¼ ubf þ ubq ¼ ubf þ Teqe; (10)

where Te is a M � N matrix that relates the contribution to

the normal particle velocities at the boundary from the

equivalent sources to the equivalent source strengths, qe.

Given the rigid boundary condition, the equivalent sources

are driven to produce normal velocities ub ¼ 0 at the evalua-

tion positions. The solution to a fully determined system will

exactly satisfy the conditions at the evaluation positions at

the expense of points in between. Instead, the normal veloc-

ity at the boundary is evaluated at a larger number of evalua-

tion positions that there are equivalent sources.

The ESM error is defined as the residual velocity

E ¼ uH
b ub

uH
bf ubf

: (11)

The net velocity squared at the evaluation points is normal-

ized by the velocity squared due to the far field source such

that the error ranges from 0 (zero velocity, indicating con-

vergence of the method) to 1 (no equivalent sources

operating).

The optimal equivalent source strengths minimize this

error in the least squares sense. Because Te is rectangular,

the Moore–Penrose pseudoinverse is calculated to solve for

the equivalent source strengths

qe ¼ � TH
e Te þ cI

� ��1
TH

e u bf ; (12)

where H denotes the conjugate transpose and I is an M �M
identity matrix. Practically, a regularization term c is intro-

duced to improve the condition of the matrix prior to inver-

sion. Regularization by a weighting parameter provides a

robust solution with minimal increase in the boundary condi-

tion error.34

The acoustic pressure of the scattered field is calculated

at discrete observation points as the superposition of the inci-

dent field, pof , and equivalent source field

po ¼ pof þ poeqe: (13)

III. RESULTS

A. Comparison of analytical model and experiment

Considering an on-axis far-field source and the example

horn described in Sec. II B, the horn gain was calculated per

Eq. (1) for experimental measurement and the analytical

model. A comparison of the gain as a function of frequency

is shown in Fig. 5. For the analytical gain, radiation from a

spherical cap set in a sphere was also used to model the free-

field microphone pressure, pf . Although the simple geometry

of this radiation model differs from that of the microphone,

at the wavelengths considered the effect of the sphere will be

similar to that of any other object of about the same size.24

FIG. 4. Two-dimensional schematic showing the configuration of equivalent

sources, evaluation positions, and examples of normal vectors, ub, for the

three-dimensional numerical model of a horn in spherical housing.
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Cap angle a ¼ 30� as suggested by Morse24 was found to

provide a good fit with measurement.

The horn measured has a cutoff frequency of 1 kHz [Eq.

(6)]. At frequencies below cutoff, the response changes rap-

idly with frequency and reactive behavior is dominant.21

Above cutoff, the horn velocity is relatively constant; the

drop in gain at high frequencies, especially above 10 kHz, is

due to the radiation model. ph rolls off above kaL ¼ 5 as

the radiation impedance becomes mainly resistive.27

Meanwhile, as the wavelength becomes comparable to 2pa0,

pf increases due to the transition from whole-space to half-

space radiation. Overall, the gain calculated by the analytical

model and experiment match well for this example despite

the simplifications of the analytical solution. In addition to

the assumptions described in Sec. II A, damping was not

accounted for. Noise in the experiment (e.g., imprecise

alignment of the on-axis source and receiver, ambient noise)

may have also contributed to differences between the analyt-

ical and experimental gains.

B. Comparison of analytical and numerical models

The equivalent source method was applied to model the

exponential horn embedded in a spherical housing with inci-

dent field due to a far field source at angle h from the horn

axis. As with the analytical and experimental approaches,

the horn gain of the numerical model was calculated per Eq.

(1). An observation point at the center of the throat surface

was used to obtain ph. pf can be calculated analytically or by

a separate ESM model with equivalent results for all practi-

cal purposes.

Given the physics of acoustic radiation, the directivity

of a horn receiver was expected to be dependent on mouth

size; the size of the spherical housing and cap angle may

also have some effect. In previous studies, the directivity of

horn transmitters has been shown to be related to flare rate

when the wavelength is small.26 To investigate the influence

of free design parameters, multiple geometries were modeled

with various perturbations of the parameters. In total, seven

shapes were considered; independent and derived parameters

are shown in Table I. The number of shapes is limited by the

burden of constructing accurate numerical models. Horn

shape 1 is exemplified in the following two sections to illus-

trate the gain and directivity as a function of frequency.

1. On-axis gain

A plot of the evaluation positions for horn 1 is shown in

Fig. 6. Given computational restraints, the number of evalua-

tion positions and equivalent sources in the numerical mod-

els is limited. The spacing of evaluation positions must be

small relative to a wavelength to well approximate a contin-

uous system. Unfortunately, there is no single best way to

position these two elements or determine the minimum num-

ber required, although a variety of methods have been

explored.35 For this work, the number and location of evalu-

ation positions and equivalent sources were chosen intui-

tively and sufficient convergence of the model was evaluated

FIG. 5. Comparison of horn gain for

an on-axis source as calculated by the

analytical model and measured by

experiment. The horn exemplified has

parameters a0 ¼ 3:7 mm, aL ¼ 50:2
mm, and L ¼ 141 mm.

TABLE I. Geometrical and acoustical parameters of the horns considered.

Shape a0 (mm) aL (mm) L (mm) m (m�1) fc (Hz) aS (mm) a (deg)

1 0.5 15.2 65.1 105.0 2866 65.1 13.5

2 0.5 22.9 109.2 70.0 1911 97.6 13.5

3 0.5 7.6 25.9 210.0 5732 32.5 13.5

4 0.5 15.2 17.4 393.7 10746 25 27.9

5 0.5 7.6 18.0 301.8 8383 16.3 27.9

6 0.5 30.5 108.9 75.5 2060 97.6 18.2

7 0.5 38.1 143.6 60.4 1648 97.6 23.0 FIG. 6. Evaluation positions (M¼ 14 337) defining the boundaries of horn

shape 1.
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by the residual velocity error. The error of the numerical

model for horn shape 1 appears in Fig. 7. One trend is a

gradual increase in error with frequency as the wavelength

becomes smaller compared to the discretized boundary. The

cyclical trend is related to the horn gain and resonance in

particular.

The gains of both the analytical and numerical models

of horn shape 1 are shown in Fig. 7 for comparison.

Although the error is very low across the entire frequency

range, gain is sensitive to error. The horn has multiple reso-

nant frequencies. Not a completely closed system, the

response is finite at resonant frequencies. Still, it is difficult

for the equivalent sources to satisfy the boundary conditions

at resonance and the error is higher at these frequencies.

Incorporating damping may alleviate, but damping was diffi-

cult to replicate across the analytical, experimental, and

numerical analyses and not applied. The numerical and ana-

lytical models match well at discrete frequencies where E is

low and further analysis of the numerical models is limited

to these off-resonance frequencies (points in Fig. 7).

The frequency-domain solution of the equivalent source

method is the steady-state scattered pressure. Figure 8 shows

the spatially varying phase of the pressure at a frequency of

10.6 kHz (kaL ¼ p) and 17.7 kHz (kaL ¼ 5). The steady-

state response is a summation of the incident and scattered

energy and the expanding surface area produces a curvature

in the resulting wavefronts (each isophase surface).

Spherical cap-like wavefronts have been experimentally

measured21,29 and are in accordance with the assumed radia-

tion model of the analytical solution.

The assumption of planar wavefronts inherent to

Webster’s equations is only satisfied if the diameter is small

compared to wavelengths. Indeed, for kaL > p the phase

response indicates the presence of higher order modes (Fig. 8).

The energy of higher order modes comes at the expense of the

fundamental mode. However, the gain calculated from numer-

ical models at high frequencies is not significantly different

from the analytical solution, which only accounts for the fun-

damental mode. While an incident plane wave will excite

higher order modes within the horn, these propagate towards

the throat until the decreasing diameter raises the cutoff fre-

quency and energy rejoins the fundamental mode. Similar

behavior is also observed in the other shapes in Table I and

demonstrates that the 1-D approximation can provide accurate

estimates of gain at high frequencies for waves incident on-

axis.

2. Off-axis gain

The response of horn shape 1 was analyzed as a function

of angle at discrete frequencies with low ESM error. Given

the geometrical symmetry, the analysis can be curtailed to

angles from 0� to 180� in one plane only. ESM error varied

slightly with source angle although the relationships with

wavelength and resonance described above are dominant

(not shown). Directivity patterns of horn shape 1 appear in

Fig. 9 and show the gain relative to an on-axis source at

FIG. 7. On-axis gain as given by the analytical and numerical models (top

panel) and error of the numerical model (bottom panel) for horn shape 1.

Further analysis is limited to the discrete off-resonance frequencies with low

error indicated by points.

FIG. 8. (Color online) Phase contours

of the scattered pressure (degrees) for

horn shape 1 in response to an on-axis

source at 10.6 kHz (left panel) and

17.7 kHz (right panel).
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8.2 kHz (kaL ¼ 2:3) and 15.4 kHz (kaL ¼ 4:3). The patterns

described by the analytical and numerical models agree on-

axis and at low frequencies. There is less agreement off-axis;

often the analytical model overestimates gain although there

are exceptions at some frequencies and angles. Notating the

gain of the analytical and numerical model as Ga and Gn,

respectively, the differences are summarized in a surface

plot of DG ¼ Gn � Ga (Fig. 10). The region of agreement at

small angles and low frequencies is clear in Fig. 10; behavior

consistent with angle of incidence is also apparent.

The mechanism responsible for reduced gain can be

induced from plots of the phase of the scattered pressure, see

Fig. 11. Waves incident from off-axis diffract around the

housing and propagate into the horn mouth. Inside the horn,

the walls compel approximately planar wavefronts near the

throat. At the mouth, plots of the phase response reveal a

zone of complex behavior where energy diffracts into the

horn. In this space, wavefronts are not aligned with the horn

axis and therefore do not concentrate energy towards the

throat, resulting in less gain for waves arriving off-axis. To a

first order approximation, the horn gain is the ratio of the

mouth to throat area: G � 10 log10ðSL=S0Þ. The presence of

the diffraction zone results in a horn with a smaller effective

mouth area. As the example in Fig. 11 shows, a smaller dif-

fraction zone and less gain reduction can occur at a higher

frequency for the same angle of incidence. At very high fre-

quencies the complexity of the diffraction results in behavior

that cannot be accounted for by the analytical model.

Consideration of a spherical housing leads to some phe-

nomena idiosyncratic to smooth shapes. The size of the dif-

fraction zone varies non-monotonically with both

wavelength and angle of incidence, although it can be fairly

similar across angle (Fig. 10). For most angles of incidence,

energy must travel around the housing to the mouth. The

curvature of the housing dictates the effective angle of inci-

dence, leading to consistent behavior. At some frequencies

and angles of incidence, the gain of the numerical model is

greater than that of the analytical model (15.4 kHz for exam-

ple, see Fig. 9). A diffraction zone still reduces the effective

mouth size, but more significantly the analytical model is

based on a uniform spherical housing which experiences

strong deconstructive interference for some combinations of

path length and wavelength. The numerical model accounts

for the presence of the horn cavity which disrupts the sym-

metry by forcing a diversity of path lengths with varying

phase.

3. Geometrical parameters and applicability of the
analytical model

Design of horn receivers can benefit from a rule of

thumb that summarizes the limitations of an analytical model

given horn geometry. The suite of horns described in Table I

was analyzed similarly to shape 1. Gain as a function of

angle was calculated by the analytical and numerical models

at discrete frequencies with low ESM error. In a broad sense,

all of the horns exhibit similar behavior in that there is strong

agreement between the models at low frequencies and

angles. The scattering behavior described in Sec. III B 2 is

also present and yields a region of varying disagreement at

high frequencies as shown in Fig. 10. The regions can be

delineated by a critical frequency, defined as the frequency

FIG. 9. Horn shape 1 directivity patterns from the analytical (—) and

numerical (--) models at 8.2 kHz (bottom panel) and 15.4 kHz (top panel).

FIG. 10. (Color online) Surface plot showing the difference (dB) between

the directivity patterns calculated by the analytical and numerical models

for horn shape 1.
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at which DG < 3 dB. The angle at which the critical fre-

quency is evaluated is somewhat arbitrary given the consis-

tency of behavior with this parameter off-axis. The critical

frequency was calculated for the horns in Table I at an angle

of incidence h ¼ 90�.
Despite the coarse frequency resolution of the numerical

solutions, there is a strong relationship between the critical

frequency and mouth sizes across horns with diverse geome-

tries. Figure 12 is a scatterplot of the wavelength at the criti-

cal frequency, kc, versus 4aL. From this plot, it can be

induced that the analytical model well approximates the

directivity of the horn receivers for kaL < p=2. This limit of

applicability is similar to the general assumption for

Webster’s horn equation (kaL � p). No significant relation-

ships with other parameters were apparent, likely a conse-

quence of the small sample size.

The directivity index23 was also calculated for all

shapes. The difference in the directivity index calculated by

the numerical and analytical models generally increases with

frequency, but did not exceed 3 dB for any of the shapes

(kaL � 11 was the largest considered). Because the directiv-

ity index essentially averages across angles, it is a less pre-

cise indicator. However, this suggests even greater

applicability for the use of an analytical model to describe

the horn response in a diffuse field.

IV. CONCLUSIONS

The gain and directivity of the exponential horn receiver

is a spherical enclosure has been analyzed using analytical,

numerical, and experimental methods. The horn receiver

offers substantial advantages for acoustic monitoring appli-

cations requiring high sensitivity and control of directivity.

Using available microphones, horn receivers can be con-

structed to achieve an effective noise floor that allows for

focused measurement of very quiet sounds and environmen-

tal monitoring in quiet areas. Shadowing and the exaggerated

relationship between phase and angle of incidence due to dif-

fraction also suggest that an array of horn receivers can

enhance beamforming performance relative to omnidirec-

tional sensors.

The analytical model, based on Webster’s horn equation

and radiation from a spherical cap, provides a way to rapidly

assess the gain and directivity across frequency given geo-

metrical parameters. The analytical model was validated by

experimental measurement. Although the one-dimensional

approximation neglects to account for higher order modes,

this approach provides an accurate model for waves incident

on-axis over a greater range of frequencies than anticipated.

The relative simplicity of the analytical model makes it use-

ful for design applications. However, precise knowledge of

directivity is critical in the design of receivers for environ-

mental sound monitoring requiring calibrated measurements.

A comprehensive analysis of receiver directivity

required a numerical method that can account for complex

acoustic scattering. The three-dimensional equivalent source

model was applied to an exponential horn embedded in a

rigid spherical housing to describe higher order modes, dif-

fraction, and shadowing. Analyses of the phase of the scat-

tered pressure revealed that gain is often overestimated by

the analytical model for an off-axis source. The numerical

model revealed the presence of a diffraction zone at the horn

mouth in which wavefronts are not aligned with the horn

axis, resulting in less gain from an effectively smaller horn.

Consideration of multiple horns of varying geometry showed

FIG. 11. (Color online) Phase contours

of the scattered pressure (degrees) for

horn shape 1 in response to a source

incident at h ¼ 120�. A source fre-

quency of 8.2 kHz (left panel) results

in a larger diffraction zone and less

gain than a source frequency of 10.6

kHz (right panel).

FIG. 12. Scatter plot showing the relationship between mouth radius, aL,

and critical wavelength, kc, for the horn shapes in Table I.
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that the analytical and numerical models were in agreement

at low frequencies and small angles of arrival. Off-axis, the

analytical model provides accurate estimates of gain for

kaL < p=2. The sample size of receiver shapes was not ade-

quate to discern an effect of other free design parameters.

The analysis was limited to exponential horns whereas other

area profiles may result in more desirable directional charac-

teristics. The numerical analysis was also limited to discrete

frequencies off resonance. However, the behavior described

in Sec. III B 2 showed that diffraction effectively results in a

horn of shorter length which suggests that the frequencies of

resonance may shift for waves arriving off-axis. At frequen-

cies near resonance, the analytical model is expected to have

reduced ability to describe the true response.

Because the gain of horns is proportional to the ratio of

mouth to throat size, horns can provide substantial gain at

wavelengths larger than the horn. The small size of micro-

electro-mechanical microphones makes this achievable in

the audible frequency range, although designs must make a

tradeoff between gain and directivity. Theoretically, perfor-

mance will increase as even smaller diaphragm microphones

become available. Practical realization of such horn-loaded

devices is limited by the ability to accurately fabricate horns

with very small orifices and future research should also con-

sider the role of thermoviscous losses.
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