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Abstract: A method is proposed for the analysis
of electrically medium-sized scatterers made of
inhomogeneous, imperfect dielectric. The scatterer
is modelled by parallelepipeds of arbitrary shapes
and sizes, that can be positioned and intercon-
nected arbitrarily, which enables efficient approx-
imation of very diverse scatterer shapes. The
current-density vector is approximated by entire-
domain three-dimensional polynomials of arbit-
rary degree with complex coefficients within
individual parallelepipeds, even if the dielectric
inside them is continuously inhomogeneous. The
coefficients are determined by the point-matching
solution of the integral equation for the total
current-density vector inside the scatterer. Agree-
ment between the results obtained by the pro-
posed method and those from other sources is
found to be excellent, both in the far-field and
current distribution. When compared with other
available methods, however, the proposed method
requires much less unknowns per A3 ,.;, although
it is neither conceptually nor computationally
more complicated than any of them.

1 Introduction

In addition to its theoretical importance, analysis of
diclectric scatterers is of great practical interest. It is
required in numerous areas of application, such as wave
propagation in the presence of dielectric inhomogeneities,
analysis of radar targets, electromagnetic-wave inter-
actions with biological systems, medical applications of
electromagnetic waves (e.g. hyperthermia and microwave
imaging), and electromagnetic coupling between
communication antennas and neighbouring dielectric
bodies.

Methods based on solving volume integral equations
using subdomain approximation for induced volume cur-
rents are widely used to analyse electrically medium-sized
dielectric scatterers of arbitrary shape and inhomogeneity
[1-3]. To solve any practical problem, however, sub-
domain approximations result in a very large number of
unknown parameters to be determined. Consequently,
serious problems are frequently encountered with com-
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puter memory requirements, the necessary computing
time and stability of the solution.

Entire-domain approximation of current has been
used successfully in the analysis of metallic antennas and
scatterers for some time [4, 5]. It was found that such a
kind of approximation demands the least number of
unknowns possible for a given problem. As far as the
authors are informed, a general method for the analysis
of dielectric scatterers based on entire or almost-entire
domain approximation of either actual volume currents
or equivalent surface currents, that would ensure such a
minimal number of unknowns, is not available.

The principal contributions of this paper, that appears
to offer the first entire-domain method for the analysis of
dielectric scatterers (possibly lossy and inhomogeneous),
can be summarised as follows: First, the basic elements
for the approximation of geometry are simple macro-
parallelepipeds (although micro-parallelepipeds can also
be used as a special case) of arbitrary shapes and sizes,
that can be positioned and interconnected arbitrarily.
This simple model enables surprisingly efficient modelling
of quite diverse scatterer shapes. Secondly, three-
dimensional polynomial current approximation of arbit-
rary degree (including a constant function as a special
case) with unknown complex coefficients is used inside
individual parallelepipeds, and the unknown coefficients
are determined by point-matching. Consequently, when
compared with other available methods (which all use
subdomain approximations), the proposed method
requires considerably less unknowns for a given problem.
For example, for larger bodies of simpler forms a suffi-
cient degree of approximation in one dimension is at the
most three per wavelength in the dielectric, while all sub-
domain approximations require an equivalent degree of
approximation greater than ten, ie., approximately as
many as 30 times more unknowns. Finally, the proposed
method enables the analysis of a scatterer (or a large part
of the scatterer) with continually inhomogeneous dielec-
tric as a single unit (parallelepiped), without partitioning
it into subdomains with approximately constant permit-
tivity. In cases where the complex permittivity is a well-
behaved function of co-ordinates the method yields
surprisingly convergent and accurate results.

2 Entire-domain method for solution of integral
equation for volume current distribution

Consider a body made of imperfect inhomogeneous
dielectric situated in a vacuum in incident time-harmonic
electromagnetic field of angular frequency w. We assume
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that the incident electric-field vector E;, relative permit-
tivity &, and conductivity ¢ of the body are known func-
tions of co-ordinates, and that permeability at all points
is o -

The total (conduction plus polarisation) current-
density vector, J, inside the body is obtained as

J = joegle., — INE; + E) (1)

In this equation, &, = ¢, — jo/(weg) is the equivalent
complex relative permittivity and E represents the
electric-field vector due to volume currents (of density J)
and volume charges [of density p = (j/w) div J] through-
out the volume v of the body, and to surface charges [of
density p, = —(j/w)J - n] over all surfaces S of abrupt
changes in £ and/or o, where n is the reference unit vector
normal to S. (Note that div J = 0 only in homogeneous
media.) The electric-field vector, E, can be expressed in
terms of induced currents and charges, assumed to exist
in a vacuum. Therefore eqn. 1 becomes an integral equa-
tion in a single unknown, the total current-density vector
J:

i {(:’_1) — J [B2Jg(R) + div J grad g(R)] dv

we,

+ j J + n grad g(R) ds} =—E (2
s

Here, g(R) = e ##®/4nR is the free-space Green function,
R is distance between the source and field points and
B = o /(g0 o) = 2m/4 is the free-space phase coefficient.

Eqn. 2 can be solved numerically by any of the pro-
cedures belonging to the method of moments [6]. Before
proceeding to that step, we first approximate the body by
m parallelepipeds of convenient sizes and shapes, as
shown in Fig. 1 for m = 9. Any surface of abrupt change
in £,, must coincide with a side of a parallelepiped.
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Fig. 1  Parallelepiped model of a man exposed to incident electro-

magnetic field
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Next, approximate every component of the vector J in
the Ith parallelepiped by a polynomial in the local carte-
sian co-ordinates x,, y; and z,,

nx o my Nz

Jie = Z Z kzoalxijkxiy{z;‘

i=0 j=0
—d, <x;<dy,
—dy<y<d,p I=L2,....m 3)
—d, <z <d,

with analogous expressions for J,, and J,., where 2d,,,
2d,, and 2d,, are the edge lengths of the /th parallele-
piped. The constants apj, Qiijes Gzije A€ unknown
complex coefficients to be determined, and #,, n,, and n,,
are the adopted degrees of the polynomials.

Finally, we substitute the approximate current dis-
tribution in eqn. 3 into the integral eqn. 2, and stipulate
that the equation be satisfied at N/3 points throughout
the diclectric body, where N is the total number of
unknowns. The matching points in the Ith parallelepiped
are equidistant along each local co-ordinate. This results
in a system of linear algebraic equations in N unknown
current-distribution coefficients, which can be solved by
any of the available direct or iterative methods. In the
proposed method, the Gaussian elimination procedure is
used for that purpose.

Polynomial basis functions enable extremely efficient
recursive evaluation of the system matrix elements
resulting in the fill time of the matrix that increases with
N much more slowly than N2 (Note that fill time of
matrix in subdomain solutions is always proportional to
N?) Numerical integration was performed by the Gauss—
Legendre integration formula. For field points close to or
coinciding with a source point, the principal (static) parts
of the integrals were extracted and computed analytically.

3 Numerical results

In all the examples presented below no use of symmetry
was made. All the results were obtained on a PC386
computer, 25 MHz, with a coprocessor 80387 and
4 Mbyte RAM.

In the first group of examples, consider a dielectric
scatterer in the form of a parallelepiped in the field of a
linearly polarised plane wave of electric field intensity E;
(Fig. 2). As the first example, consider a cube (a=b=10¢)
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Fig. 2  Dielectric scatterer in the form of a parallelepiped in the field of
a linearly polarised plane wave

The centre of the cartesian co-ordinate system coincides with the parallelepiped
centre

made of a homogeneous lossless dielectric (¢, = 9, ¢ = 0).
Let the cube edge length be one-fifth of the free-space
wavelength, A, ie. three-fifths of the wavelength in the
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dielectric, 4, 4. Fig. 3 shows the scattered far field in
planes ¢ = 0° and ¢ = 90°. The degrees of polynomials
were adopted to be n, =n,=n,=3 (m=1) (a total of
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Fig. 3  Scattered field, 20 log E, for a homogeneous perfect-dielectric

cube of side A/5, against 0, in two characteristic planes
g =9%0=0a=h=c E =377 (V/m), f = 300 MHz]
This method, 192 unknowns

©0® Reference 2, 1536 unknowns

N = 192 scalar complex unknowns). The results are com-
pared with those obtained by the subdomain approx-
imation, with the scatterer approximated by 512 small
cubes with uniform current distribution, resulting in 1536
unknowns [2]. It is seen that agreement of the two sets of
results is very good, in spite of the number of unknowns
in the proposed method being for almost an order of
magnitude less than in the other.

To illustrate accuracy of the resulting current distribu-
tion, i.e. of the near field, consider a rodlike scatterer (Fig.
2,a = 0054, b= 0.1, ¢ = 1.251) made of a homogeneous
perfect dielectric (¢, = 4, ¢ = 0). Fig. 4 shows the distribu-

05 1

\(Etotul)‘y;"\A

-025 0 025 050 075
zlc

ol
-050

electric field intensity, Vim

Fig. 4  Distribution of the total electric field inside and in the vicinity
of a homogeneous perfect-dielectric rodlike scatterer, along the line x, =
0,y =b/4

a=0054b=014c=1254¢=40=0,E = 1e™#*i (V/m), f = 300 MHz
—— This method, 21 unknowns
@®0® Reference |

tion of the total field, E,,, (the incident field plus that of
the induced currents and charges), inside the scatterer
and in its vicinity. The polynomial degrees adopted were
n,=n,=0, n,=6 (m=1) (a total of only N =21
unknowns). The results are compared with those from
Reference 1, where every field component in the scatterer
was approximated by locally constant functions in equal
orthorhombic cells, and the point-matching method was
used. Very good agreement of the two sets of results is
observed, the degree of the polynomial along the z-axis,
n, = 6, being much smaller than the equivalent degree of
approximation (about 50) from Reference 1.

The next example is aimed at demonstrating rapid and
stable convergence of the results with increasing degree of
the polynomial approximation. Fig. 5 shows the current
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distribution along a scatterer in the form of a parallele-
piped of square cross-section (Fig. 2, a=5b=35 cm) with
the degree n, in the polynomial approximation as param-
eter. The material adopted was a dielectric of high
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Fig. 5  Modulus of the total current density, |J ), along the axis of a

scatterer in the form of a parallelepiped of square crosssection
[a=b=5cm, c=1m, E;=le”#_(V/m), f= 600 MHz] made of a
lossy dielectric (¢, = 71, 6 = 4.4 S/m, i.e. &, =71 —jl131.82), with the
degree n, of polynomial approximation as a parameter
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relative permittivity (¢, = 71) with significant losses
(¢ = 4.4 S/m) which can be used to replicate a biological
tissue, and the scatterer length was adopted to be two
wavelengths in a vacuum, ¢ = 24. Very accurate results
are obtained with a single polynomial of degree n, = 10.
As an example of the analysis of piecewise homogen-
eous dielectric bodies, consider a parallelepiped scatterer
(Fig. 2, a = b = 0,054, ¢ = 1) consisting of two parts of
equal length ¢/2, made of different imperfect dielectrics
(61 = 3 — j4, &0y = 8 — j6). Fig. 6 shows the distribution
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Fig. 6  Distribution of the total field E,,, along the axis of a cylin-

drical scatterer, consisting of two homogeneous parts of length ¢/2 and
complex permittivities €,y = 3 — j4, £,, = 8 — j6

a=b=0054 ¢ = A E, = le™#%_(V/m), f = 300 MHz

The field on the axis has only the z-component

of the total electric field along the scatterer axis. The
parameters of the approximaton adopted were n, =
Ny, =ny,=n,, =0, n,=n.=4 (m=2) (a total of
N = 30 unknowns).

To check the accuracy of the results shown in Fig. 6,
the boundary conditions for the vector &, E,,, were con-
sidered. The ratios obtained numerically of the two rele-
vant normal field components at the boundary surfaces
z=—¢/2, z=0 and z=c¢/2 are 299963-j3.99992,
1.91987 + j0.559844 and 7.99758 — j5.99763, respectively,
while the corresponding exact ratios are 3 —j4,
1.92 4 j0.56 and 8 — j6. It can be seen that agreement
between the two sets of results is excellent, in spite of
quite small number of unknowns used.
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Let us consider an inhomogeneous scatterer, the per-
mittivity of which is a continuously varying function of
space co-ordinates. This problem can be solved by
approximating the body by many small homogeneous
dielectric cells. However, the integral eqn. 2 enables a
continuously inhomogeneous body to be treated as a
whole, at least theoretically. The next example is aimed at
demonstrating that with the entire-domain polynomial

approximation this conclusion is also numerically
correct.
Consider a square cylindrical scatterer (Fig. 2,

a=b=0.16cm) of finite length ¢ = 3.2cm = 1.0084
The relative permittivity of the perfect dielectric (¢ = 0) is
the following function of the z-co-ordinate:

2
)=ty —n =1y —h<z<h h=c2 (@

where ¢, is a constant. Fig. 7 shows the distribution of
the vector J along the scatterer axis. Shown in the Figure
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Fig. 7  Modulus of the current-density vector along the axis of a con-

tinuously inhomogeneous scatterer in the form of a parallelepiped, with
relative permittivity given in eqn. 4 withe,, =3 and o =0

a=b=016cm,c=32cm = 1.0084, E, = le~#*i_(V/m),f = 945 GHz

————  piecewise-constant current approximation with m = 32 (96 unknowns)

— - — - entire-domain polynomial current approximation with m=1 (21
unknowns)

are the results obtained with two different approaches. In
the first approach the body was divided into m = 32
equal parallelepipeds of volume a x b x ¢/m, and the
permittivity in all of them was approximated by a con-
stant, equal to the value of the function 4 at the parallele-
piped centre. A constant current density in all the small
domains was adopted, ie. n,=mn,=n,=0, I=1, 2,
.., m, resulting in a total of N = 96 unknowns. In the
sccond case, the body was treated as a single piece
(m=1) and the polynomial approximation with n, =
n, = 0,n, = 6 (a total of N = 21 unknowns) was adopted.
Excellent agreement between the two sets of results is
observed.

For the next example, consider an inhomogeneous
right cylinder, of elliptical cross-section shown in Fig. 8.
The relative permittivity of the cylinder with respect to
the co-ordinate system in Fig. 8 is given by

2 2
8%, ¥,2) = &, — (&, — 1)[(3) + <§> :| ®

and ¢ = 0. The cylinder with a = 0.644, b = 0.324 and
d = 0.084 was modelled by m =7 parallelepipeds, as
indicated in Fig. 8, and the adopted degrees of the poly-
nomial approximation were n,, =4, n,, = 0y, = N4, =
n5x=n6x=n7x=0’ n1y=n2y: n3);=n5y=n6y:4a
Rgy=ny,=2,n,=0,i=12,...,7 (a total of N = 153
unknowns). (In modelling of bodies with curved surfaces
it is convenient and advisable to use as large parallele-
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pipeds as possible, with adequate degrees of the poly-
nomial approximation of current) Note that all the
parallelepipeds in the model are made of inhomogeneous
dielectric.

Fig. 8  Right cylinder of elliptical crosssection, of semimajor and semi-
minor axes

a and b, and height d (normal to the plane of the drawing), and its approximation
by m = 7 parallelepipeds. The cylinder bases are parallel to the plane of the figure

Fig. 9 shows the normalised bistatic scattering cross-
section, Sy, (0, $)A2, of the cylinder, in planes ¢ = 0° and
¢ = 90°. The results are compared with those from Refer-
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Fig. 9 Normalised bistatic scattering cross-section of inhomogeneous
right elliptical cylinder, of dielectric permittivity given by eqn. 5 with
&, = 2, in two characteristic planes

a=0644, b=0324, d = 0084 E; = (Eqyi, + Eoy i, + Eo,i,) exp [—jBlk, x + k,y
+k,2)], f= 300 MHz, k, =05, k, =0, k, = J03)2, E,, = —J3WV/m, Eg, =0,
Eo, = 1V/m]

this method

®0@® results from Reference 1 multiplied by 1/2

ence 1, where a model with equal orthorhombic cells was
used in conjunction with piecewise constant field approx-
imation and point-matching method. (Unfortunately, the
number of unknowns in [1] was not given but obviously
it was much larger than 153.) It can be observed from the
Figure that the results obtained by using the polynomial
approximation are in very good agreement with the
results from Reference 1 previously multiplied by a factor
1/2. Presented in [1] are also the resuits for the normal-
ised bistatic scattering cross-section of a homogeneous
cube, that also need to be multiplied by 1/2 in order to be
in agreement with the results obtained by the present
method. It is therefore very likely that the results in
Reference 1 represent 20 log (Sy/A%), instead of usual
10 1og (Spie/A%)-

For a final example, consider a model of man in the
field of a plane wave of frequency f= 90 MHz. The
model is 180 cm high, and is made of a homogeneous
lossy dielectric of parameters ¢, = 76 and ¢ = 0.85 S/m,
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ie. g, = 76 — j169.76. It is constructed with m = 9 paral-
lelepipeds, as sketched in Fig. 1. The dimensions of the
parallelepipeds are as follows (dimensions are given in
centimeters, as a x b x ¢ = Ax x Ay x Az): parallele-
piped 1 — 65 x 34 x 23; 2 and 3 — 85 x 14 x 15; 4 and
5—75%x9%x9;6—23x17 x19; 7-7 x 10 x 10; 8 and
9 — 15 x 3 x 12. The adopted degrees of the polynomial
approximation #n, x n, x n, are the following: 1-
3x2x2;2and3—-4x2x2;4and 5 —4x0x0;6-
2x2x2;7 8and 9—0x0x0 (a total of N =498
unknowns). Finally, let the incident electric-field vector
be E, = le ##%_V/m. (Note that by use of symmetry the
number of unknowns for this particular incident field
could be halved, i€. Nk symmery = 249 unknowns.) Fig.
10 shows the distribution of volume density of the Joule
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5.19 175 2.75-4.03
10.|94 165 llo.l30—6! l2
> i
3.88 155
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7 7.1&—5.'06- 6I.6I8 135 Z!OS—ZI.A:
7.92I*B.I38 H 9!19 125 2,41*2.3‘;
6,82%-11.:66 H 1(:),2:1 15 2.76—2.|06
4.42-14.22110.12 105 2.58-1.58
1.82‘—13.|85- 81.7!3 95 1.|57—1.|OA
—O,Lé 16?90- 5!2!3 85 »O|.54—0|.73
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Fig. 10  Distribution of volume density of the Joule losses, p; in
(W/m® x 10”2, in two characteristic planes inside a parallelepiped model
of human body exposed to the field of a plane wave

For the dimensions of the parallelepipeds and other parameters, please see text

losses, p; = 0 | Epu|*, in two characteristic planes inside
the human body. It can be seen from the Figure that p;
varies greatly throughout the body. Consequently, there
is a great variation in the absorption of the electromag-
netic energy by different regions inside the body.

To get some feeling of CPU time, 7¢py, needed for the
proposed entire-domain solution and to compare it to
that required by other (subdomain) methods, consider a
homogeneous dielectric scatterer in the form of a cube of
edge length equal to the wavelength in the dielectric, a =
Ainaier- The proposed entire-domain approach enabled
very accurate results to be obtained with as few as 192
unknowns. The CPU time was tcpy = 208.7 s (155.1 s for
the evaluation of the system matrix elements plus 53.6 s
for solving the system equations). The reference sub-
domain solutions were obtained also using the proposed
method, but with the lowest-degree polynomial approx-
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imation. To have exactly the same number of unknowns
(192), the cube was first partitioned into only 4 x4 x 4
smaller cubes, although obviously this partitioning is not
at all sufficient for accurate subdomain analysis. This
solution required tcpy = 262.8s. To have, however, a
solution of approximately the same accuracy as that of
the above entire-domain solution, at least 10 x 10 x 10
partitions of the cube, ic. 3000 complex unknowns, are
necessary. This problem, unfortunately, was far too large
for the PC used, but the estimated CPU time in that case
exceeded 70 hours.

Of course, the above comparison is valid only for the
problem considered and for the particular reference sub-
domain solution, but it certainly is at least indicative of
very modest CPU time requirements of the proposed
method.

4 Conclusions

A specific moment method is proposed for the analysis of
scatterers made of inhomogeneous imperfect dielectrics,
having the following properties:

(i) As far as the authors are informed, it represents the
first application of an entire-domain approximation to
the analysis of dielectric scatterers of arbitrary shape and
inhomogeneity.

(ii) It is based on solving the volume integral equation
in the total current density vector, J, which is approx-
imated by three-dimensional polynomials with complex
coefficients inside individual macro-parallelepipeds used
to approximate the scatterer. The solution is obtained via
the point-matching method.

(iti) It yields results of the same accuracy as any avail-
able subdomain method, but requires considerably less
unknowns for a given problem. For larger bodies of
simpler forms a sufficient degree of approximation (ie.
polynomial degree plus one) in one dimension is about
six per free-space wavelength, and usually much less (at
the most three) per wavelength in the dielectric. Conse-
quently, the method has relatively low memory require-
ments and is comparatively very rapid.

(iv) The macro-parallelepipeds used for modelling a
dielectric body can be of arbitrary sizes and shapes and
interconnected in an arbitrary manner. Consequently,
this simple model is very flexible and a good approx-
imation can be achieved of scatterers having quite diverse
shapes.

(v) The degree of the polynomial approximation in any
co-ordinate can be quite high (e.g. up to 16) for the solu-
tion to remain stable, so that electrically large scatterers
can be analysed without partitioning (except for model-
ling of their geometry).

(vi) It yields accurate results for continually or
piecewise inhomogeneous scatterers of arbitrary complex
permittivity. Large scatterers (or large parts of scatterers)
with continually inhomogeneous dielectric can be treated
as a single unit (parallelepiped).
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