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Abstract: A novel, entire-domain moment-
method is proposed for the analysis of wire
antennas and scatterers in the presence of lossy
inhomogeneous dielectric bodies of finite extent.
The wire part of the structure is approximated by
arbitrarily positioned and interconnected straight-
wire segments of lengths which can exceed one
wavelength.  The  dielectric  bodies  are
approximated by a system of trilinear
hexahedrons, which can be electrically large (can
also exceed one wavelength inside the dielectric,
in any direction). The current along wires and
inside dielectric bodies is approximated by one-
and three-dimensional polynomials, respectively.
The unknown current-distribution coefficients are
obtained by a Galerkin-type solution of the
system of coupled two-potential integral
equations. The method is accurate, efficient and
reliable. Its fundamental advantage over the (only
existing) subdomain methods for the analysis of
the same type of structures is a significantly
reduced number of unknowns (as a rule, for an
order of magnitude) and, consequently, greatly
reduced computing time. The proposed method
enables rapid analysis of wire/dielectric structures
exceeding moderate electrical size with even
standard personal computers.

1 Introduction

Numerical analysis of wire antennas and scatterers in
the presence of finite-size dielectric bodies (possibly
lossy and inhomogeneous), which may be termed wire/
dielectric antennas and scatterers, is of great practical
interest. There are two basic classes of general methods
used for such analysis. The first class includes the
moment-method solutions of the system of coupled
integral equations consisting of a line integral equation
for wires, and a volume integral equation for dielectric
bodies [1-3]. The wire/dielectric antenna (or scatterer)
is approximated by many electrically small geometrical
elements, with low-order basis functions for the
current/field approximation (the subdomain-type
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approach). The second class includes the FDTD (finite-
difference time-domain) methods for the solution of the
differential electromagnetic-field equations [4]. These
methods also imply a kind of subdomain (small-
domain) discretisation of space, with the additional dis-
cretisation in the time domain. An advantage over the
integral-equation subdomain methods is that the proc-
ess is sequential, not requiring a solution of the system
of linear equations.

The basic problem with both existing classes of solu-
tion methods for arbitrary wire/dielectric structures is
the need for a very large number of unknowns to
obtain results of satisfactory accuracy. In the opinion
of the present authors, this is solely the consequence of
the subdomain philosophy that is used.

To the best knowledge of the authors, the present
paper presents the first entire-domain (more precisely,
large-domain) general method for the analysis of wire
antennas and scatterers in the presence of dielectric
bodies. A system of coupled integral two-potential
equations in unknown current distribution along wires
and ‘inside dielectric bodies is solved by the Galerkin
entire-domain method. The wires are approximated by
straight segments that can be quite long (exceeding one
wavelength), with a polynomial current aproximation
which automatically satisfies the first Kirchhoff law at
the wire ends and interconnections. The dielectric
bodies are modelled by large, generally nonorthogonal,
trilinear hexahedrons, with a three-dimensional polyno-
mial approximation for current distribution that auto-
matically satisfies the boundary condition for the
normal component of the equivalent electric displace-
ment vector on surfaces shared by two adjacent hexa-
hedrons [5, 6]. One of the major problems, that has
been solved successfully, was an efficient numerical
procedure for the evaluation of a total of four different
types of the Galerkin system-matrix elements (wire/
wire, wire/dielectric, dielectric/wire and dielectric/dielec-
tric).

Numerical results obtained by the proposed method
(some of which are presented in this paper) are in
excellent agreement with available experimental results
and those obtained by other methods. However, when
compared with available (subdomain) general methods
for the analysis of the same type of structures, the pro-
posed method requires significantly less unknowns (as
a rule, for an order of magnitude). It therefore enables
the analysis of wire/dielectric structures exceeding mod-
erate electrical size on even standard personal comput-
ers, in a very reasonable amount of time.
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2 Theory

Consider a perfectly conducting wire antenna in the
presence of an inhomogeneous, lossy dielectric body,
situated in a vacuum. The wire segments can be curved,
and positioned arbitrarily. The body may consist of
several parts, possibly in contact with one another.
Assume that the permittivity and conductivity of the
dielectric, ¢ and o, are known functions of the space
co-ordinates, and that pu = u,. Finally, let the wire/die-
lectric structure be excited by a time harmonic incident
field, of complex electric field intensity E, and angular
frequency w, that may be a plane wave or the field of
one or more concentrated generators.

The incident field induces surface conduction cur-
rents, of density J,, over the surfaces of the wires, and
volume polarisation and conduction currents, of total
density J, in the volume of the dielectric body. These
currents can be considered in a vacuum, so that the
scattered electric field, E, due to them can be expressed
in terms of the retarded Lorentz potentials, A and ®.
In calculating the potentials, we approximate the actual
current distribution J; over the wire surface by a line
current of intensity 7 along a generatrix of the wire (the
reduced-kernel approximation). The line, surface and
volume charge densities in the expression for the scalar-
potential are expressed in terms of 7 and J by the con-
tinuity equation. We thus obtain

E=EJ,]) = —jwA — grad® (1)
A = g /Igdl—i—/Jng (2)
I 14
- J ﬂgdH/dingdVJr/n.(Jl~Jz)gdS
WeEQ dl
! v Sa

3)

where / is the wire generatrix, and V is the domain of
the dielectric body. S, is the surface of discontinuity in
the dielectric properties, i.e. the boundary surface of
dielectrics 1 (with current density J;) and 2 (with cur-
rent density J,). The unit vector n, normal to the sur-
face Sy is directed into dielectric 1. (In air, of course, J
= 0.) The free-space Green’s function, g, is given by
e~ IPo R o2
9= 25 Bo=w €0M0=70 (4)

R is the distance of the field point, P, from the source
point, P', while 8, and A are the free-space propaga-
tion coefficient and wavelength, respectively.

On wire surfaces, the locally axial tangential compo-
nent of the total (incident plus scattered) electric field
vector is zero. By the theorem on extended boundary
conditions [7], this can also be assumed to hold along
the local wire axis. On the other hand, the total electric
field vector inside the dielectric is connected with the
vector J by the generalised local Ohm’s law. So we
obtain

—-Ea(J,I) = Eia
{ J/o. —EJ,I) = E;

(along axes of wires)
(inside dielectric bodies)
(5)
where E, stands for the axial electric-field component,
and o, = o + jo(e — &) is the dielectric equivalent com-

plex conductivity. The integral equations in eqn. 5,
which include eqns. 1-4, represent a system of coupled,
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simultaneous two-potential integral equations, with J
and [ as unknowns.

~
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Fig. 1 Straight wire segment

3 Numerical solution

As the basic element for the approximation of wire
structure we adopt a straight wire segment (Fig. 1). Let
the field point, P, be in the x—z plane of the local rec-
tangular co-ordinate system indicated in the figure. The
position vector of a point P), at the segment surface
(the source point) can be expressed as

Ty (p) Qb) =TIc.+rp+ alp(¢)

—1<p<l, —w<¢<7 (6)
where p and ¢ are local parametric co-ordinates along
the wire axis and around the local wire contour, respec-
tively, and i,(¢) is the corresponding local radial unit
vector. The symbol a denotes the wire radius, and r,
and r, are constant vectors shown iq Fig. 1. With the
adopted reduced-kernel approximation, we need to
define the angle ¢, i.e. the wire generatrix with the line

current /. In this paper we adopt ¢ = /2 for all wire
segments.

Fig. 2 Tvilinear hexahedron

As the basic volume element for the approximation
of dielectric bodies we adopt a trilinear hexahedron
[5, 6], sketched in Fig. 2. This is a body defined

IEE Proc.-Microw. Antennas Propag., Vol. 145, No. I, February 1998



uniquely by its eight vertices, which can be positioned
in space arbitrarily. The parametric equation of the
hexahedron in a local (generally nonorthogonal) u-v-w
co-ordinate system in the figure reads

ra(u, v,w) = v+ U+ TyU 4+ Ty + Ty UV + Py Uw
F Ty VW + Ly UVW
-1<uyv,w<l (7)

where r, is the position vector of a hexahedron point,
P,, and r,, 1, 1, T, T, I, I, and r,,, are constant
vectors that can be expressed in terms of the position
vectors of the hexahedron vertices, ryy, ..., Iyp. The
hexahedron edges and all co-ordinate lines are straight,
but its sides in the general case are curved.

The current intensity, I(p), along the adopted wire
generatrix in Fig. 1 is approximated as

Np
I(p) = Z bi&i(p)

l—-p, 1=0
p+1, 1=1
§i(p): i -
pt—1 1=2.4,...,N,(2)

pi—p 1=23,5,...,N,(2)
-1<p<1 (8)
where b; are unknown complex coefficients, and N, + 1
is the adopted number of terms. The first two terms,
bo(1 — p) and by(p + 1), serve to automatically satisfy
the first Kirchhoff law at the wire-segment interconnec-
tion and free ends. The higher-order terms are zero at
the segment ends, &(x1) = 0, for i = 3, 4, ..., N, and
serve to improve the current approximation along the
segment.
The local u-component of the current-density vector,
J, in the hexahedron in Fig. 2 is approximated by the
following three-dimensicnal polynomial:

Ju = e—ci[Qs(u,v,w) cos y(u,v, w)] ™"

[

Ny Ny—1 Ny—1
- .
X Z Zd Z Cuije&i(w)vIw®
i=0 j=0 k=0

—1<u,v,w<1 9)
where the function & is defined in eqn. 8, and ¢, = ¢
— jolw is the dielectric equivalent complex permittivity.
N,, N, and N, are the adopted degress of the polyno-
mials, ¢, are unknown complex coefficients, and vy is
the angle between the u-co-ordinate line and the nor-
mal to the v-w co-ordinate surface at the point (u, v, w).
In particular, for u = =1, (¢,/0,)J, cos y represents the
component of the equivalent electric displacement vec-
tor, D, = &,(E; + E), normal to the hexahedron surface,
which enters the corresponding continuity boundary
condition. In analogy with wires, the terms c,u(l —
uyw* and ¢, z(u + 1)vwF serve for the automatical
adjustment of this condition at the hexahedron inter-
connections. Finally, the function Q,, defined as the
ratio of the differential surface element dS,, (in the
form of an infinitely small parallelogram with sides
along the v- and w-co-ordinate lines) at a point (u, v, w)
and the parametric differential element dv dw, enables
significant simplification of the integral expressions for
the potentials. Analogous expansions are defined for
the current-density vector components J, and J,, with
the same degrees of the polynomials, N,, N, and N,,.
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If the wire/dielectric structure considered represents a
transmitting antenna, the incident field, E;, is computed
as the field of the TEM magnetic-current frill.

The unknown current-distribution parameters, {b}
and {c}, defined in eqns. 8 and 9, are obtained by solv-
ing the system of coupled integral equations in eqn. 5
by means of the Galerkin method [8]. After a partial
integration, the resulting generalised impedances (the
elements of the system matrix) can be given in the fol-
lowing form:

(o [ InAngdly, — [ ®,%2dl,
!

LTI

m lm
if the mth element is a wire segment
[ I - InfoedVin + jw [ T - AndVy,
Vm

Vin

— [ ®,divIndVim + § 230 - dSn
Vi S,

"if the mth element is a hexahedron
(10)

In this equation, I, and J,, are testing functions defined
in the mth clement of the geometrical model of the sys-
tem, which may be a wire segment, of length [, or a
trilinear hexahedron, of volume V,, and boundary sur-
face S,,. A, and @, are the potentials due to basis func-
tions I, or J,, defined in the nth geometrical element.

It is not difficult to conclude that the generalised
impedances defined in eqn. 10 can be represented as
linear combinations of nine basic types of Galerkin
integrals, depending on the domain of the outer (test)
and inner integration, which may be a wire segment
(L), a side of the trilinear hexahedron (S), or the vol-
ume of a trilinear hexahedron (V). Thus we have the
Galerkin integrals of the type L/L, L/S, ..., S/V and V/
V. They all contain power functions of parametric co-
ordinates p, u, v and w.

The rapid and accurate numerical/analytical integra-
tion methods are developed for the basic potential inte-
grals, contained in the expressions for the potentials A,
and ®,. Of course, these integrals can be of the L, S or
V type, depending on the domain of integration. When
the distance R in the Green’s function, given in eqn. 4,
is relatively small, the procedure of extracting the
(quasi) singularity is performed. As could be expected,
the problems with the (quasi) singular integrals are
most pronounced in cases when wires are in contact
with dielectric bodies. According to the procedure, the
function f cos ByR, where f = p for the L integrals, /' =
wiv for the S integrals, and f = w’wk for the V inte-
grals, is first expanded into Taylor series about the
(quasi) singular point of the Green’s function. Several
principal, (quasi) singular, terms of these expansions,
divided by 4aR, are then extracted from the integrands
and integrated analytically, so that the remainder,
which is well behaved for R = 0, can be integrated
numerically with high accuracy, even with relatively
tow orders of the integration formulae.

The algorithm for multiple numerical integration,
based on the Gauss—Legendre integration formula, is
optimised, to avoid redundant operations relating to
the summation indices in the integration formulae, as
well as the indices 7, j and k of the power testing and
basis functions.

Finally, the algorithm for efficient, nonredundant
recursive construction of the Galerkin impedance
matrix is used, in which, for any pair of geometrical
elements, first and only once, the basic Galerkin inte-
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grals for all values of the indices i, j and k& are recur-
sively evaluated, and then simultaneously introduced
into all impedances containing them. It should be
noted that, if the V/V integrals are considered, the eval-
uation of which is obviously the most time-consuming,
there are nine combinations for the corresponding
impedances, relating to the u-, v- and w-components of
the vector J in the two hexahedrons, and in all of them
it is necessary to evaluate both A and @.

TEM-frill

. SR W

2a

\J

Fig. 3 Dipole wire antenna near a parallelepiped of biological tissue

With the lowest degrees of current approximation, N,
= 1 for wires (piecewise linear basis functions) and N,
= N, = N, = 1 for dielectric hexahedrons (3D rooftop
basis functions [9]), the subdomain (small-domain) ver-
sion of the proposed method is obtained. When com-
pared with the entire-domain (large-domain) version of
the method, it requires much more unknowns for a
given problem. This is, of course, the result of the flex-
ibility of the polynomial current approximation. On the
other hand, as a consequence of the efficiency of the
procedure for the evaluation of the Galerkin general-
ised impedances in eqn. 10, briefly described above, the

40 T y T T T T T T T T T

AR,Q

0 10 20 30 40 50 60
Zp,cm

a

impedance-matrix fill time per unknown in the entire-
domain version of the method is, on average, not larger
than the corresponding time with the method in its
subdomain version. So the overall computation time
needed for solving the same problem with approxi-
mately equal accuracy strongly favours the entire-
domain method for the analysis of wire/dielectric
antennas proposed in this paper over the subdomain
solutions, at least as far as the subdomain version of
the proposed method is considered as the reference
subdomain solution.

The resulting system of lincar algebraic equations
with complex unknowns {b} and {c} is solved classi-
cally, by the Gaussian elimination.

4 Results

Consider first a symmetrical wire dipole-antenna near a
homogeneous lossy-dielectric parallelepiped (Fig. 3).
The dielectric parameters are ¢ = 71 and o =4.48/m
(a biological tissue), the frequency of the generator
f = 600MHz, and the dimensions of the structure
h = 12.5cm, a = 0.3125cm, [ = 25cm, ¢ = 6.25¢cm and
d = 1.56cm.

Each antenna arm was represented as a single seg-
ment with the degree N, = 4 of the current approxima-
tion, and the parallelepiped as a single trilinear
hexahedron with adopted degrees of current approxi-
mation N, =4, N, =2 and N,, = 1 (the total number of
geometrical elements was N, = 3). This resulted in
(Nyhwires = 7 unknowns for the wire antenna plus
(N)aier = 38 unknowns for the dielectric body (a total
of N, = 45 unknowns) and Tepy = 5.7s of CPU time
on a PC-486/66 MHz. The existing symmetry was not
utilised.

Fig. 4 shows the difference in the antenna impedance
when the parallelepiped is present, and when the
antenna is isolated, AZ, = Z, — (Z,),, against the dis-
tance z, shown in Fig. 3. The results obtained by the
proposed method are compared with those obtained
with the subdomain moment-method [2], where the
number of unknowns for the field approximation in the
dielectric body was 192 (the number of unknowns

50 i | T T T T T T T Y

40

z,,CM

b
Fig. 4 Difference of the impedance of a dipole in presence of a dielectric body in Fig. 3, Z,, and impedance of dipole when isolated, (Z,),, plotted against

distance z;

a Difference in resistance

(R = 97.50 Q (EDGM); (R,), = 103.62 Q ([2])
b Difference in reactance

(X))o = 43.22 Q (EDGM); (X,)o = 49.31 Q ([2])

f=600MHz, A=125cm, ¢ =0.3125cm, [ =25cm, ¢ = 6.25cm, d = 1.56 cm, &, = 71, 0 = 4.4 S/m

entire-domain Galerkin method (EDGM), (N wires = 7 (Nunddier = 38
® & @ method [2], 192 unknowns for dielectric body
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relating to the wires was not given). Excellent agree-
ment between the two sets of results is observed. Note
that the number of unknowns for the dielectric body
required in [2] is five times that required by the present
method.

2a

d/2

TEM-frill
d/2

d

Fig. 5 Square-loop wire antenna wound onto a dielectric cube

Fig. 6 Cross-section of geometrical model of structure with six elements

Consider now a square-loop wire antenna wound

onto a perfect-dielectric core in the form of a cube, of

TP 7T —r—— 7117 T T T T

1000

T

800

200 -

0 i 1 1 A i ) I T | H i

0.3 0.5 07 09 1.4 13
4dhg
a

relative permittivity & = 2.1 (o = 0), as sketched in
Fig. 5. Let the cube side length be d = 2 in (5.08¢m),
and the wire radius a = 0.02in (0.508mm). The wire
loop was divided into five segments, and the cube was
considered as a single hexahedron (N, = 6), as in
Fig. 6. The adopted degrees of the polynomial approx-
imation were N, = 4 for all wire segments [(N,,)yies =
20], and N, = N, = N,, = 4 for the cube [(N,,)z.; = 240].
This resulted in Tepy = 67.2s with PC-486/66 MHz
(45.5s for the evaluation of the impedance-matrix plus
21.7s for solving the system of linear equations). Sym-
metry was not utilised.

Fig. 7 shows the impedance, Z,, of the antenna, plot-
ted against 4d/A, in the range 0.3-1.4, which corre-
sponds to a frequency range 442.91-2066.93MHz. The
results obtained by the proposed method are compared
with experimental and numerical results from [2].
Excellent agreement between the three sets of results is
observed, the number of unknowns for the dielectric
body requred by the subdomain method in [2] without
using symmetry (3000) being 12.5 times that requred by
the present method.

5 Conclusions

A Galerkin-type method is proposed for the analysis of
arbitrary wire antennas and scatterers in the presence
of inhomogeneous lossy dielectric bodies of arbitrary
shape and finite extent. It is based on the solution of
simultaneous two-potential integral equations and an
entire-domain (or, more precisely, large-domain) phi-
losophy. Basic elements for geometrical modelling are
straight wire segments (for wire antennas) and trilinear
hexahedrons (for dielectric bodies). These elements
(domains) may be electrically large. Current distribu-
tion along the wires and in the dielectrics is approxi-
mated by one- and three-dimensional polynomials in
local parametric co-ordinates, respectively, which sat-
isfy automatically the continuity equation at wire-seg-
ment ends and interconnections, and over hexahedron
sides.

Numerical results obtained by the proposed method
(some of which have been presented in the paper) have
demonstrated that it is accurate, reliable and very effi-

;
J

P TS SIS WS JU0 T TN N S

200 |
-400 | 3
1000 - ¢
-1600 |-
-2200 .
03 05 07 08 14 13
4d/rg
b

Fig. 7 Impedance of loop antenna with a dielectric core from Fig. 5, for &, = 2.1, 6= 0, d = 2 in and a = 0.02 in, plotted against 4d/2,

a Resistance

b Reactance

entire-domain Galerkin method, (N,,)wires = 20, (Ny)gier = 240
® @ ® cxperimental results [2]

A A A method {2], 3000 unknowns for dielectric body
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cient. Perhaps the most important advantage of the
proposed method over the existing general methods for
the analysis of wire/dielectric structures is that it
requires fewer unknowns (on average for about an
order of magnitude), which enables systems exceeding
medium electrical size to be analysed on standard per-
sonal computers, in a reasonable amount of time. This
appears to be the unique feature of the proposed
method when compared with the existing methods.
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