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Abstract: A perturbation/iterative method (the
PPP method) is proposed for the analysis of elec-
tromagnetic fields in inhomogeneous media. It
consists of increasing the values of the parameters
of the medium at all points in small increments,
starting from their vacuum values, and computing
the induced sources by means of the total field (the
incident field, plus that of the induced sources as
obtained in the preceding step). Thus, in all the
perturbation/iterative steps the total excitation
field is known, and therefore the solution of any
problem using the method is based solely on the
expression for the field of an elemental source in a
vacuum. The method appears to be very versatile,
conceptually the simplest possible and remarkably
rapid. It also has extremely low memory require-
ments even for very large problems, provided that
computing time is not critical. In addition, it can
be combined very efficiently with other available
methods, e.g. with the method of moments for the
analysis of conducting antennas in a vacuum to
analyse such antennas in the presence of arbitrary
dielectric or magnetic bodies.

1 Introduction

Except in the case of waves in homogeneous media, elec-
tromagnetic structures always include boundaries, i.e.
inhomogeneities. Most often the inhomogeneities are
piecewise homogeneous, but not infrequently gradual
variation of the electromagnetic properties of the medium
is also present. The properties of the bodies constituting a
system can range from those of a practically perfect
dielectric of relatively low permittivity, or an imperfect
dielectric with significant losses, to those of ferrites or
metallic conductors.

To find the electromagnetic field in such diverse cases,
many methods have been proposed and used. It is mostly
assumed that the medium is linear, and we shall also
restrict our attention to such cases. Analytical methods
are of limited practical use. Numerical methods can be
broadly classified as surface integral equation methods
[1], volume integral equation methods [2, 3] and differ-
ential equation methods [4]. Directly or indirectly, all
the numerical methods are aimed at establishing and
solving a system of linear algebraic equations often with
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a very large number of usually complex unknowns. Con-
sequently, serious problems are frequently encountered
concerning the computer memory requirements, the
necessary computing time and, which is probably most
important, the stability of the solution. Several tech-
niques have been proposed, mostly of an iterative nature,
to circumvent these difficulties [5, 6]. Finally, the mathe-
matical, as well as the numerical, basis of most of these
methods tends to be complicated, so that complete
understanding, and thus also complete mastering, of the
methods is the privilege of a relatively narrow circle of
specialists.

This paper proposes a novel, conceptually and compu-
tationally simple, general perturbation/iterative numeri-
cal method for the analysis of electromagnetic fields in
inhomogeneous media. In its basic form it was described
in References 7 and 8. Since then, the method has been
significantly improved and extended, and represents an
efficient method which can be used for solving a large
variety of problems as a very simple alternative to the
method of moments. Although further improvements and
generalisations of the method are certainly to be
expected, the authors believe that even in its present form
it can be used as a very powerful tool for solving many
important electromagnetic field problems in a simple
manner.

Basically, the method consists of allowing the values
of the parameters of the (generally inhomogeneous)
medium, e.g. permittivity of a dielectric body or conduc-
tivity of a conductive body, to increase at all points in
small increments, from their vacuum values (e.g. unity for
relative permittivity and zero for conductivity) to their
actual values. In the first step, for the vacuum values of
the parameters, the field at all points is computed as that
due to the external sources in a vacuum. This field (the
incident field) is then used to calculate the induced
sources at all points of the medium with the values of the
parameters increased by one small increment. In the
second and subsequent steps, the induced sources are
calculated on the basis of the corrected total field (the
incident field plus that of the induced sources as obtained
in the preceding step and situated in a vacuum). Thus, in
all the perturbation/iterative steps, the total excitation
field is known, and therefore the solution of any problem
using the method is based solely on the expression for the
field of an elemental source in a vacuum. From the initial
letters of the Serbo-Croatian words postepeno
povecavanje parametara, meaning ‘gradual increase of
parameters’, the method is termed the PPP method.

In addition to its conceptual and computational sim-
plicity, the method appears to be very versatile and
remarkably rapid. It also offers the possibility of
extremely low memory requirements for even very large
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problems, provided that computing time is not critical. In
addition, it can (although need not) be combined very
efficiently with other methods, e.g. with the method of
moments for the analysis of conducting antennas in a
vacuum to analyse such antennas in the presence of arbit-
rary dielectric or magnetic bodies.

2 Outline of the method

Consider an arbitrary system of sources (J;, J,,;) acting in
a linear, but inhomogeneous, medium of parameters ¢ =
eoll + xo), #=po(l + %) and o. The electromagnetic
field in the system satisfies Maxwell’s equations:

curl E = —y(dH/ot) — J,;
curl H = 6E + &(0E/ot) + J,

In the first step, the electromagnetic field (E,, H,) is
determined of the impressed sources acting in a vacuum.
This field satisfies the equations

curl Eq = —po(0Ho/0t) — T,
curl Hy = ¢y(0E,/dt) + J;

As the next step, assume that y,, x,, and ¢ are increased
at all points from zero to 1/n of their actual values, with
n > 1. We then have, approximately,

curl E, = —po(0H,/dt)

= Ui + poltm/m}OH o/01)] (3a)
curl H, = ¢,(GE,/dt)

+ [Ji + (6/MEq + &o(x./n)NOE,/01)] (3b)

In doing this, we have approximated the effects of the
‘rarefied’, but inhomogeneous, medium by equivalent
sources sitnated in a vacuum. These sources are com-
puted on the basis of the field in the first step (iteration),
neglecting the small contribution to the field due to the
‘rarefied” medium.

Increasing the values of the parameters of the medium
stepwise, for some k(1 < k < n) we have

curl E, = — puy(0H,/dt)
— [Joi + polkxm/mNOH, - 1/01)] (4a)
curl H, = £4(0E,/0t) + [J; + (ka/n)E, _,
+ go(kxo/MNOE, - 1/01)] (4b)

In the end, after n iterations, eqns. 4 (with k = n) have a
form which can be rearranged as

curl E, = —u(éH,jot) — T,
+ Luo xm O(H, — H,_)/0t] (5a)
curl H, = oE, + ¢(0E,/ot) + J, — [o(E, — E,_,)
+ & X HE, — E,_,)/ot] (5b)

For n — oc, eqns. 5 will be identical with eqns. 1. There-
fore, if n — o0, we have that E, = E and H, = H. In addi-
tion, for any k, the exact solution corresponding to the
medium with parameters ky./n, ky,/n and ko/n is
obtained from eqns. 4. For a finite number of iterations n,
the last conclusions are not exact, but it could be
expected that, with increasing n, the solution should con-
verge to the exact solution.

It is important to realise that in this process the
sources of the field in all steps are known (these are the
expressions in square brackets in eqns. 3 and 4), and that
the field computed is that in a vacuum.

)]
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Some final comments about the PPP method may be
useful at this point. First, increments of the values of the
parameters need not be equal, but can be varied during
the process. Second, the principal idea of the PPP
method can be understood as an approximate mathe-
matical model of the physical process of polarisation,
namely magnetisation, of the substance under the influ-
ence of impressed fields. Third, the main problem with
the method is that the iterative process can be unstable
and divergent in some cases, depending on the problem
considered and on the adopted model and approx-
imations for the solution in following the general PPP
procedure described by eqns. 2—4.

The general procedure outlined above will now be
specialised for solving some classes of electromagnetic
problems.

2.1 Analysis of electrostatic problems by means of
the PPP method

Let us consider a dielectric body situated in a vacuum in
external electrostatic field E,. Let the relative permit-
tivity of the body be ¢(r) = 1 + yx(r), where r is the posi-
tion vector of the field point, and let the step in
susceptibility be Ay, (r) = x.(r)/n. The induced sources in
this case are polarisation charges, which can be expressed
in terms of the polarisation vector, P. The equations for
the PPP method are the following (we omit henceforth
the explicit dependence on r; n is the unit vector normal
to the body surface, directed outward, ¢’ is the position
vector of the source point,and R =r — r'):

PY =gy Ay E, (6)
PY =g k Ag(E; + ES™Y) k=2,3,...,n 7)

The field due to the polarised dielectric in all steps is
obtained as the field of a known distribution of surface
and volume charges in a vacuum,

_ 1 a*~V ds p*~V dy
Ef UZFSO(LT"”LfT"’)
ro=R/R (8)
gD = pi=y ©)
p*=D = _diy p*- (10)

The simplest (but not the only possible) way of solving
the problem by means of these equations is as follows.
We approximate the volume of the body by N small
homogeneous cubes, and assume that the polarisation
vector in every cube is constant. We thus obtain the fol-
lowing iteration scheme:

P}”=50Ax,b‘0 j=12,...,N (11)
k Ay il
plo—_ %% g E)&-D
! 1 —eok Ay, Qseif o* i=zl( d)ﬂ

i#j
j=12,...,N; k=23,...,n (12

where P, is the polarisation vector at the center of the jth
cube and (E,); the field at the centre of the jth cube due
to the surface charges on the ith cube. In this iteration
scheme, the value of the self field a,;; P;, as the dominant
term, is computed on the basis of the polarisation from
that particular iteration P{®, instead of the polarisation
P¥~D from the preceding one. Without this improve-
ment, the iteration process appeared to be unstable and
to diverge for relative permittivities greater than about
five. The iteration scheme in egns. 11 and 12 was used in
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all the examples to be presented in Section 3, yielding a
fast convergence with increasing the number n of the
steps in susceptibility.

All the coefficients in eqns. 12 are evaluated analyti-
cally.

For a body made of a homogeneous dielectric, or of
piecewise-homogeneous dielectric, a surface model is pre-
ferred, in which only boundary surfaces are considered;
they are approximated by small flat surface elements. The
bound charges on these surface elements are approx-
imated by point charges.

In two-dimensional problems, volume elements
become surface elements, and surface elements become
line elements, in a cross-section of the system.

2.2 Analysis of scatterers by means of the PPP
method

Consider now a body made of imperfect inhomogeneous
dielectric situated in a vacuum in an incident time-
harmonic electromagnetic field of angular frequency w.
Suppose that the complex incident electric field E, is
known at all points, that the relative permittivity ¢, and
conductiviy ¢ of the body are known functions of the
co-ordinates, and that permeability at all points is p,.
The body can be replaced by equivalent polarisation and
free charges, and the corresponding currents throughout
its volume v and over its surface S situated in a vacuum.
If we introduce the complex permittivity, ¢, = ¢ — jo/w,
the procedure to be used according to the PPP method is
described by eqns. 6 and 7, in which Ay, should be
replaced by Ay, = (¢./eo — 1)/n. The field of the polarised
dielectric is computed as the field of a known charge and
current distribution in a vacuum,

1
E¢V = - <Jp"“ DGR)yro dv + Ja‘k_l}G(RVo dS)
(] v S

—jouy JJ"‘ “Yg(R) dv

ro=R/R; k=2,3,...,n (13)
where
o IBR
9(R) = 4nR
__dg(R) 1+jBR
G(R) = "R - R g(R) (14)

B being the free-space phase coefficient, § = w\/(¢q 1o) =
2n/A.

The volume and surface total charge densities p*~ %
and ¢*~Y are computed by means of eqns. 10 and 9,
respectively, and the total current density is given by
Jk-1 =ja)P(k_”.

The simplest (but not the only possible) way of per-
forming the described PPP procedure is to approximate
the domain of the body by means of N small homoge-
neous cubes, and to assume the complex polarisation
vector to be constant in every cube. (In this model, the
charges are represented by surface charges over the sides
of the small cubes.)

The electric field due to the equivalent sources is
evaluated as follows. The cubes being electrically small,
the self field is the same as the surface-charge static field,
(E) =V = —P¥ " Y/3¢,. If the centre of the jth cube
(j # i) is closer to the centre of the ith cube than a certain
distance r, (r; <r.), e #® is expanded in Maclaurin
series and the first four terms are retained, and the elec-
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tric field due to the surface charges is calculated analyti-
cally. (In the examples to be presented in Section 3, it was
adopted that r, = 4/(10,/3)) For r;>r,, the surface
charges on cube sides are approximated by point charges
at side centres. The field of the cube currents in all cases
(j # i) is computed as that due to a current element at
the cube centre. (This approximation for the electric field
of the current suffices, because the electric field due to the
charges is dominant for close cubes.) For r; » r,, the
field can be taken to be due to a Hertzian dipole at the
cube centre.

In all cases analysed using the described procedure,
the convergence was found to be remarkably rapid, i.e.
n < 3N resulted in accurate solution. Therefore, the
present method is considerably faster than a direct solu-
tion of the moment method system of equations. (The
necessary computing time is especially small if a structure
needs to be analysed in a wide range of values of the
medium parameters.) In addition, the PPP method can
be formulated as a version with almost no memory
requirements, in which the coefficients of the iteration
matrix are recomputed in every iteration. Although this
increases the computing time greatly, it enables small
computers to solve very large problems, which possibly
could not be solved using much larger computers and the
usual method of moments.

2.3 PPP method in combination with existing
methods for analysis of electromagnetic systems
in homogeneous media

The PPP method can be combined with existing methods

for the analysis of electromagnetic systems in homoge-

neous media to obtain an efficient procedure for the
analysis of such systems in the presence of (imperfect)
dielectric and/or magnetic bodies.

Consider an electromagnetic system situated in a
homogeneous medium and assume that a method is
available for its analysis in an arbitrary impressed field
(E;, H)). Suppose that a body of arbitrary electromagnetic
properties is introduced in the near field of the system.
This will result in secondary sources in the body, which
will change the original current distribution in the
system. However, if in the first step the body is assumed
to have the values of its electromagnetic parameters,
equal to 1/n (n > 1) of their actual values, the secondary
sources in the body can be considered to be due to the
original near field only, and not to the field of the body
itself. Therefore, in this first step, we can determine the
secondary sources directly.

We have next to recompute the system currents, as the
field of the induced sources has to be added to the orig-
inal impressed field. This, however, changes only the
right-hand side matrix, and so the original system matrix
is used for determining this new distribution of the
system currents. In addition, this new system (and all
subsequent ones in later iterations) can be solved by back
substitution only, ie. it requires very little computing
time compared with the first solution of the system. We
then need to compute the new near field of the system
currents (considered in a vacuum) and the new values of
the induced sources (taking into account their own field),
and the process continues in a way similar to the basic
PPP scheme.

A notable example of this general combined method is
the analysis of wire antennas in the presence of dielectric
and/or magnetic bodies. Several powerful computer prog-
rams exist for the analysis of wire antennas assembled
from arbitrarily interconnected straight-wire segments
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and situated in a vacuum. One such program has been
used by one of the authors and many antenna designers
very successfully for a number of years. Its possibilities
are described in Reference 9. The program was adapted
and changed as required by the general combined
method described above to solve the problem of wire
antennas in the presence of dielectric or magnetic bodies,
and was found to be very rapid. It is much faster than the
usual subdomain-type solution obtained by the method
of moments. In addition, it can be formulated with
memory requirements practically equal to those for the
wire antenna in a vacuum, for arbitrary bodies in the
antenna vicinity (at the expense of a large increase in
computing time), so that large systems can be analysed
with even personal computers.

3 Numerical results

In this Section, some of the numerical results obtained
using the PPP method are presented, to illustrate the
generality, simplicity, accuracy and rapid convergence of
the method.

3.1 Homogeneous dielectric circular cylinder and
dielectric cube in an electrostatic field
Let us compute first the dipole moment p of two simple
dielectric bodies situated in a uniform electric field E, .
Fig. 1 shows the normalised electric dipole moment,
Puorm = P/(o | Eg| 1), of an infinitely long circular dielectric

cube

s []

w
T

- circular cylinder

€] O

normalised dipole moment
N
¥

(o] L1l ol e |
10 100 1000
relative permittivity
Fig. 1 Normalised electric dipole moment of a homogeneous dielectric

circular cylinder and a cube, in a uniform electrostatic field, against rela-
tive permittivity
——- PPP method

O Analytical solution

[ ] Method of moments [10]

cylinder and a dielectric cube, against the dielectric rela-
tive permittivity. (v is the volume of the body, and for the
cylinder the dipole moment per unit length is considered.)
The surface model was first adopted. The cylinder and
the cube surfaces were approximated by N = 100 strips
and N = 600 equal squares, respectively. Almost identical
results for the cube were obtained by means of the
volume model, with N = 343 small cubes (resulting in a
total of 1029 unknowns). The number of iterations was
from five to 20 (depending on &,). The PPP results for the
circular cylinder were compared with the analytical
results, and those for the cube with the moment-method
results presented in Reference 10. In both cases, agree-
ment of the two sets of results is good.
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Convergence of the PPP method is illustrated in Table
1 for a cube of ¢ = 100. The faster PPP procedure is
almost an order of magnitude faster than the classical
method of moments if an error not exceeding 1% is

Table 1: Normalised cube dipole moment (¢ =100) and
required processor time, T_,, for the faster version of the
PPP method (the system matrix stored) and T,,,, for the
slower one (with extremely low memory requirements)
against the number n of the steps in susceptibility

N Phorm Tepunr (8) Topua (8) Classical method
of moments*

3 8996850 50.20 90.90 p,,.»=3.339203
5 4.080631 56.26 18175 T_,,=554.39s
7 3547200 60.31 272.59
9 3.383388 65.31 374.93

11 3.344493 7036 454.34

15 3.339332 8047 636.09

25 3.339237 104.91 1090.43

The surface mode!l (N = 600) was adopted.
* Including the Gauss elimination procedure.

accepted, in which case even the slower PPP procedure is
faster than the classical method. The results were
obtained on a PC-386 computer, 25 MHz, with a copro-
cessor 80387 and 4 Mbyte RAM.

3.2 Microstrip line: combined quasistatic analysis
Consider a microstrip transmission line of the cross-
section shown in Fig. 2. We assume that the conducting
strips are infinitely thin.

d ._[1_# w ',r d
€o
€
h
Fig. 2  Cross-section of microstrip transmission line

It is a relatively simple matter to analyse the micro-
strip line without dielectric substrate. We then proceed
with the PPP method to analyse the line with the sub-
strate. Following the general reasoning explained in
Section 2, we assume the field in the first iteration to be
that due to the line without substrate and that it pol-
arises the dielectric of susceptibility x./n. In the next and
further iterations, the polarisation of the dielectric is
assumed to be due to the distribution of charges over the
conductors changed by the field of the polarised dielec-
tric, and to the polarised dielectric itself, as calculated in
the preceding iteration. Fig. 3 shows the effective relative
permittivity (defined by e,, = C'/C,, where C’ is the
capacitance per unit length of the actual line, and Cj, of
the same line without dielectric) against the relative per-
mittivity of the dielectric ¢,. The adopted number of divi-
sions of the line contours was about 350 (depending on
h). The necessary number of iterations ranged from 10 to
20, depending on ¢,, i.e. it was much smaller than the
number of unknowns. The results were compared with
those obtained by means of the approximate formula,
& = 0.5[(e, + 1) + (¢, — 1)1 + 12h/w)~ /2], proposed in
Reference 11. Excellent agreement of the two sets of
results was observed.

3.3 Homogeneous perfect-dielectric scatterer
As an example of the application of the PPP method to
the analysis of dynamic fields, consider a dielectric scat-
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terer in the form of a parailelepiped in the field of a lin-
early polarised plane wave of electric field intensity E,
(Fig. 4).

Fig. 5 shows the scattered field for a cube
(a=b=c=4/5 A being the free-space wavelength)
made of lossless dielectric (g, = 9, g, = 0). The dielectric
cube was represented as N =6 x 6 x 6 =216 small
cubes (a total of 648 scalar complex unknowns), and the

w
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T

h=wl4

w
T

(=]
T
T

w

effective relative permittivity
~3
T

&~
T

1 L L -

L '
10 13 16 19 22 25
relative permittivity

&
~

Fig. 3  Effective relative permittivity, ¢,,, of the microstrip transmis-
sion line sketched in Fig. 2 (w = 1 mm, d = 10 mm) against relative per-
mittivity €, of the dielectric substrate

PPP method
® Approximate formula proposed in Reference 11
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Fig. 4 Dielectric scatterer in the form of a parallelepiped in the field of
a linearly polarised plane wave
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Fig. 5 Scattered field, 20 log |E*}, for a homogeneous Dperfect-

dielectric cube of £, = 9 (see Fig. 4, a = b = c = 20 cm), for various 0 in
two characteristic planes (r = 30 m)

E, = 377e™_(V/m), f = 300 MHz

PPP method

[} Method of

[3] (volume formulation)

40

number of iterations adopted was 20. The PPP results
were compared with those obtained by the method of
moments [3]. Very good agreement of the two sets of
results was observed.

3.4 Inhomogeneous imperfect-dielectric scatterer

As an example of an inhomogeneous lossy dielectric scat-
terer, consider a rod-like scatterer of parameters
g, =28z, 6,=068S/m &z), where &(2)=35.5+9z/c,
—¢/2 <z < ¢/2 (see Fig. 4). Fig. 6 shows the normalised

1

120 140 160 180

40 P
0

L 1 )
20 40 60 80 100
8;,degrees
Fig. 6 Normalised radar cross-section of an inhomogeneous lossy-
dielectric rod-like scatterer (see Fig. 4, a=b =28 mm, ¢ =224 mm)
of parameters &, = 2Kz), 6,=06S/m &(z), where &z)=55 +9z/c,
—¢/2 < z < ¢/2, against the incident angle 0;
¢; = —90°, E, is in the plane x = 0, f = 9.5 GHz

radar (backscattering) cross-section S,,,/A> against the
incident angle 8; (¢, = —90°, E, is in the plane x = 0).
The rod was divided into 3 x 3 x 24 = 216 small cubes
(648 complex unknowns) and a total of 25 iterations was
adopted. Asymmetry of the results with respect to 6; =
90° was observed, which is a consequence of the inhomo-
geneity of the dielectric along the rod axis.

A note on the convergence of the procedure is in order
here. In all the described examples, rapid convergence
was obtained with increasing number of iterations.
However, it was found that the larger ¢ and o, and the
larger the number of unknowns 3N, the slower the con-
vergence, ie. the larger n must be to provide a stable
solution. It is a consequence of the system of equations
becoming progressively more ill-conditioned, i.e. the con-
dition number becoming progressively larger than one,
with increasing ¢,, 6, and N. This results in progressively
slower convergence of iterative solutions of the system of
equations, i.e. possible instability and inaccurate results
in the case of direct solutions. In our case, this problem
can probably be made less pronounced by more accurate
evaluation of all the coefficients of the PPP method iter-
ation matrix.

3.5 Wire dipole antenna in the presence of an
imperfectly conducting body

As an example of the combined method for the analysis

of wire antennas in the presence of dielectric bodies, con-

sider a symmetrical centre-fed dipole antenna parallel to

a dielectric parallelepiped, as sketched in Fig. 7.

Fig. 8 shows the difference of the impedance of a half-
wave dipole in the presence of a lossy-dielectric parallele
piped (e, = (71 —j132)¢,] and the impedance of the
dipole when isolated, Z, = Z, — Z,, which is a measure
of the influence of the dielectric body on the dipole,
against the spacing y, between the dipole and the body.
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The body was approximated by 1 x 4 x 16 = 64 small
cubes (resulting in 192 complex unknowns), and a total of
20 iterations was adopted. The results obtained by the
PPP method were compared with those obtained by the

(x0.%.20)

N

Ug le— o —f
44 2a
l—
Fig. 7  Wire dipole antenna in the presence of an imperfectly conduct-

ing body
Location of body relative to antenna is specified by the reference point (x,, yg, zo)
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Fig. 8 Difference of the impedance of a half-wave dipole in the pres-
ence of a lossy dielectric parallelepiped, shown in Fig. 7, and the imped-
ance of the dipole when isolated, Z, = Z, — Z,, against the spacing y,
between the dipole and the body

f=600 MHz, h=125cm = i/4, a=03125cm, w=625cm, d=15625cm,
I=25cm,e,=71,0,=448/m,x,=0,2,=125cm

PPP method

] R,, method of moments [12]

(] X,, method of moments {12}

method of moments [12]. Satisfactory agreement of the
two sets of results is observed. Therefore it is reasonable
to state that the combined PPP method is accurate and
efficient in such and similar cases.

Assume now that the generator frequency fis 50 MHz
and that the parallelepiped sketched in Fig. 7 is made of
a conductor of permittivity ¢, and conductivity
o =2.777 S/m (e, = (1 — j1000)s,). Fig. 9 shows the half-
wave dipole impedance Z, against the number of iter-
ations n. Stable results are obtained if n is as small as
about 15.

3.6 Square-loop wire antenna in the presence of a
dielectric body

As another example of the application of the combined

PPP method, consider a square loop antenna encircling a

homogeneous perfect-dielectric parallelepiped, as sketch-
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ed in Fig. 10. Fig. 11 shows the loop-antenna impedance
when a dielectric parallelepiped is present, Z,, against ¢,.
All the results were obtained in a single iterative process,
i.e. the electric susceptibility was increased from zero to

80r oee00000000000000000
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- a
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<, 60F ®
g | .
c
'g AO L]
‘é’ °%0%, o X,
L o a
- a 00000000000000000000
20§
C L 1 — n L L 1 1 ]
3 6 9 12 15 18 21 24 27 30
number of iterations, n
Fig. 9 Impedance of a dipole antenna in the presence of a conducting

cylinder, shown in Fig. 7 (f= 50 MHz, h = 150 cm = A/4, a = k{100,
w=d=40cm, | =140 cm, ¢, =1—jl000, x, =0, yo =40cm, z, =
70 c¢m) against the number of iterations n
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Fig. 10 Square-loop wire antenna encircling a dielectric parallelepiped

The centre of the parallelepiped coincides with the centre of the loop
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Fig. 11 Impedance of the loop antenna shown in Fig. 10
(f=300MHz (A=1m), 1=11632cm, r,=05cm, a=20cm,
b = 10 cm) against the parallelepiped relative permittivity ¢, (g, = 0 S/m)
N =6 x 6 x 3 =108 small cubes (324 complex unknowns); the loop, if isolated
(e, = 1), is resonant at 300 MHz

99, in the beginning with small, and then in progressively
larger, increments. At certain characteristic points, few
iterations were performed without increasing the suscep-
tibility, to increase the accuracy of the solution, and the
faster PPP procedure was used. In this way, the complete
result was obtained much faster than by means of the
corresponding form of the method of moments (in which
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case the complete antenna-body system of equations
would have to be solved many times).

4 Conclusions

The paper presents the method of gradual increase of the
values of medium parameters, the PPP method, for the
analysis of electromagnetic fields in inhomogeneous
media. The method is of the iterative/perturbation type.

In summary, the following are advantages and defi-
ciencies of the PPP method compared with other avail-
able methods for solving electromagnetic field problems
in inhomogeneous media:

1. The PPP method is a general procedure for solving
electromagnetic field problems. It enables, in principle,
any problem to be solved. It could be regarded as an
alternative to the method of moments in many areas of
numerical electromagnetics, and is of remarkable concep-
tual and computational simplicity.

2. The PPP method can be interpreted as an approx-
imate mathematical simulation of physical processes.
This type of approach is not characteristic of any other
method as far as we know. It enables solutions to be
reduced to the application of first principles. The PPP
method performs a construction of the solution, whereas
other methods reconstruct the solution.

3. The PPP method is conceptually simpler than any
available method of comparable generality, enabling very
simple programming. The algorithm consists of a
sequence of computations of the fields of known sources
in a homogeneous medium.

4. The PPP method can be formulated as a faster and
a slower version. The faster version has memory storage
requirements comparable to those for the standard
moment method solution, but is on average at least an
order of magnitude more rapid than the latter. The
slower version has almost no memory storage require-
ments, but the computing time is increased greatly,
although in many cases it is still less than that required
by the standard method of moments. (The possibility of
obtaining the solution with very small memory require-
ments is typical for most iterative methods.)

5. The PPP method is particularly efficient if the
analysis of a structure is required for a wide range of the
values of medium parameters. The authors are aware of
only one method having this property [13], relating to
scattering of transverse magnetic waves on a homoge-
neous dielectric cylinder.
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6. Due to its perturbation/iterative character, the PPP
method can be easily and efficiently combined with any
of the existing methods for the analysis of electromag-
netic structures in homogeneous media. It is believed that
this is also a unique feature of the method.

7. The basic deficiency of the PPP method is the sensi-
tivity of the process in the case of a large number of
unknowns and large values of the medium parameters.
This, however, is typical to a greater or lesser extent, not
only for all available iterative methods, but also for all
known direct methods.
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