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Abstract: A highly efficient, PC-oriented large-
domain method is proposed for the analysis and
CAD of a wide class of complex 3-D
electromagnetic structures. The structures can be
any combination of dielectric bodies, conducting
surfaces and wires. The bodies are approximated
by trilinear hexahedrons (distorted bricks), the
surfaces by bilinear quadrilaterals (distorted
rectangles) and the wires by straight-wire
segments. Current distribution in the elements is
approximated by high-order polynomials in local
parametric co-ordinates, enabling electrically
large elements. All elements can have any
distributed impedance loading. In addition, the
structure can have lumped loadings and
generators of several kinds. The unknown
current-distribution coefficients are determined by
a Galerkin-type solution of a system of coupled
integral equations. The principal advantage of the
proposed method over existing methods is its
generality combined with a comparatively small
number of unknowns required for a given
problem. The accuracy and versatility of the
method are illustrated by a number of examples
where analytical or experimental results are
available.

1 Introduction

During the last decade, a number of numerical
methods has been developed for the dynamic analysis
of 3-D electromagnetic structures consisting of
arbitrarily excited conducting and dielectric bodies of
arbitrary shape. Most of these methods belongs to one
of the following three basic classes:

(@) integral-equation frequency-domain methods [1-5]
(b) finite-element frequency-domain methods [6, 7]
(¢) finite-difference time-domain methods [8, 9]

Although these classes of methods seem to be com-
pletely different, they all have a lot in common. All the
methods have their advantages and deficiencies. The
choice of the ‘best’ method usually depends on the par-
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ticular problem that needs to be solved. As a rule, the
methods founded on solving partial differential electro-
magnetic-field equations (the last two classes of meth-
ods) require supercomputers, even for the simplest 3-D
open-region problems.

In this paper we concentrate on the integral-equation
methods in the frequency domain. Some of these meth-
ods are based on the volume/surface formulation [1-3],
and the rest on the surface/surface (pure surface) for-
mulation [4, 5). In the volume/surface formulation, the
unknown quantities are volume electric currents inside
dielectric bodies, which can be inhomogeneous, and
surface electric currents over perfectly conducting sur-
faces. The surface/surface formulation invokes the
equivalence principle, and utilises as unknown quanti-
ties equivalent electric and magnetic surface currents
over boundary surfaces between the homogeneous
regions of a structure. As far as the authors are
informed, all the existing methods with both integral-
equation formulations are basically methods of
moments of subdomain type (the electromagnetic struc-
ture is approximated by many electrically small geo-
metrical elements, with low-order basis functions for
the current approximation). In the volume/surface for-
mulation the dielectric bodies and conducting surfaces
are usually modelled by cubical cells and rectangular
patches, respectively, and the currents are approxi-
mated by 3-D and 2-D pulse basis functions. It is also
possible to utilise thin-wall modelling of dielectric bod-
ies, analogous to the wire-grid modelling of conducting
surfaces, with 2-D rooftop basis functions defined on
the wall cells [2]. For the surface/surface formulation,
triangular patches with rooftop basis functions are
used. As the consequence of the adopted subdomain
philosophy, all these methods demand a very large
number of unknown current-distribution coefficients to
obtain results of satisfactory accuracy. This is the prin-
cipal shortcoming of the existing methods.

This paper proposes a general, highly efficient PC-
oriented method for numerical analysis of 3-D electro-
magnetic structures composed of dielectric bodies, con-
ducting surfaces and wires. The dielectric bodies can be
inhomogeneous and lossy. In addition to lumped load-
ings, the conducting surfaces and wires can have any
distributed impedance loading. The structure can be
excited by a plane wave, or by any number of lumped
generators that can be attached to wires, surfaces and
bodies. The method is founded on volume/surface inte-
gral-equation formulation in the frequency domain.
Essentially, it represents a unified large-domain (less
precisely, entire-domain) Galerkin-type version of the
method of moments. The method can be said to be an
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extension and generalisation of the specific methods of
the type [10-13]. The geometry is modelled by trilinear
hexahedrons (distorted bricks), bilinear quadrilaterals
(distorted rectangles) and straight-wire segments. These
elements enable a simple approximation of many struc-
tures. The current in all three types of element is
approximated in essentially the same way by high-order
polynomials (3-D, 2-D or 1-D), enabling electrically
large elements to be used. In this manner the number
of unknowns is reduced greatly. The testing of the inte-
gral equations is performed by the Galerkin method.
The authors believe that, in many of its elements, the
proposed method introduces significant improvements
with respect to the existing methods. It appears to be
the first large-domain method of such generality for the
analysis of complex 3-D electromagnetic structures. A
general electromagnetic code, GEM, based on the
method, has been completed. Some of the results, illus-
trating the versatility, accuracy and efficiency of the
method, are presented as examples. In all cases in
which analytical or experimental results are available,
excellent agreement between the results is observed.
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Fig.1 Basic elements in the xyz co-ordinate system for geometrical
modelling of complex electromagnetic structures and their equivalents in the
uvw local parametric co-ordinate systems
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Fig.2 Basic elements in the xyz co-ordinate system for geomerrical
modelling of complex electromagnetic structures and their equivalents in the
uv local parametric co-ordinate systems

2 Outline of the method

2.1 Geometrical modelling

Consider an electromagnetic structure consisting of
metallic and dielectric parts of arbitrary shape. Let the
structure be situated in a time-harmonic incident
(impressed) field of complex electric field intensity E;
and angular frequency w. As building blocks for the
approximation of dielectric bodies, we adopt trilinear
hexahedrons (Fig. 1). A trilinear hexahedron is defined
uniquely by its eight vertices, that can be positioned in
space almost arbitrarily. (Practically the only condition
is that not more than four vertices are allowed to be in
the same plane.) Its edges are straight, while its sides
are generally curved (inflexed). Metallic surfaces are
approximated by a system of infinitely thin plates in
the form of bilinear quadrilaterals (Fig. 2) and the
wires by straight-wire segments (Fig. 3). Since a bilin-
ear quadrilateral is defined uniquely by its four verti-
ces, for two trilinear hexahedrons sharing four vertices,
their sides (bilinear quadrilaterals) defined by these ver-
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tices overlap exactly. Similarly, for two bilinear quadri-
laterals sharing two vertices, their common edges
(straight-line segments) also overlap exactly. Therefore,
extremely simple exact interconnections are possible for
hexahedrons, as well as for quadrilaterals. These, in
fact, are generalisations of exact interconnections of
wire segments (at a single point). However, this also
allows exact interconnection between a side of a dielec-
tric hexahedron and a conducting quadrilateral.

z

— O
linear u=1
transformation u - directed
segment

wire segment

Fig.3 Basic elements in the xyz co-ordinate ystem Jor geometrical
modelling of complex electromagnetic structures and their equivalents in the
u local parametric co-ordinate systems

By introducing the parametric coordinates u, v and w
(0 = u, v, w = 1), a trilinear hexahedron can be mapped
onto a cube, a bilinear quadrilateral onto a square, and
an arbitrarily directed wire segment onto a segment
along the u-axis (Figs. 1-3). It is a simple task to show
that (x, y, z) are related to (u, v, w) through the follow-
ing transformations:

T = QzyU + AzoyU + QroupyW + AzouuyUV

F gy UW + Az VW + gy WVW
Y = Qyal + QyoV + QyoW + Ayyp UV

FUyuwUW + Gyyp VW + Gy w UVW
Z = QW+ QzpU + QppW T Qpy UV

F U2 UW + Qi VW + Qg VW

(bodies)

T = boytt + by U + by uv

Y = byt + by + byuuuv (plates)
z = byt + by + byypuv

T = Caall

Y = Cyull (wires)

Z = Czq U

(1)
Note that the transformations are linear (for wires),
bilinear (for plates) and trilinear (for bodies). The coef-
ficients {a}, {b} and {c} can be expressed in terms of
the co-ordinates of the clement vertices (nodes), a,, =

X100> Axv = X010> Qxw = Xg01> Qxuy = —Xo010 — X100 + X1105
Ay = —Xoo1 — X100 T X101 Gxww = —Xoo1 — Xo10 T X011
Gy = Xoo1 T Xo10 — Xo11 T X100 — X101 — X130 T X111 Dy
= x10, byy = Xo1, By = —Xo1 — X9 + X3, and ¢y, = X,

with analogous expressions for the co-ordinates y
and z.

2.2 System of coupled integral equations for
currents

The field E,; induces volume currents, of density J, in
the volume of dielectric bodies Vygies, sSurface currents,
of density J,, over the surfaces of plates Splates and line
currents, of intensity I, along the generatrices of wires
lyires (the reduced-kernel approximation for wires).
These currents, considered in a vacuum, are the sources
of the scattered field

E, = — jwuo [/// (J + %div.lgrad) gdv
Vbodies [30
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where 1y is the unit vector along the wire and g the
Green’s function

g IR 2%

iR Bo = wy/eopg = o (3)

R is the distance of the field point from the source
point, while 8, and Ay are the free-space phase coeffi-
cient and wavelength, respectively.

The total field, Ey, = E; + E,, in each body satisfies
the generalised local Ohm’s law

g=

1
o+ jw(e —€)
(inside bodies) (4)

p. being the equivalent complex resistivity of the dielec-
tric (¢ and o are the dielectric permittivity and conduc-
tivity, respectively). For plates this equation becomes

(Ei)tangential + (Es)tangential = Zst
Zs=R;+ 39X,

where Z; is the surface impedance of the plate. Finally,
along the axes of wires, we have

(Ei)a,xial + (Es)awial = Z/I

E; + E; = pJ Pe =

{over plates) (5)

7' =R +jX'
(along wires) (6)

where Z' is the impedance per unit length of the wire.
In the case of perfectly conducting bare plates and
wires, Z; = 0 and Z' = 0, respectively. Eqns. 4-6, which
include eqns. 2 and 3, represent a system of coupled
integral equations, with unknowns J (inside bodies), J;
(over plates) and I (along wires).

2.3 High-order expansion functions
For the approximation of the components of the vol-
ume-current density vector J,, J, and J,, inside bodies,
the components of the surface-current density vector
J,, and J;, over plates and the current intensity I along
wires we adopt the power functions

k

fbodies = uivj’w s fplates = uivj7 fwires = /U/i
i=01,...,Ny, j=01,...,N,,
k=0,1,...,N, (7)

where N,, N, and N,, are the corresponding orders of
the approximation. Note that these functions are large-
domain basis functions because they can be defined in
electrically large elements. The larger the elements, with
respect to wavelength, the higher the order of the
approximation which has to be adopted (high-order
expansion functions).

By combining the functions in eqn. 7, we form a set
of modified power basis functions, so that each basis
function satisfies the corresponding current-continuity
boundary condition at a junction of elements in a geo-
metrical model. For example, Fig. 4 shows the modi-
fied basis functions for the simplest case possible, a
junction of two wires.

We adopt the testing (weighting) functions being the
same as the basis functions, i.e. we use the Galerkin
method. The Galerkin generalised impedances (the sys-
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tem matrix elements) contain several types of volume,
surface and line integrals. All the integrals include the
Green’s function given in eqn. 3, so that the procedure
of extracting the singularity must be performed for
R = 0 [11]. In accordance with the transformations in
eqn. 1, the numerical integration is performed for the
parametric co-ordinates, u, v and w (Figs. 1-3).

(fymodified

wire 1

u-u

Fig.4 Modified power basis functions defined on two interconnected
wire segments

The excitation of transmitting antennas we model by
the impressed field E; due to the TEM magnetic-cur-
rent frill or in the form of Dirac’s delta function.
Besides a standard delta generator, attached to one of
the wire-segment ends (the point-delta generator) we
use also a line-delta generator, which is attached to a
bilinear quadrilateral edge, and a surface-delta genera-
tor associated with a trilinear hexahedron side.
Lumped loads (concentrated impedances) Z = R + jX
are represented as current-controlled delta-generators,
and incorporated into the system of equations.

The resulting system of linear algebraic equations are
solved using the Gaussian elimination method giving
the current-distribution coefficients, i.e. the coefficients
in the expansions for J, J; and /, for a given structure.
Finally, all the quantities that may be of interest for the
structure analysis and design (e.g. impedances seen by
generators, near field, SAR, losses in lumped and dis-
tributed resistive loadings, antenna radiation patterns,
and scatterer cross-sections) are determined by post-
processing of current-distribution coefficients.

metallisation

point - delta
generator

Fig.5 Model of resistor/capacitor connected to a low-frequency genera-
tor

3 Results

As the first example, consider a parallelepiped made of
a resistive material whose bases are metallised and con-
nected via wire conductors to a time-harmonic voltage
generator (Fig. 5). The material parameters are ¢, = 1
and o = 0.1S/m, and the generator frequency f =
1MHz. The metallisations are squares of edge length
b = 2mm. The distance between the metallisations is
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d = 2cm and the wire radius ¢ = 0.2mm. We assume
that the metallisations and wires are perfectly conduct-
ing. Note that this structure can be regarded a realistic
model of a resistor in the circuit of a low-frequency
generator.

In applying the proposed method, the structure
geometry is modelled by 15 elements: one dielectric
body, eight plates and six wire segments (Fig. 5). The
excitation is approximated by a point-delta generator.
Note that the model includes also two wire-to-plate
junctions at the two resistor ends. The total numbe: of
unknowns amounts to 97 and the CPU time is 4s on a
PC Pentium 110MHz. The resistance seen by the gen-
erator, as obtained by the method, is R = 2522Q. We
observe very good agreement with the analytical result
Ry = di(ab?) = 2500Q.

As the next example, consider a realistic model of a
capacitor in the circuit of a low-frequency generator.
Let the parallelepiped in Fig. 5 be made of a perfect
dielectric, of relative permittivity &, = 2 and » = 20cm
(b = 10d). By applying the present method in the same
form as in the case of a resistor model, we obtain that
the susceptance seen by the generator is B = 2.255 -
10# S. Note that the result agrees very well with the
analytical value By = web¥d = 2.225 - 104 S.

Consider next a microstrip line sketched in Fig. 6.
The line length is / = 50mm, the thickness of the dielec-
tric substrate # = 2mm and the substrate relative
permittivity is &,.. The width of the upper strip is w; =
2mm and that of the lower strip is wy, = 10mm.
Assume that the line is lossless. The line is excited by a
generator of frequency f and terminated with a purely
resistive load of resistivity R = Z,, where Z, is the line
characteristic impedance. The impedance Z, is deter-
mined using a small program that has been prepared
for 2-D electrostatic analysis of the line, based on a
subdomain-type method-of-moments solution for the
distribution of free and polarisation surface charges in
the line cross-section.

strips

line-delta ™
generator

Fig.6 Microstrip line

To perform a full-wave 3-D analysis of the line with
the present method, we construct the geometrical
model from nine elements (three dielectric bodies and
six plates). The substrate is divided into three rectangu-
lar pieces, the central one of width w, being situated
below the upper conducting strip. With this, the field
variations in the vicinity of the upper strip are better
approximated. A line-delta generator and a line-delta
resistor are used. In Table 1 the results for the line
input impedance Z and the corresponding VSWR are
given for ¢, = | (Z, = 126.5Q) and ¢, = 2 (Z, = 102Q)
and a few values of f. The frequency range is such that
propagation effects along the line are present, while the
radiation effects are not pronounced. Having in mind
that Z, is determined only approximately, we observe
that numerical results are in a good agreement with
theory (theoretically Z = Z,, i.e. VSWR = 1).
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Table 1: Input impedance and VSWR of the line from
Fig. 6 for / = 50mm, h = 2mm, w; = 2mm, w, = 10mm
and matched load

=1 =2

fGHz Z @ VSWR ZQ VSWR
129.7 +j1.7 1.03 103.9 +j0.4  1.02
132.2-{4.0 1.06 102.6-j1.8  1.02
125.7-6.5 1.05 102.1+0.3 1.00
126.1-j0.3 1.00 101.0-j0.5  1.01
131.2 - 4.1 1.05 99.8 +j0.8 1.02

g~ W N =

Sketched in Fig. 7 is a triangular printed strip
monopole antenna. The substrate dimensions are & =
25.6mm, w = 21.2mm and ¢ = 0.8mm, the diameter of
the inner conductor of a coaxial line driving the
antenna is d = 0.4mm and the dielectric relative permit-
tivity is €, = 2.2.

ground

‘1 plane

T
7
Z11Z

50 Q coaxial line
Fig.7  Triangular printed monopole antenna

Ve

Fig.8 Normalised impedance of the antenna sketched in Fig. 7 for h =
25.6mm, w = 21.2mm, t = 0.8mm, €, = 2.2 and Z, oy om0, = 5082, against
Srequency fyu = 1GHz, fonq = 4 GHz, step: 90 A/fﬁ: B B W this method
A A Dmeasured [14]

The antenna is modelled with only four geometrical
elements (three dielectric bodies and one plate). The
perfectly conducting ground plane is taken into
account by image theory. Shown in Fig. 8 is the nor-
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malised antenna impedance, Zyormatised = Z/Zreference
(Zreference = S0Q) against the generator frequency f. At
the highest frequency, the number of unknowns is
about 100 and the CPU time is about 30s on a PC Pen-
tium 110MHz. We see excellent agreement between
numerical and experimental results [14].

As the last example, consider a pyrimidal horn
antenna sketched in Fig. 9. The dimensions of the horn
(integral with its waveguide feed) are ¢ = 35mm, b =
16mm, ¢ = 4lmm, / = 145mm, w = 160mm and 4 =
122mm. The length of the wire probe is 10mm and its
radius is 1mm. The distance of the probe from the
waveguide back (short-circuiting) wall is d = 8mm.
This is actually a 6.0-7.0GHz, 50Q General Radio
horn. The results for the antenna impedance and the
VSWR (with respect to 50Q) against frequency, for a
slightly wider range of frequencies, are given in
Table 2. In the range 6-7GHz, the horn was found to
have a gain of about 17dBi and a front-to-back ratio
FBR = 22dB.

point-delta
generator

Fig.9 Horn antenna

Let the horn now be covered at its opening with a
2mm thick dielectric plate (a radome) of relative per-
mittivity & = 2.17. The radome is assumed to lean by
its four edges on the horn edges and to protrude from
the horn for its thickness. It is of interest to analyse the
influence of the radome on the horn impedance and
radiation pattern. The impedance and VSWR for the
horn with radome are shown in Table 2. It is seen that
the radome does influence the horn impedance, but not
considerably. The influence on the radiation pattern
was found to be small, and was noticed only in the low
field region.

Table 2: Impedance and VSWR (with respect to 50Q) of
the 50Q General Radio pyramidal horn sketched in
Fig. 9. The radome is added as an example, and does
not exist with the original horn

Without radome With radome
f, GHz zZQ VSWR ZQ VSWR
5.75 320-j4.8 1.58 30.1-j8.4 1.73
6.00 50.1-j1.0 1.02 46.3 +j2.6 1.10
6.25 53.56-j9.6 1.22 61.6 + j8.6 1.30
6.50 55.3-j9.0 1.24 50.4 -j16.7 1.39
6.75 59.0-j12.3 1.02 46.3 +j2.6 1.10
7.00 53.5-j16.9 1.39 59.4 - j20.3 1.50
7.25 45.1-j11.2 1.32 54.3 -j18.1 1.43
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4 Conclusions

The paper presents a large-domain method for analysis
of electromagnetic structures composed of dielectric
bodies, conducting surfaces and wires. It is founded on
a volume/surface integral equation formulation. The
geometry is modelled by trilinear hexahedrons, bilinear
quadrilaterals and straight-wire segments. Current dis-
tribution in the elements is approximated by high-order
polynomials in local parametric co-ordinates, enabling
electrically large elements. All elements can have any
distributed impedance loading. The method includes
appropriate models of lumped loadings and generators.
The current-distribution coefficients are determined by
the Galerkin method. The accuracy, versatility and sta-
bility of the method are illustrated by a number of
examples where analytical or experimental results are
available.

The proposed method is a highly efficient and relia-
ble tool for the analysis and design of a wide class of
complex 3-D electromagnetic structures. Its fundamen-
tal advantage over the existing methods, which are all
of subdomain type, is its generality combined with the
comparatively small number of unknowns required for
a given problem. Although PC-oriented, the present
method can of course be used on work stations and
other computer systems. Parallelisation of the method
is also possible.

5 References

1 SARKAR, T.K., and ARVAS E.. ‘An integral equation
approach to the analysis of finite microstrip antennas: volume/
surface formulation’, IEEE Trans., 1990, AP-38, (3), pp. 305-312

2 RUBIN, B.J,, and DAIJAVAD, S.: ‘Radiation and scattering
from structures involving finite-size dielectric regions’, /EEE
Trans., 1990, AP-38, (11), pp. 1863-1873

3 PARFITT, AJ., GRIFFIN, D.W., and COLE, P.H.: ‘On the
modeling of metal strip antennas contiguous with the edge of
electrically thick finite size dielectric substrates’, IEEE Trans.,
1992, AP-40, (2), pp. 134-140

4 RAO, S.M., CHA, C.-C, CRAVEY, R.L,, and WILKES, D.L.:
‘Electromagnetic scattering from arbitrary shaped conducting
bodies coated with lossy materials of arbitrary thickness’, IEEE
Trans., 1991, AP-39, (5), pp. 627-631

5 RAO,SM. SARKAR,TXK. MIDYA,P., and DJORD-
JEVIC, A.R.: ‘Electromagnetic radiation and scattering from
finite conducting and dielectric structures: surface/surface formu-
lation’, JEEE Trans., 1991, AP-39, (7), pp. 1034-1037

6 VOLAKIS, J.L., OZDEMIR, T., and GONG, J.: ‘Hybrid finite-
element methodologies for antennas and scattering’, JEEE Trans.,
1997, AP—45, (3), pp. 493-507

7 OZDEMIR, T., and VOLAKIS, J.L.: ‘Triangular prisms for
edge-based vector finite element analysis of conformal antennas’,
IEEE Trans., 1997, AP-45, (5), pp. 788-797

8 TAFLOVE, A.: ‘Computational electromagnetics: The finite-dif-
ference time-domain method’ (Artech House, Boston, 1995)

9 OKONIEWSKI, M., OKONIEWSKA, E., and STUCHLY,
M.A.: ‘Three-dimensional subgridding algorithm for FDTD’,
IEEE Trans., 1997, AP-45, (3), pp. 422-429

10 NOTAROS, B.M., and POPOVIC, B.D.: ‘General entire-domain
method for analysis of dielectric scatterers’, I[EE Proc.-H, 1996,
143, (6), pp. 498-504 .

11 NOTAROS, BM., and POPOVIC, B.D.: ‘Optimized entire-
domain moment-method analysis of 3D dielectric scatterers’, Int.
J. Numer. Model. Eleciron. Netw. Devices Fields, 1997, 10, pp.
177-192

12 POPOVIC, B.D., and KOLUNDZIJA, B.M.: ‘Analysis of metal-
lic antennas and scatterers’ (IEE Electromagnetic Wave Series,
No.38, London, 1994) ,

13 NOTAROS, B.M., and POPOVIC, B.D.: ‘General entire-domain
Galerkin method for analysis of wire antennas in the presence of
dielectric bodies’, IEE Proc. -H, 1998, 145, (1), pp. 13-18

14 LEBBAR, H., HIMDI, M., and DANIEL, J.P.: ‘Analysis and
size reduction of various printed monopoles with different
shapes’, Electron. Lett., 1994, 30, (21), pp. 1725-1726

495



