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Abstract: A novel, entire-domain method 1is
proposed for the analysis of dielectric scatterers
of  arbitrary  geometry, made of an
inhomogeneous lossy dielectric. The scatterer is
modelled by  arbitrarily large trilinear
hexahedrons. Each trilinear hexahedron is
completely defined by its eight vertices, which can
be positioned in space arbitrarily. The equivalent
electric displacement vector is approximated by
3D polynomials in local {generally
nonorthogonal) co-ordinates satisfying
automatically the continuity condition for its
normal component over shared sides of
hexahedrons. The unknown current coefficients
are determined by a Galerkin solution of the
volume two-potential integral equation. The
method is very accurate, efficient and reliable,
enabling the analysis of up to -electrically
medium-sized dielectric scatterers on even
standard PCs. Numerical results are in excellent
agreement with the results obtained by available
methods. However, the proposed method requires
fewer unknowns (for at least an order of
magnitude), and consequently very much reduced
CPU time when compared with the existing,
subdomain methods.

1 Introduction

Numerical analysis of (lossy) dielectric scatterers is an
important problem of applied electromagnetics. It is
required in the analysis of electromagnetic systems that
include dielectric bodies. Subdomain methods founded
on numerical solution of volume integral equations are
widely used for the analysis of dielectric scatterers of
arbitrary shape and inhomogeneity of up to medium
electrical size [1-7]. According to these methods, the
scatterer volume is modelled by electrically small
elements (cubes, parallelepipeds, tetrahedrons or
polyhedrons), with low-order basis functions (3D
pulses, 3D rooftop functions or 3D linear functions)
for the approximation of current (or field) inside them.
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This results in a very large number of unknowns to be
determined. Consequently, serious problems are
frequently encountered concerning computer memory
requirements and the necessary computing time. These
problems are present also with (metallic) wires and
plates, but they become particularly pronounced in the
case of volume-penetrable scatterers.

Relatively recently, we proposed an entire-domain
method for the analysis of arbitrary dielectric scatterers
of medium electrical size [8]. According to this method
the scatterer is approximated by a system of arbitrarily
large right parallelepipeds in which the total current
density vector was approximated by three-dimensional
simple power functions in local orthogonal Cartesian
coordinates. The volume EFIE was solved by point
matching.

In this paper a novel, general entire-domain moment
method is proposed for the analysis of possibly
inhomogeneous and lossy dielectric scatterers that can
exceed medium electrical size. In a sense, it represents a
generalisation of the method presented in [§8] but it is
significantly more accurate, efficient and flexible. The
starting equation is the volume two-potential integral
equation, and the unknown is the equivalent electric
displacement vector whose normal component is
continuous on any boundary surface. The
approximation of scatterer geometry is performed by
means of so-called trilinear hexahedrons. This is a body
with straight edges and curved sides, defined uniquely
by its eight vertices, which can be positioned in space
completely arbitrarily. The hexahedrons, theoretically,
may be of arbitrary electrical size. The equivalent
displacement vector is approximated by extremely
flexible entire-domain three-dimensional power series in
local co-ordinates. The basis functions are constructed
which satisfy automatically the continuity condition for
the normal component of the displacement vector on
adjacent surfaces of hexahedrons. This results in
additional reduction in the number of unknowns, and
prevents fictitious surface charges appearing in the
numerical solution on surfaces shared by any two
hexahedrons across which the properties of the
dielectric are continuous functions. The unknown
coefficients are determined by the Galerkin method,
and the two-potential equation is transformed into a
form which does not require numerical differentiation.
Very efficient and accurate procedures have been
devised for the evaluation of the resulting Galerkin
impedances.

The results obtained by the proposed method are
compared with the existing results obtained by the
subdomain approach, indicating high accuracy of the
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proposed method and, in particular, the possibility of
analysing relatively large scatterers by personal
computers, in a very reasonable amount of CPU time.
When compared with available (subdomain) methods,
the novel, entire-domain method requires much less
unknowns (for one and even two orders of magnitude).
Of course, the dependence of the required CPU time T
on the number of unknowns N differs significantly
from one method to another. For the present method,
as for all classical moment methods [9], it is of the form
T(N) = AN? + BN?® (4 and B are constants). On the
other hand, some subdomain techniques, based on
using the conjugate gradient method and the fast
Fourier transform (FFT) [3, 6, 7], make the function
T(N) to increase much more slowly with increasing N
than AN? + BN3. Nevertheless, since Nypioman AlWays
greatly exceeds N,,pe domains i1 @ll cases considered by
the authors (some of which are presented in this paper)
the overall CPU time needed for solving the same
problem with approximately equal accuracy strongly
favours the present method over all subdomain
methods.

2 Volume integral equation for dielectric
scatterer

Consider a dielectric body of arbitrary shape and inho-
mogeneity situated in a vacuum in a time-harmonic
incident field of complex electric field intensity E; and
angular frequency w. Let relative permittivity &, of the
scatterer and its conductivity o be known functions of
position, and let at all points permeability be p,. The
total (polarisation plus conduction) induced volume
current-density vector J at any point of the scatterer is
given by

J=jw(e. —eo)(E; + E), e.=¢—jojw=ceeo (1)
where ¢, is the equivalent complex permittivity of the
dielectric, and E is the field due to induced currents
and charges (the secondary field). The total
(polarisation plus free) induced volume and surface
charge densities p and p, are connected with J by the
continuity equation and the corresponding boundary
condition

J 5 J
= =divdJ s = —n- —
p wJ, p n-(J; —Jz) (2)

where the unit vector n, normal to the surface with sur-
face charges (the surface of discontinuity of g, is
directed into medium 1.

The Lorentz potentials of the secondary field are
computed as (r is the position vector of the field point,
and r' of the source point)

A() = o / I )g(r, v )aV 3)
Vv
B(r) = i / ' )g(e,)aV + — S/ pa()g(r,r')dS (4)

Here, V is the domain of the body, S, are surfaces of
discontinuity in &,, and g is the free-space Green’s func-
tion

e~ JPoR

T

ﬁo = Wr\/EQUp — 27T/)\0

(5)
We shall see that, provided that appropriate functions
are adopted for the approximation of current, it is
numerically much more convenient to substitute J as

g(r,r') =
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the unknown by the equivalent electric displacement
vector, defined by

D=¢.(E +E)=J/(juK), K= (6)

where the parameter K is usually termed the electric
contrast. It is a simple matter to show that, at all sur-
faces of discontinuity in g, n'1y = n'D,.

By combining eqns. 1-6, and having in mind that E
= —jwA — grad®, we obtain the volume two-potential
integral equation, with D(r') as the single unknown,

? gi + jwA(r) + grad®(r) = B;(r) (7)
where r is the position vector of an arbitrary point
inside the dielectric body.

€e — €0

3 Numerical solution for volume current
distribution

In this Section we propose a general numerical solution
of eqn. 7, based on the method of moments [9].

Fig.1  Tvilinear hexahedron

As the basic element for modelling the geometry of
dielectric scatterers of arbitrary shape and inhomogene-
ity, we use a geometrical body sketched in Fig. 1 [10].
This body is determined solely by eight arbitrary points
in space, which represent its vertices, just as a tetrahe-
dron is determined uniquely by the position of its four
vertices. In the adopted local u-v-w co-ordinate system
indicated in Fig. 1, it is defined by the following para-
metric equation:

r(u,v,w) = m[ — (u — u2)(v — v2)(w — wa)rin
+ (u —u2)(v — v2)(w — w1 )r112
+ (u — ug)(v — v1)(w — wa)r121
— (u—ug)(v — v }{(w — wy)riee
+ (u —up)(v — ve)(w — wa)rony
- (’LL - ul)(v - ?}2)(’(1) - ’wl)rglg
— (u—u1)(v — vy ) (w — we)ragy
+ (u—u1)(v — v )(w — w1)raze]

Aw = Wy — Wy
(8)
In this equation, u#; and u,, v; and v,, and w; and w; are
arbitrary starting and end local co-ordinates defining
the sides of the body, and r is the position vector of the
point inside the body corresponding to the co-ordinates

with Au = ug —u1, Av=1v2— vy,
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u, v and w with respect to the global origin O. The
vectors ¥y, 1= 1,2,7=1,2,k =1, 2, are the position
veetors of the eight body vertices. Dotted lines indicate
parts of some co-ordinate lines. The body edges and all
co-ordinate lines are straight, while its sides (and all co-
ordinate surfaces) are generally curved. Such a body we
term the trilinear hexahedron. Note that the trilinear
hexahedron sides (so-called bilinear quadrilaterals)
cannet be concave or convex, but only inflected (which
is a single moderate disadvantage of this model). Note
also that, in the general case, the parametric coordinate
system u-v-w in which a trilinear hexahedron is defined
is not orthogonal, and the u, v and w co-ordinates are
not length co-ordinates.

After elementary transformations, eqn. 8 can be
rewritten as

(U, v, w) =r; + r,0 + 1y + rypw
T+ LUV -+ T UW + Cupy VW + Ly UVW

up <uuz, v <v<vy, w <Lwlw

(9)
where r,, T, Ty, T, ¥, Fy, I, and r,,, are constant
vectors that can be expressed in terms of the position
vectors of the hexahedron vertices and the boundary
parametric coordinates.

Fig.2 = Three trilinear hexahedrons in a chain

Imagine a geometrical model of a body constructed
from several trilinear hexahedrons. Consider any three
hexahedrons in this model which are connected in a
chain, as shown in Fig. 2. The vector D in each
trilinear hexahedron we decompose into three local
components D = D, + D, + D,,. For simplicity, the
local co-ordinate systems in the hexahedrons are
oriented in the same way. Assume also that the starting
values of the parametric co-ordinates equal to -1, and
the end values to +1, in all the hexahedrons. The
unknown function D, in every hexahedron we initially
represent as

1 4%, or g__ﬁr arxar
T édvdwou’ C T du \dv  dw
where d¥, is the flux of vector D, through the surface
of an infinitesimal parallelogram, the sides of which are
along the v- and w-co-ordinate line at the point (u,v,w),
and r is given in eqn. 9.

It is not difficult to prove that the continuity

D.

(10)
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condition for the normal component of vector D,
Dy cosyr = Dycosyy = (D)uorm (see Fig. 3), can be
satisfiled automatically by introducing the following

entire-domain  power series for any trilinear
hexahedron:
av,
dvdw
(1 - u)‘:v 1=0
Ny No N , (u+1), =1
PID B B DN ,
=0 =0 k=0 (wh—1), 1=2,4,...,N,(2)

(' —wu), i =3,5,...,N,(2)
-1 <u,v,w<1

(1)
Here, N,, N, and N,, are the adopted degrees of the
polynomials, and a,; are unknown complex
coefficients. The expansions analogous to those in
eqns. 10 and 11 are adopted for the components D,
and D,. Since the degrees N, N, and N, can be
arbitrarily large, the hexahedrons in the geometrical
model can, in principle, be of any electrical size allowed
by the geometry and the electrical properties of the
body (the entire-domain nature of the proposed
method). Of course, the electrical size of a body is
limited by the possibilities of the computer used for the
analysis,

V(1):V(2)

T —l,u(2):1

Fig.3 Enlarged detail of the boundary surface between hexahedrons 1
and 2 in Fig. 2

In the expansion in eqn. 11, the functions (1 — w)W/w*
and (u + 1)¥w* serve for the adjustment of the bound-
ary condition for vector D on boundary surfaces (see,
for example, the boundary surfaces 1-2 and 2-3 in
Fig. 2). With this, certain number of the coefficients
a5 (where i = 0 or 1) is the same for any two adjacent
hexahedrons, and the total number of unknowns for a
problem is reduced significantly. In addition, theoreti-
cally nonexistent surface charges at a boundary surface
of any two hexahedrons across which the properties of
the dielectric are continuous functions cannot be
obtained as a consequence of inaccurate numerical
solution of a problem. This is particularly important
when using lower-order current approximations.
Finally, since the vector D in the air is not considered
as unknown, the boundary condition for D,,,, on the
surface dielectric/air is not adjusted -automatically but
numerically.
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Now concentrate on an arbitrary trilinear
hexahedron in the geometrical model of a scatterer (e.g.
that in Fig. 1). Assume for simplicity that the dielectric
inside it is homogeneous, of electrical contrast K, and
that the vector D inside it has only the u-component, D
= D,. After extensive transformations, one obtains the
following integral expressions for the potentials A and
® owing to currents and charges inside the hexahedron,
at a field point defined by the position vector ry:

Y7 v, or
A(rg) ——]w,uoK///dvdw(9 g{rg,r)dudvdw (12)
Ul v1 wi
O(rg) = o [ K///@u <dvd >g(ro,r)dudvdw
+Z( 1)PAK, //ddw - g(ro, rp)dvdw
1 1 (13)

In these equations r is the position vector of a source
point inside the hexahedron given in eqn. 9, while 1, is
the position vector of a source point belonging to a
bilinear quadrilateral defined by u = u, (p = 1 or 2).
AK, represents the difference in electrical contrast of
the adjacent hexahedrons (see, for example, Fig. 2),
AK, = K - K,, where K, is the electrical contrast of the
hexahedron a side of which coincides with the side of
the hexahedron considered defined by u = u, (p = 1 or
2).

For the determination of the unknown current-distri-
bution coefficients, [a], defined in eqn. 11, we adopt the
Galerkin method. It implies an additional volume inte-
gration of the integral equation (eqn. 7), resulting in
the following equation:

(£ 2> + jw(fm, A) + (i, grad®) = (£, ;) (14)

In thls equation, <f,, E> is the inner scalar product
over the volume V,, of the mth trilinear hexahedron in
the geometrical model of the scatterer, and f,, is the
weighting (testing) function defined in that hexahedron,
multiplied by the corresponding unit vector. To avoid
numerical differentiation implied in grad®, the third
term in eqn. 14 can be transformed by expanding
div(f,,®) and applying the divergence theorem. Thus
from eqn. 14 we obtain the following equation:

/fm-?de—i—jw/fm-Ade
€

‘/1n Vm

- /@divfdem + 7{ of,, - dS,, = /fm-Eide

(15)
Here, S, is the boundary surface of the mth trilinear
hexahedron. This equation represents a modified
version of the volume two-potential integral equation
(with the vector D as the unknown) which does not
require numerical differentiation. The potentials A and
® in the resulting expressions for the Galerkin
impedances (i.e. the system matrix elements) are
evaluated on the basis of eqns. 12 and 13, while the
electric-field intensity vector E, of course, is not
necessary to evaluate. A rather complicated, but very
efficient and accurate, procedure has been developed
for the evaluation of the impedances [10], but owing to
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lack of space it is not elaborated here. The final system
of linear equations we solve by the Gaussian
elimination method.

The present method can in principle normally handle
the scatterers which contain conductors, i.e. the
dielectrics with o >> we. According to our experience,
however, the analysis based on the present method can
in such cases be made much more accurate and
efficient if the thin-wall model of a conducting body is
introduced, with the wall thickness of the order of a
skin depth. Of course, such walls are modelled also by
trilinear hexahedrons.

4 Numerical results

All numerical results obtained by the proposed method
which are presented below were obtained on a PC-486/
66 MHz (8Mbyte DRAM). In all the examples the
number of unknowns N,,,, and the total CPU time
Tcpy are given to make easier the comparison with the
efficiency of other methods. N,; denotes the number of
elements (trilinear hexahedrons) used for modelling the
scatterer.

In all the examples the origin of the global cartesian
x-y-z co-ordinate system is adopted to be at the centre
of the scatterer. In the cases of scatterers with the
shape of a parallelepiped the cartesian co-ordinate axes
are set parallel to the scatterer edges. In such cases, the
local parametric u-, v- and w-axis we adopt to be
parallel to the global x-, y- and z-axis, respectively. For
scatterers with curved surfaces the geometrical model
was always constructed so that the surface of the model
approximated the scatterer surface in the best possible
manner, with the condition that the volume of the
model and the volume of the scatterer be the same.

Consider first a homogeneous lossless dielectric cube
of relative permittivity ¢, = 9 situated in an incident
plane electromagnetic wave of the electric-field inten-
sity E; = 377 exp(—jByz) i, V/m. Let the cube edge
length be a = Ay/S = 3475, where A, represents the
wavelength in the dielectric. The cube can be modelled
exactly by a single trilinear hexahedron (N,; = 1). The
degrees of the polynomial approximation adopted were
N, = N, = N, = 2, but the number of unknowns was
reduced by reducing the degree of approximation for
individual components of the vector D in directions
transversal to that component for AN, = 1. For
example, the highest-degree term in the approximation
for the D, component was adopted to be (u? — 1)yw [see
eqn. 11]. With this, the number of unknowns amounted
to only N, = 36 (Topy = 4.39s).

Shown in Fig. 4 is the scattered far field in planes
¢ = 0° and ¢ = 90°, normalised with respect to its
maximal value. The results are compared with those
obtained by four different subdomain methods: (i)
method [4] (volume formulation, 1536 unknowns); (i)
method [4] (surface formulation, 576 unknowns); (iii)
method [5] (about 4600 unknowns); and (iv) method [7]
(1176 unknowns, Tcpy = 304s on a VAX 3100/76
workstation). From the Figure we see excellent
agreement of the results obtained by the proposed
method with those obtained by subdomain methods
(ii)—~(iv). Discrepancies of the results obtained by
subdomain method (i) can be explained by insufficient
quality of the pulse approximation and the resulting
errors due to the appearance of actually nonexistent
surface charges on the small cube sides. Note that the
ratio of the number of unknowns used in the four cited
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subdomain methods and that required by the proposed
method is about 42, 16, 120 and 32, respectively.
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Fig.4 Normalised scattered far-field 20 log |E/E,,,| for homogeneous
lossless cubical dielectric scatterer in planes ¢ = 0° and ¢=90°
Cube edge length a = Ay/5; &, = 9; E; = 377exp(—jBe2)ix V/m
this method, 36 unknowns
— — — method [4] (volume formulation), 1536 unknowns
» « » method [4] (surface formulation), 576 unknowns
o o o method [5], about 4600 unknowns
0 O [ method [7], 1176 unknowns
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FIg.5 Total electric field inside and close to lossless dielectric cylindrical
scatterer of square cross-section of area (0.0152)% and length | = Ay2
along scatterer axis

g = 2, E; = lexp(—jfgx)i, V/m (TM incidence)

this method, 11 unknowns

s « « method [3], 768 unknowns

As the next example, consider a homogeneous loss-
less thin dielectric cylinder of finite length / and square
cross-section of square side a = 0.03/. Assume that the
incident plane wave E-field is parallel to the cylinder
axis (TM incidence), and that E;, = lexp(—jfox)i, V/m,
g, = 2 and [ = Ay2 = 0.707A; In the analysis by the
proposed method, it was adopted that N,; = 1, N, = N,
=1 and N,, = 2, with the parameter AN,,,, (defined in
the preceding example) equal to AN, = 1. In that case
Nunkn =11 and TCPU = 1.54s.

Fig. 5 shows the distribution of the total (incident
plus secondary) electric field E,; inside and in the
vicinity of the cylindrical scatterer, along the scatterer
axis. The results obtained by the proposed method are
compared with those from [3]. Excellent agreement is
observed between the two sets of results, but note that
the present method requires only 11 unknowns, while
the other method needs 768 unknowns.

Fig. 6 shows normalised bistatic cross-section Sy;,/A¢
of a homogeneous lossless sphere with &, = 2, in planes
¢ = 0° and ¢ = 90°. The sphere is excited by a plane
wave with E; = lexp(—jBy2)i, V/m. Its radius a is given
as Boa = 1 (2a = 0.454,). The sphere is approximated
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Fig.6 Normalised bistatic cross-section 10log(Sy,/A") of homogeneous
lossless dielectric sphere for various 0 in planes ¢ = 0° and ¢ = 90°
Radius a given by Bya = 1; g, = 2; E; = lexp(-jB2)i, V/m
this method, 27 elements, 208 unknowns
 » » analytical solution, Mie’s series [11]

Fi?.7 Geometrical modelling of homogeneous dielectric sphere with 27
trilinear hexahedrons
Sphere surface is first approximated by 54 bilinear quadrilaterals

Fi?.S Geometrical modelling of homogeneous dielectric sphere with 27
trilinear hexahedrons
Sphere volume is then divided into 27 parts

by N,; = 3 x 3 x 3 = 27 trilinear hexahedrons, as
shown i Figs. 7 and 8. This model is obtained by first
approximating the sphere surface with 6 x (3 x 3) = 54
(curved and flat) bilinear quadrilaterals, as in Fig. 7.
The sphere volume was next divided into 27 parts by
connecting the corresponding vertices of the
quadrilaterals by straight lines parallel to the axis of
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the global rectangular co-ordinate system, as in Fig. 8.
Shown in Fig. 7 are co-ordinates of three vertices
which define the entire structure completely. The first-
degree current approximation was adopted in all the 27
hexahedrons (N, = N, = N,, = 1, a typical subdomain
approximation). With partial use of symmetry, this
resulted in N, = 208 and Tcpy = 162.86s. These
results were compared with the analytical solution in
the form of Mie’s series [11]. Perfect agreement of the
two sets of results can be observed.

Consider next an inhomogeneous lossy dielectric
sphere, consisting of two concentric spherical layers.
The radii of the boundary surfaces, expressed in
electrical units, are Bye; = 0.163 and fya, = 0.314. The
equivalent relative permittivities of the inner and outer
layer are ¢, = 72 - j161.78 and ¢,, = 7.5 — j8.99,
respectively. The incident plane-wave electric-field
intensity is E; = 1 exp(jByz)i, V/m. The two-layer sphere
was modelled by N, = 81 trilinear hexahedrons, of
which the inner sphere (of radius ;) was modelled by 3
x 3 x 3 = 27 hexahedrons (as in Figs. 7 and 8), and the
outer layer by 6 x (3 x 3) = 54 hexahedrons so that the
outer shape of the approximated entire sphere is
exactly the same as in Fig. 7. The adjacent sides of all
the model hexahedrons are exactly the same. The first-
degree polynomial current approximation (N, = N, =
N,, = 1) was adopted in all the hexahedrons. The
existing symmetry was partly utilised, so that the
number of hexahedrons with unknown current
distribution amounted to 32, and the number of
unknowns to Nz, = 520 (Tepy = 19 min).
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Fig.9 Total electric field E,,, inside two-layer lossy dielectric sphere
Boay = 0.163 (a; is radius of inner sphere); Boa, = 0.314; ¢, = 72-7161.78; ¢,
= 7.58.99; E; = lexp(jBy2)i, V/m

analytical solution, Mie’s series [6]

— — — this method, 81 elements, 520 unknowns

- — — method [6], 3375 elements, 10800 unknowns

With [(E,,),| along x-axis
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Fig.10  Total electric field E,,; inside two-layer lossy dielectric sphere
Boar = 0.163 (ay is radius of inner sphere); foay = 0.314; g, = 72-7161.78; ¢,
= 7.5-j8.99; E, = lexp(jB2)i, V/m
analytical solution, Mie’s series [6]
-— — — this method, 81 elements, 520 unknowns
— — —method [6], 3375 elements, 10800 unknowns
With [(E,,),| along y-axis
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Shown in Figs. 9, 10 and 11 are the results for indi-
vidual components of the total electric-field vector E,,,
inside the sphere, along the x- and y-axis. The results
obtained by the proposed entire-domain method were
compared with the analytical results obtained by using
Mie’s series [6], and with numerical results obtained by
a subdomain method [6] (10800 unknowns and T¢py =
325 min on a VAX 3100/76 workstation). Good agree-
ment of the three sets of results is observed from Figs.
9, 10 and 11, although the present method was utilised
in its most unfavourable, subdomain form, with about
1/20 unknowns when compared with the subdomain
method from [6].
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E o
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O00L o+ b 4 T TS W SV T S B
-1.0 -05 0.0 05 1.0
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Fig.11  Toual electric field E,,,; inside two-layer lossy dielectric sphere

Boar = 0.163 (a, is radius of inner sphere); foar = 0.314; &, = 72-j161.78; &,,»
=7.5-8.99; E; = lexp(jfoz)i, V/m

analytical solution, Mie’s series [6]

— — — this method, 81 elements, 520 unknowns

— — — method [6], 3375 elements, 10800 unknowns

With [(E,,,),| along x-axis

Fig.12 Homogeneous dielectric cylindrical scatterer in field of plane
wave

As the last example, consider a homogeneous lossless
dielectric cylinder of relative permittivity ¢, = 2. Let the
cylinder be excited by a plane wave as shown in
Fig. 12 and & = 2a = 0.77334; = 1.094A, It can be
shown that this is a resonant scatterer [11]. The
cylinder in Fig. 12 was approximated by only two
equal trilinear hexahedrons with flat sides (N, = 2).
The cross-section of this approximation is sketched in
Fig. 13. In both hexahedrons it was adopted that N, =
4, N, = 2 and N, = 4 (see Fig. 13 for reference
directions of the local co-ordinates u, v and w).
Symmetry with respect to the plane y = 0 was utilised,
so that the total number of unknowns amounted to
Nin = 200, and the CPU time was T¢cpy = 47.35s.
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Fig.13  Cross-section of geometrical model of scatterer in Fig. 12 con-
structed from two trilinear hexahedrons
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Fig.14  Nommalised bistatic cross-section 10log(Sy./Ad%) of homogene-

ous lossless resonant dielectric cylinder for various @ in plane ¢ = 0°

See Fig. 12, &, = 2; h = 0.7733hg; a = h/2

this method, 2 elements, 200 unknowns

« « » surface PMCHW formulation [12] (results from [11])

- — - FEM/MOM, EFIE formulation [11]

Shown in Fig. 14 is the normalised bistatic scattering
cross-section, Sy,/A¢>, of the dielectric cylinder, in
plane ¢ = 0°. The results obtained by the proposed
entire-domain method are compared with the results
from [11] obtained by the method proposed in [12], a
surface PMCHW-formulation for bodies of revolution
(BOR). Excellent agreement is observed between the
results obtained by the two methods.

Note that this example may be considered as a
numerical evidence that the proposed method yields
stable results for resonant dielectric bodies as well.
Namely, it is well known that some methods do not
guarantee a unique solution of resonant scatterers. To
iltustrate this, shown in Fig. 14 are the results from [11]
obtained by the hybrid FEM/MOM method for BOR
in the EFIE formulation, which are in large discrep-
ancy with those obtained by both the proposed method
and that from [12]. On the other hand, the results
obtained also by the method from [11], but in the sym-
metrical, combined EFTE/MFIE formulation (the most
preferable formulation of the method), are found to be
in very good agreement with the two sets of accurate
results presented in Fig. 14, and therefore are not
shown.

5 Conclusion

The paper presents a novel, entire-domain, method for
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the analysis of (possibly lossy) dielectric scatterers of
arbitrary shape and inhomogeneity. Basically, it is
founded on using trilinear hexahedrons for the geomet-
rical approximation of a scatterer, three-dimensional
entire-domain polynomial functions of local paramet-
ric, in general nonorthogonal, co-ordinates for the
approximation of the equivalent electric displacement
vector, and the Galerkin test procedure for solving the
volume two-potential integral equation.

The method is very accurate, efficient and reliable. Tt
enables the analysis of (lossy) dielectric scatterers
exceeding medium electrical size on even standard per-
sonal computers, in very reasonable amount of CPU
time. In all cases considered, the results obtained by the
proposed method are in very good agreement with
those from other sources. However, the proposed
method requires much less unknowns (for one and even
two orders of magnitude) when compared with any
available, subdomain, method.

The proposed method does not possess the convolu-
tion structure of the solution. Therefore there is no
(direct) way to perform the conjugate gradient FFT
technique to speed up the computation, which is possi-
ble with some subdomain methods. Nevertheless,
numerical examples (some of which are presented in
this paper) have demonstrated that the total CPU time
needed for solving a problem with approximately equal
accuracy greatly favours the present method also over
those subdomain methods which do use this technique.
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