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Higher Order FEM-MoM Domain Decomposition
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Abstract—A novel higher order domain decomposition (DD)
method based on a hybridization of the finite element method
(FEM) and method of moments (MoM) is proposed for three-di-
mensional (3-D) modeling of antennas and scatterers. The method
implements multiple FEM domains within a global unbounded
MoM environment, based on the surface equivalence theorem.
The presented analyses of 3-D and two-dimensional (2-D) finite
periodic arrays of inhomogeneous dielectric scatterers demon-
strate excellent accuracy, convergence, and efficiency of the new
FEM-MoM-DD technique, and a substantial reduction in the
memory requirements and computational time when compared to
the higher order MoM solution.

Index Terms—Domain decomposition (DD), electromagnetic
(EM) analysis, finite element method (FEM), higher order mod-
eling, hybrid methods, method of moments (MoM), numerical
techniques.

I. INTRODUCTION

HE continuing and growing demand for computational
T tools that can handle full-wave simulations of larger and
more complex electromagnetic (EM) problems has recently led
to rapid development of novel domain decomposition (DD) al-
gorithms. These algorithms allow splitting of the original, large
problem into a number of smaller ones, which can be analyzed
independently and then stitched together by some sort of local
or integral boundary conditions, yet yielding in the process a
rigorous solution of Maxwell’s equations for the problem. This
way, the computational burden can be tremendously reduced.
Additionally, DD algorithms inherently allow parallelization
since each of the smaller problems can be handled by a separate
machine (or processor core).

Among a variety of possible and existing DD algorithms, we
concentrate on those based on the three-dimensional (3-D) fi-
nite element method (FEM) in the frequency domain. Such al-
gorithms constitute the mainstream of recent research efforts in
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this area. Advanced FEM-based DD techniques generally rely
on the finite element tearing and interconnecting (FETTI) [1] and
alike algorithms [2]-[6], which use the Robin-type transmis-
sion condition to enforce continuity of the fields on the interdo-
main interfaces and allow efficient iterative substructuring, thus
avoiding potential numerical problems that can arise in more
conventional DD approaches. Some recent important improve-
ments of DD algorithms include the introduction of noncon-
formal grids, which allow for a different triangulation on either
side of interdomain interfaces [2]-[4], and the dual primal for-
mulation, where some directly imposed continuity constraints
across interdomain interfaces indirectly enforce all other con-
straints by using dual variables (Lagrange multipliers) [5], [6].

The FEM indeed very efficiently deals with problems con-
sisting of inhomogeneous (and complex), arbitrarily shaped ob-
jects. When coupled with a boundary integral (BI) technique,
which introduces an exact termination to numerically truncate
and close the FEM computational domain, it yields powerful
and versatile FE-BI hybrids, e.g. [7]. Some algorithms explic-
itly combine FEM volumetric modeling with solutions of sur-
face integral equations (SIEs) based on the method of moments
(MoM), e.g., [8], and such hybrids are hence also referred to
as FEM-MoM techniques. Only most recently, however, more
attention has been drawn to hybrid domain decomposition al-
gorithms where different methods are employed to render so-
lutions in distinct domains. Some examples of progress in this
direction include a domain decomposition method based on the
boundary element method (BEM) and FEM reported in [9] and
an extremely robust two-level domain decomposition method
using a FEM-based domain decomposition within a global hy-
brid domain decomposition method presented in [10]. However,
all existing, hybrid, and other FEM-based DD tools appear to be
low-order (small-domain) techniques. In general, it is well es-
tablished that the higher order (large-domain) computational ap-
proach, which utilizes higher order field/current basis functions
defined on large curvilinear geometrical elements, e.g., [11], can
substantially enhance the accuracy and efficiency of EM mod-
eling.

This letter proposes a novel higher order FEM-MoM domain
decomposition method for 3-D EM modeling of antennas
and scatterers. It capitalizes on our previous work in the hy-
brid FEM-MoM methodology [8], where a hybridization of
FEM [12] and MoM [13] techniques is reported, both in the
framework of the higher order large-domain modeling. In
our FEM-MoM hybrid, the MoM part provides much greater
modeling versatility and potential for applications than just as a
BI closure to the FEM part. In addition, the way our hybridiza-
tion is realized theoretically allows incorporation of multiple
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Fig. 1. Domain decomposition based on the surface equivalence theorem:
(a) single subdomain and (b) extension to multiple subdomains.

FEM subdomains in a global, generally unbounded, MoM
domain. The principal thrust of the present letter is numerical
implementation and evaluation of this multiple-FEM-do-
mains-in-MoM-environment hybrid concept, which is based on
the surface equivalence principle and in which we analyze the
subdomains using the FEM, independently, by applying unit
current densities to equivalent sources, and then solve for the
actual current sources by the MoM, discretizing a set of SIEs.
The result is a higher order FEM-MoM-DD technique. To the
best of our knowledge, this is the first higher order FEM-based
domain decomposition method; when compared to the existing
DD techniques, it provides the benefits of the higher order
modeling and, in many cases, a feasible alternative to the
recent solutions based on the Robin transmission condition.
When compared to the higher order MoM-SIE and FEM-MoM
(or FE-BI) techniques, on the other hand, it brings about the
common DD advantages.

Section II of the letter presents the theoretical background
and numerical implementation of the new higher order
FEM-MoM-DD technique. As the details of the FEM-MoM
hybridization are given in [8], we focus here on theoretical and
implementation aspects of the surface equivalence theorem and
inclusion of multiple FEM domains in a global MoM environ-
ment, as the core components of our DD method. In Section III,
the technique is validated and its accuracy, convergence, and
efficiency evaluated and discussed in characteristic examples
of 3-D and two-dimensional (2-D) finite periodic arrays of
inhomogeneous dielectric scatterers.

II. THEORY AND IMPLEMENTATION

A. Domain Decomposition Based on the Surface Equivalence
Theorem

Consider a subdomain in a time-harmonic EM system sit-
uated in a generally unbounded homogeneous linear medium.
The subdomain is of arbitrary shape, contains arbitrary linear
inhomogeneities, and is bounded by a closed surface S (subdo-
main boundary), as shown in Fig. 1(a). In what follows, we refer
to the exterior and interior of S as regions a and b, respectively,
and denote by n the outward looking unit normal on it.

Based on the surface equivalence theorem, we place the
equivalent surface electric current, of density Jg = n x H?, and
equivalent surface magnetic current, of density Mg = —n x E¢
(Huygens’ sources) such that they support the original total

fields in region a, E* and H®, when all field excitations in
region b are switched off, and annihilate the fields in region b.
The fields in region a are thus driven solely by the (known)
excitations in region a and (unknown) equivalent surface cur-
rents on the boundary S. Additionally, changing the signs of
the equivalent surface currents and switching off the excitations
in region a preserves the original fields in region b, E® and H?,
and annuls the fields in region a. This way, the fields in region b
are driven solely by the (known) excitations in region b and the
same (unknown) equivalent surface currents on the boundary
S. Most importantly, the surface equivalence theorem enables
an independent EM analysis of subdomain b and the rest of the
system. Essentially, a linear relation between the equivalent
surface currents and fields in region b (often referred to as a
“numerical Green’s function”) can be found independently
from the rest of the problem.

A straightforward extension of the situation in Fig. 1(a) to
include multiple subdomains and boundary surfaces depicted
in Fig. 1(b) represents the theoretical basis for a domain de-
composition technique, where each of the subdomains by,
k =1,2,..., Ng, can be analyzed independently, by a suitable
method of choice, providing the relation between the fields
in the subdomain and unit equivalent surface currents on its
boundary, S. The currents are found solving the problem in
domain a, which basically becomes a well-defined scattering
problem. In our hybrid DD technique, we simply choose the
FEM for analysis of subdomains (regions b) and MoM-SIE for
analysis of the rest of the system (region a).

B. Inclusion of Multiple FEM Domains in a Hybrid FEM-MoM
Technique

The surface equivalence theorem is already embraced as the
theoretical foundation for establishing a set of coupled elec-
tric/magnetic field integral equations (EFIE/MFIE), required for
analysis of homogeneous dielectric domains in our higher order
MOoM-SIE technique [13]. Hence, the main idea behind the con-
struction of the DD method proposed in this letter is to exploit
the existing MoM environment to solve for the unknown equiv-
alent currents, Jg and Mg, in Fig. 1(b), while replacing the
homogeneous dielectric domains with arbitrarily complex and
inhomogeneous regions in which the numerical Green’s func-
tion is found by the higher order FEM. This latter step is car-
ried out in a DD fashion technically equivalent to calculating
the inner products (js,, E’(js,)) and (js, x js,,n)) over the
FEM-MoM interfaces [8] independently for each of the subdo-
mains and possibly simultaneously for all of them, where jg; and
Jjs; are the higher order hierarchical polynomial vector testing
and basis functions, respectively, defined on generalized curved
quadrilateral MoM elements. The former step (solution for sur-
face currents), on the other side, requires appropriate alterations
to the MoM-SIE PMCHW formulation [11].

In our FEM-MoM-DD numerical procedure, the subdomain
by, in Fig. 1(b) is meshed using (large) generalized curved hexa-
hedral FEM elements with higher order hierarchical polynomial
vector bases so that by, = by |Jbk2 - . . | brn,, - Outer faces of
the hexahedra, Si;, j = 1,2,..., Ngsi, belonging to the sub-
domain boundary, S, = Si1 U Skz - ..U Skns, . are defined as
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(large) MoM quadrilaterals (carrying the equivalent surface cur-
rents Jgy; and Mgy;). Within the MoM table of dielectric do-
mains, each subdomain by, is registered as a unique “special”
dielectric domain that is algorithmically distinguished from the
“regular” dielectric domains and can only appear on one of the
sides of the MoM quadrilaterals. The electric and magnetic tan-
gential-field boundary conditions for each of the MoM quadri-
laterals whose one side is declared to belong to the “special” do-
main, i.e., quadrilaterals belonging to Sy, are formally modified
from their original PMCHW form to equations with currents
Jsi and Mgy, over Sy, and field E® throughout subdomain by,
(one of the multiple FEM domains) as unknowns [8]. This tech-
nically reduces to setting the combined EFIE/MFIE equations
in our MoM code on only one side of such quadrilaterals and
calculating the MoM impedances (using Galerkin testing proce-
dure) with no further adjustments. In the final step, the imped-
ances linked with the testing and basis functions (when both be-
long to boundary MoM quadrilaterals associated with the same
“special” dielectric domain) are augmented with corresponding
previously calculated inner products. The described alterations
pertain to all dielectric domains declared as “special” and asso-
ciated MoM quadrilaterals on their boundaries. By solving the
MoM matrix system, we solve for the unknown surface currents
on the boundaries of all domains, and subsequently we can cal-
culate the required electromagnetic quantities in all domains.

III. RESULTS AND DISCUSSION

As the first example, consider a 3-D finite array of lossless
coated cubical dielectric scatterers shown in the inset of Fig. 2.
Although the main purpose of this example is validation and
evaluation of the presented DD technique, note that 3-D (and
2-D) periodic arrays of scatterers also have great potential for
applications in the context of metamaterials engineering, where
their structure and arrangement influence the metamaterial per-
formance [14]. Fig. 2 presents the monostatic radar cross sec-
tion (RCS) of the array. The new higher order FEM-MoM-DD
technique is employed with a geometrical model consisting of
one FEM cubical hexahedron (of side length a and dielectric
constant €,1) and 6 FEM “cushions” in the form of pyramidal
frusta (of dielectric constant €,2) representing the coating (of
thickness t), onto which six MoM square patches are attached
(the mesh can be seen in Fig. 2). The FEM part of the structure,
consisting of seven elements, is modeled (and computed) only
once, and the MoM part is periodically translated seven times to
build a symmetric spatial arrangement of eight cubes, equidis-
tantly spaced at distances d, forming the 3-D array in Fig. 2.

The DD results in Fig. 2 are given for two FEM-MoM dis-
cretizations illustrating a p-refinement of the solution. In the first
discretization, FEM field expansion orders are 4 (in all direc-
tions) in the inner cubical element, 1 in the cushions that model
the thin coating in direction perpendicular to the cube faces, and
5 in the other two directions, while current expansion orders for
MoM quadrilaterals are 4. These orders are 5, 2, 6, and 5, re-
spectively, in the p-refined model. The resulting numbers of el-
ements (written as FEM-MoM), unknowns (FEM-MoM), and
total computational times (using an IBM ThinkPad T60p note-
book computer with Intel T7200 CPU running at 2.0 GHz) are
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Fig. 2. Normalized monostatic RCS of a 3-D array of coated dielectric cubes
(Ao is the free-space wavelength): convergence and efficiency analysis of the
higher order FEM-MoM-DD with p-refinement and comparison of results with
the reference MoM solution. (¢ = 1 m, b = 1.04 m,t = 2 cm, d = 56 cm,
g1 = 4,60 = 2.5).

given in the figure legend. We observe that the higher order hy-
brid FEM-MoM-DD solution accurately matches the reference
MoM-SIE solution [13] and that it quickly converges when the
structure is p-refined and the number of unknowns increased.
Noting that the FEM calculation is carried out independently
from MoM in the new method, we conclude that only the highest
number of unknowns, i.e., the MoM one, in the solutions dic-
tates the required memory resources, which are roughly propor-
tional to the squares of the number of unknowns (for storage
of the full MoM matrix). On the other hand, both computations
commensurately contribute to the overall computational time.
We thus conclude that the new method (the p-refined model)
requires approximately 63% less memory and 74% less compu-
tational time than the reference MoM solution in this example,
while maintaining the same accuracy.

As the second example, aimed at demonstrating the effec-
tiveness of the new technique in treating curved and continu-
ously inhomogeneous scatterers, Fig. 3 gives bistatic RCS re-
sults for a 2-D array of dielectric spheres (shown in the inset),
whose dielectric constant changes in the radial direction linearly
from 1 at the sphere surfaces to 6 at their centers. Each sphere
is modeled by seven curvilinear hexahedral FEM elements of
the second geometrical order, that is, by one small sphere-like
hexahedron, a/20 in radius, at the center and six “cushion”-like
hexahedra between the central sphere and the scatterer surface,
onto which six curvilinear quadrilateral MoM patches are at-
tached. FEM field expansion orders are 4 in the elements con-
stituting the sphere and 3 on the quadrilateral patches. In a p-re-
fined model, these orders are 5 and 4, respectively, and a very
quick convergence of the results is observed in Fig. 3 (note that
the same solution is also obtained with respective approxima-
tion orders increased to 6 and 5). Of course, the reference higher
order MoM-SIE technique [13] is not directly applicable to this
structure. Note that this example is illustrative of the necessity
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Fig. 3. Higher order FEM-MoM-DD simulations of the normalized bistatic
RCS of a 2-D 3 x 3 array of continuously inhomogeneous lossless dielectric
spheres (sphere radii are @ = 10 cm, surface-to-surface distances between
spheres are d = 6 cm), whose dielectric constant changes in a linear fashion
from 1 at the sphere surfaces to 6 at their centers, at 1235 MHz.

and advantage of the higher order representation to accurately
model the field behavior due to both the curvature of the large
elements and their inhomogeneity.

IV. CONCLUSION

This letter has proposed a novel higher order FEM-MoM do-
main decomposition method for 3-D EM analysis. The method
is based on numerical implementation of multiple FEM domains
within a global unbounded MoM environment, which, in turn,
is theoretically founded on the surface equivalence theorem. It
represents the first higher order FEM-based DD method. The
validity, accuracy, convergence, and efficiency of the new tech-
nique have been demonstrated in examples of 3-D and 2-D fi-
nite periodic arrays of inhomogeneous dielectric scatterers, in
which very effective large-domain meshes of scatterers with
small numbers of large FEM and MoM elements and p-refined
field and current approximations are utilized, and only their
MoM parts simply multiplied to achieve periodicity. The DD

method enables a substantial reduction in the memory require-
ments and computational time when compared to higher order
MoM solutions (when available).
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