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ABSTRACT 

Four independent methods are presented for entire-domain (large-domain) moment-method 
analysis of lossy, inhomogeneous dielectric scatterers. They share two basic steps in solving 
volume integral equations: (1) the approximation of the scatterer geometry by large trilinear 
hexahedrons; and (2) the approximation of the unknown vector function in the hexahedrons 
by three-dimensional polynomials. The results are compared among themselves and with 
those obtained by subdomain (the only existing) methods, demonstrating great superiority 
of the entire-domain approach in solving three-dimensional scattering and interaction 
problems. 0 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

The first rudiments of what is now known as the 
method of moments (MOM) can be traced to the 
early 1950s [l]. However, only the well-known 
1968 monograph by R. F. Harrington [ 2 ]  made it 
clear that the MOM was a general, extremely 
powerful tool for the solution of electromagnetic 
problems. For two decades, almost no other 
method was used for numerical solution of such 
problems. Only relatively recently have alterna- 
tives to the MOM been proposed. Probably, the 
most popular of these is the finite-difference 
time-domain (FD-TD) sequential technique for 
direct solution of Maxwell’s differential equations 
[31. It has a number of advantages, but also two 
principal disadvantages when compared with the 
MOM: it requires supercomputers, and the solu- 
tion has not been so far restricted to the source 
region only. On the other hand, the MOM tech- 
nique has been used mostly in its subdomain 

version; for example, as far as the authors are 
informed, in all studies dealing with volume di- 
electric scatterers the subdomain approach was 
used. This greatly limits the applicability of the 
MOM, due to the very large number of unknowns 
and the resulting frequently prohibitive computer 
time needed for the solution. 

An alternative which, in the authors’ opinion, 
can extend greatly the applicability of the method 
of moments is the use of the so-called entire- 
domain technique. Since the term “entire do- 
main” may be misleading, it is useful at this point 
to define it precisely. 

The literal meaning of the term “entire do- 
main” may suggest that a body of interest must be 
considered as a single volume element and that 
the current (field) distribution inside this element 
should be approximated by a single functional 
series (e.g., by power series of sufficiently high 
order). Evidently, such a strict approach is possi- 
ble only rarely (e.g., in the case of a dielectric 
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parallelepiped of any electrical size). Normally, 
the shape and the internal structure of the body 
considered dictate that it be approximated in- 
stead by a number of volume elements (e.g., it is 
virtually impossible to analyze a human body in 
the external field as a single volume element). 
Thus, the entire-domain approach (in its wider 
sense) implies that a body be approximated by a 
small number of as large as possible volume ele- 
ments. The approximation of current (field) inside 
individual elements remains in the form of single 
functional series. Briefly, while the size of the 
volume elements in the subdomain approach is 
restricted by low order of approximating func- 
tional series, the size of the volume elements in 
the entire-domain approach is limited only by the 
structure geometry or its internal composition. 
Although, evidently, the term “large-domain ap- 
proach” would be much more appropriate, “en- 
tire domain” (in the wider sense) seems to be 
accepted universally. 

Quite surprisingly, in spite of its obvious ad- 
vantages, the entire-domain MOM approach has 
been used relatively rarely for the analysis of 
electromagnetic systems. Notable examples of the 
application of the entire-domain approach in the 
last 20 years are extremely powerful tools for the 
analysis of wire antennas and scatterers [4] and 
metallic antennas and scatterers 1.51, far superior 
to subdomain methods. However, the advantage 
of the entire-domain MOM philosophy is particu- 
larly pronounced in the analysis of inhomoge- 
neous, possibly lossy, dielectric scatterers [6]. In 
ref. 6, the volume integral equation for induced 
currents has been solved by point matching, ap- 
proximating the scatterer by arbitrarily large 
right parallelepipeds with entire-domain three- 
dimensional power basis functions. Although 
much more powerful than any subdomain method, 
the approximation by parallelepipeds appeared to 
be its relatively weak point; for example, it is not 
simple to approximate properly a conical or 
spherical scatterer in that way. 

Recently, significantly more flexible volume el- 
ements for geometrical modeling, so-called “tri- 
linear hexahedrons,” have been proposed [71. This 
is a body with straight edges and curved sides, 
completely defined by its eight vertices. Using this 
volume element, which can be of any size and of 
quite diverse shape, in this article four entire- 
domain moment methods ,are proposed for the 
analysis of dielectric scatterers, possibly lossy, of 
arbitrary shape and inhomogeneity. The four 
methods solve either the volume EFIE or the 

volume two-potential equation. These equations 
are formulated in two forms. In one, the unknown 
is the total (conduction and polarization) current 
density vector and, in the other, the unknown is 
the equivalent electric displacement vector. For 
the approximation of the current density, entire- 
domain three-dimensional power basis functions 
in generally nonorthogonal local coordinates are 
used. For the approximation of the equivalent 
electric displacement vector, specific combina- 
tions of such power functions, which automati- 
cally satisfy the boundary condition for the nor- 
mal component of the electric displacement vec- 
tor at sides of adjacent hexahedrons, are used as 
basis functions instead. Finally, point matching is 
used for the solution of the two EFIEs, and the 
Galerkin method for the solution of the two- 
potential equations. In the latter case, the diver- 
gence theorem is used to transform the equations 
into a form that does not require numerical dif- 
ferentiation. 

Computer programs have been completed 
based on all the four methods. Being numerically 
completely different, the methods can be consid- 
ered independent. It was therefore possible not 
only to cross-check and cross-validate the four 
methods, but also to arrive at some general con- 
clusions about them and to validate the entire 
general approach by comparing the results with 
those available in the literature. 

As mentioned, all previous investigators using 
the MOM for the analysis of dielectric scatterers 
adhered to the subdomain philosophy. Although 
agreement of the results obtained by the present 
method with the available results was found to be 
excellent, the superiority of the present entire-do- 
main method was found to be quite impressive. 
For example, it was possible to perform the en- 
tire-domain analysis of inhomogeneous lossy scat- 
terers of medium (resonant) electrical size on 
standard personal computers, and in a relatively 
short time (on the order of few minutes at the 
most); with the subdomain approach, such prob- 
lems require large computers and much longer 
computing time. 

APPROXIMATION OF VOLUME 
CURRENT DISTRIBUTION IN 
TRILINEAR HEXAHEDRONS 

The first step in the analysis of dielectric scatter- 
ers is to describe mathematically the geometry of 
the scatterer; i.e., to construct the (approximate) 
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geometrical model of the scatterer. This should 
be done with particular care, because it has a 
pronounced influence on the whole solution pro- 
cess. 

In solutions based on the determination of the 
volume induced currents (or field), the scatterer 
volume has to be modeled by the appropriate 
volume geometrical elements. It is convenient to 
use the elements of the same type for the approx- 
imation of the entire dielectric body. In all exist- 
ing methods for the analysis of dielectric scatter- 
ers, electrically small elements (cubes, tetrahe- 
drons, or right parallelepipeds) are used for that 
purpose, with low-order functions for the approxi- 
mation of the current (or field) inside them. 

Following ref. 7, we shall use the trilinear 
hexahedron, given in Figure 1, as the basic ele- 
ment of the geometrical model of a dielectric 
scatterer of arbitrary shape and internal struc- 
ture. A trilinear hexahedron is the geometrical 
body defined by the following parametric equa- 
tion in the local nonorthogonal rectilinear u-u-w 
coordinate system: 

r ( u , v , w >  
1 

Au Av Aw [ - ( u  - u 2 N u  - v2>(w - w2)r l l l  - - 

In this equation, d u ,  u ,  w> is the position vector 
of an arbitrary point of the trilinear hexahedron 
(defined by coordinates u, u,  and w); rjjk ( i  = 1,2, 
j = 1,2, k = 1,2) are the position vectors of the 
eight hexahedron vertices; and u l ,  u2 ,  u l ,  u2 ,  wl, 
and w2 are the starting and end coordinates of 
the hexahedron sides. We see that the trilinear 
hexahedron is determined uniquely by its eight 
vertices, which can be positioned in space arbi- 
trarily. The edges of the trilinear hexahedron are 
straight, while its sides, in general, are curved. 

122 

W = W ,  

V 

X 
Figure 1. A trilinear hexahedron. 
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After elementary transformations eq. (1) can be 
written as: 

r t u ,  u ,  w) 
= r, + r,u + r,u + r,w + r,,uu 

+ r,,uw + r,,uw + r,,,uuw, 

where constant vectors rc, r,, r,, r,, r,,, ruw, ruw, 
and r,,, can be determined easily. 

The degrees of the three-dimensional polyno- 
mials we shall use for the approximation of the 
volume current distribution can be arbitrary. 
Therefore, the hexahedrons in the geometrical 
model can, in principle, be of any electrical size 
allowed by the geometry and the electrical prop- 
erties of the body. (Of course, the electrical size 
of a body is subject to the limitations of the 
computer used for the analysis.) 

The total (polarization plus conduction) cur- 
rent-density vector, J, at an arbitrary point of the 
hexahedron (from Fig. 1) can be represented as a 
sum of its u-, u-, and w-components: 

J(u, u ,  w) 
= J , (U,V,W) + J , (u ,u ,w) + J , (u ,u ,w) 

= J,(u, u ,  w>i,(u, u ,  w) + .Tutu, u ,  w) 

Xi,(u,u,w) 

The unit vectors, i,, i,, and i,, which in general 
case are not mutually perpendicular, are obtained 
as: 

1 dr . 1 d r  1 d r  

e, d v ’  e, d w  e, d u ’  
I = - -  i, = -- i, = -- 

(4) 

where e,, e,, and e, are the Lam6 coefficients, 
e, = Idr/dul, e, = Idr/dul, and e, = Idr/dwl. 
Note that the u-, u-, and w-coordinates are, in 
general, not the length coordinates. 

To express the unknown functions, J,,  J,, and 
J,, in the form suitable for the further steps of 
the method, consider a differentially small prism 
at a point (a, u, w), with edges parallel to the unit 
vectors i,, i , ,  and i,, and of edge lengths dl, = 
e,, du, dl, = e, do, and dl, = e, dw, as shown in 
Figure 2. The current through the prism side 
denoted by u can be obtained as: 

dI, = J, * dS,, = J, dS,,i, * nu, 

= J,(dl, dl, sin a,,)sin a(”,,), 

= J,euew sin a”, sin a(,,,), du dw ( 5 )  

Figure 2. Infinitely small prism with edges tangent to local coordinate lines and quantities 
necessary for the approximation of the current-density vector in the u-u-w coordinate 
system. 

Figure 2. Infinitely small prism with edges tangent to local coordinate lines and quantities 
necessary for the approximation of the current-density vector in the u-u-w coordinate 
system. 
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where a,,, and are the angles between u 
and w coordinate lines (i.e., between the vectors 
i , ,  and i,) and between the u coordinate line and 
u-w coordinate surface, respectively, at point 
(u, u ,  w). On the basis of eq. (5) ,  the current- 
density J ,  can be expressed as: 

dlu (6) 
1 

J ,  = 
eLe,,> sin a,., sin a([,,,,), du dw 

Analogous expressions can be derived for the 
components J,,  and J ,  of the current-density 
vector. 

INTEGRAL EQUATIONS FOR VOLUME 
CURRENT DISTRIBUTION 

The Lorentz potentials due to the volume current 
distribution J, (and corresponding volume and 
surface charge distributions) in the arbitrary, nth 
element (trilinear hexahedron) of the geometrical 
model of a dielectric scatterer can be expressed 
as: 

Finally, g(  R )  is the free-space Green's function: 

[If is the position vector of the field (potential) 
point and d u ,  u ,  w )  is given in eq. (2)l. 

The corresponding electric-field vector is Ejt") 
= -jwA(,") - grad a;'). The gradient operator 
operates on the field-point coordinates. It can 
therefore be introduced under the integrals in the 
expression for the scalar potential, a:'), in eq. 
(7b) and be made to operate on Green's function 
alone. Finally, by using eqs. (3), (4), and (6), the 
expressions for the volume, dV, and the surface, 
dS,,, (which can easily be obtained on the basis of 
Fig. 2), as well as the expression for div J,, which 
can be derived starting from the general integral 
definition of the divergence applied to the prism 
in Figure 2, the following expression is obtained 
for calculating Ejt"): 

2 
+ c ( -  11l- l  

I =  1 

In these equations, dV is the volume of the 
differentially small prism from Figure 2, and dS,, 
is the vector surface element of the trilinear 
hexahedron side defined by the equation u = ul 
( I  = 1 or 2). This element represents the side of 
the small prism, positioned at the point (u l ,  u ,  w).  

Note that, in this expression, the Lam6 coeffi- 
cients, as well as the angles a,, and are 
not present. This is the principal reason for 
adopting the initial representation of function J ,  
as given in eq. (6). The resultant secondary field, 
E, due to three local components of the 
current-density vector, J,, J,, and J,, in all (N,) 
trilinear hexahedrons of the geometrical model, 
is: 

This field plus the incident (impressed) field, Ei, 
result in the total field in dielectric, E,,,, which is 
connected with the current density, J, by means 
of the generalized local Ohm's law, 
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where E, u, and ue are permittivity, conductivity, 
and equivalent complex conductivity of the di- 
electric, respectively, at the field point. Thus, we 
obtain the equation: 

J 
r e  
- - E(J) = E; (12) 

which represents the electric-field integral equa- 
tion (EFIE) for an arbitrary inhomogeneous di- 
electric scatterer. Finally, note that by analytical 
differentiation of grad g in eq. (9) we have: 

grad g ( R )  
,-iPoR 

= -(1 +j&R)- “j - r (u ,  u,w>] 4 r R 3  
(13) 

If, however, the resultant potentials, A(J) and 
WJ), are first expressed by summation of the 
partial potentials in eqs. (7) analogous to that in 
eq. (lo), and then the relation E = - j o A  - 
grad <D is utilized, the local Ohm’s law results in: 

J 
- +jwA(J)  + grad[NJ)] = Ei (14) 
ok 

This equation represents the two-potential inte- 
gral equation (TPIE). 

The integral kernels of the TPIE, eq. (14), 
contain the singularity of the lowest possible or- 
der, i.e., of the form 1/R, and is therefore very 
convenient from the numerical point of view. On 
the other hand, it is necessary to perform numeri- 
cal differentiation in evaluating grad @. We shall 
later see that, with the solution methods that 
imply additional integration of eq. (141, this nu- 
merical differentiation can be avoided. The EFIE 
in eq. (12), however, has integral kernels contain- 
ing the factor R/R3 [see eq. (13)l. This makes the 
corresponding numerical integration more diffi- 
cult than in the case of the TPIE. 

ENTIRE-DOMAIN POLYNOMIAL 
APPROXIMATIONS OF VOLUME 
CURRENT DISTRIBUTION 

Approximation of Total Current - Density 
Vector 

Let the function J, in an arbitrary trilinear hexa- 
hedron in the geometrical model of a scatterer be 

represented as in eq. (6). We approximate the 
unknown function dI,/(du dw) by the entire- 
domain, three-dimensional power series (poly- 
nomial) in local coordinates: 

where Nu, Nu, and N, are the degrees of the 
polynomial that can be adopted arbitrarily, and 
aui jk ,  aui jk ,  and awijk are unknown complex co- 
efficients to be determined. The expansions anal- 
ogous to those in eqs. (6) and (15) are adopted for 
the components J ,  and J,. We adopt power basis 
functions because, on the one hand, they are 
quite simple and allow for rapid evaluation. On 
the other hand, they are very flexible, so that with 
a relatively low degree polynomial it is possible to 
approximate accurately quite diverse functions. 

Few comments about the boundary condition 
for the normal component of the total current- 
density vector, J, may be useful at this point. 
Namely, if J is treated as unknown in the adop- 
ted integral equation, the total (polarization and 
free) surface charge density, ps, at the boundary 
surface between any two adjacent trilinear hexa- 
hedrons is evaluated for each hexahedron sepa- 
rately, as p, = - ( j / w ) n  * J [see eq. (7b)l. There- 
fore, the trilinear hexahedrons are totally inde- 
pendent entities, so that in a geometrical model 
they can be positioned and interconnected arbi- 
trarily. On the other hand, because the condition 
ps = 0 at the surfaces shared by hexahedrons 
having the same electrical properties is satisfied 
only numerically, theoretically nonexistent sur- 
face charges may result from an inaccurate nu- 
merical solution of a problem. For example, for a 
model composed of trilinear hexahedrons in the 
form of small cubes of the same dielectric, and 
zero-degree polynomials (Nu = Nu = N, = 0) 
used for the approximation of current inside them, 
physically nonexistent surface charges must ap- 
pear at boundary surfaces- otherwise, current 
density in all the small cubes would be the same. 
These surface charges may cancel one another to 
a significant degree, and thus may have negligible 
influence on the far field. Most frequently, how- 
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ever, their existence significantly impairs the ac- 
curacy of the field inside the small cubes and in 
their immediate vicinity. 

Approximation of Equivalent Electric 
Displacement Vector 
Alternatively, it is possible to substitute J as the 
unknown in volume integral equations by the 
equivalent electric displacement vector, defined 
by: 

where E, and K are the equivalent complex per- 
mittivity and electric contrast of the dielectric, 
respectively. The normal component of D is con- 
tinuous at boundary surfaces between different 
dielectrics. Let us consider only the u-component 
of D, D, = D,i,, in a trilinear hexahedron. The 
function D, we initially represent in the same 
manner as J, [see eq. (611: 

'*' (17) 
1 

D, = 
ecew sin au, sin C Y ( ~ , ~ ) ,  dv dw 

dT, being the inward flux of vector D, through 
the side of the infinitesimal prism from Figure 2 
denoted by u. Next, we approximate the function 
d*,/(dv dw) by the following series: 

rlw N,' NL 

The starting and end local coordinates are 
adopted to be u1 = u1 = w1 = -1 and u2 = u2 
= w 2  = 1 in each trilinear hexahedron of the 
model. 

The expansion defined by eqs. (17)-(18) repre- 
sents three-dimensional entire-domain polyno- 
mial series with unknown complex coefficients 
buijk, that satisfies automatically the continuity 
condition for the normal component of vector D 
on the surfaces shared by adjacent trilinear hexa- 
hedrons in the geometrical model of an arbitrary 
dielectric scatterer. Let us make this evident. It 
can be shown that the continuity condition for 
vector D,,,, on a boundary surface of two hexa- 
hedrons reduces to the condition of equality of 
the values of function d*,/(dvdw) on the two 
sides of that surface. The basis functions (1 - 
u)vjwk (for i = 0) and (1 + u)ujwk (for i = 1) in 
an arbitrary hexahedron serve for adjusting that 
condition on the side u = - 1 and u = 1, respec- 
tively, while the remaining basis functions (for 
i 2 2) serve for improving the approximation of 
the function D,, as illustrated in Figure 3 for the 
chain of three trilinear hexahedrons. In doing 
this, (N: + 1XN; + 1) coefficients, buojk (for i = 

01, and (N: + lXN," + 1) coefficients, buljk (for 
i = 11, in any hexahedron are the same as the 
corresponding coefficie$ts in adjacent hexahe- 
drons; i.e., a certain number of coefficients are 
the same for any two adjacent hexahedrons. In 
this manner the number of unknown coefficients 
for a problem, in general, is reduced significantly. 
Of course, as the vector D in the air is not 
considered unknown, functions (1 f u)ujwk on 
the boundary surface of a hexahedron and air do 
not have their match. Finally, the polynomial 
degrees Nu, Nu, and N, in eq. (18) can be adopted 
for every hexahedron separately, while N,' repre- 
sents the smaller value of Nu for two adjacent 
hexahedrons on the corresponding shared side, 
and analogous explanations hold for A$, N:, and 

Obviously, the geometrical model of a dielec- 
tric scatterer has to be constructed in a way which 
guarantees that each boundary surface between 
two adjacent trilinear hexahedrons over which we 
want to (automatically) adjust the boundary con- 
dition for D,,,, is shared entirely by both of 
them. This is a simple task, because every side of 
a trilinear hexahedron is defined uniquely by its 
four vertices, which can be positioned in space 
completely arbitrarily. 

In addition to the reduction in the number of 
unknowns, the use of the approximation defined 
by eqs. (17)-(18) results in increased accuracy 
and stability of the results, and prevents fictitious 
surface charges to appear in the numerical solu- 
tion on the surfaces shared by any two hexahe- 

N," . 
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, I , 
I , 

hexahedron @ j hexahedron @ hexahedron @ i I I 

0 

-1 
i = 2,4,6 

Figure 3. First eight basis functions in coordinate u defined in eq. (18), for u = w = 1. 

drons made of the same dielectric. On the other 
hand, the solution with vector D as the unknown 
is mathematically much more complicated, and, 
in some cases, numerically less advantageous than 
if J is used instead (with the current approxima- 
tion proposed earlier). This will be demonstrated 
by corresponding numerical examples later in this 
study. 

TEST PROCEDURES 

Point-Matching Method 

The simplest test procedure (i.e., the procedure 
for determining the current-distribution coeffi- 
cients, [ a ]  or [bl) is the point-matching method 
[2]. In our case, the position vectors of matching 
points are given by rW), dS), w(')), where 
du, u,  w) is defined in eq. (2) and p ,  s, and t are 
the corresponding indices. In the basic version of 
the point-matching method we shall adopt match- 
ing points to be equidistant along each local 
coordinate in a trilinear hexahedron: 

with the starting and endpoints being at a dis- 
tance, e ,  Su, from the corresponding hexahedron 
sides, where e ,  is the Lam6 coefficient, and Su is 

given by: 

(20) 

We adopt the distributions of matching points 
along u- and w-coordinates in an analogous man- 
ner. As a rule, the parameter 7 should be adopted 
as small as possible (7 e 11, with the intention to 
incorporate the field components at points close 
to boundary surfaces; i.e., the field components 
that enter the boundary conditions, into the re- 
sulting system of linear equations. In the case of 
only one matching point along the u-coordinate 
(e.g., if Nu = O), we adopt do) = (u l  + u,)/2. 

Equidistant matching points may not be the 
best choice. For example, if in reality there is a 
rapid variation of the unknown quantity between 
two matching points, this may not be reflected 
properly in the solution if no matching points are 
adopted in that region. Unfortunately, we rarely 
know the solution even vaguely. Therefore, it is of 
interest to solve a problem with a set of 
nonequidistant matching points. There is an infi- 
nite number of possibilities for such a set. With 
the intention to sample more accurately the field 
close to hexahedron sides, as the set of 
nonequidistant matching points we adopt their 
distribution according to the arguments of the 
Gauss-Legendre integration (quadrature) for- 
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mula. In that case we have: 

where ( x G I p + ,  ( p  = 0,1, ..., Nu) are the argu- 
ments of the Gauss-Legendre formula of order 
NG = Nu + 1; i.e., the zeros of the corresponding 
Legendre polynomial. Analogous expressions hold 
for coordinates u(') and w@). 

In the case of approximation of vector D de- 
fined by eqs. (17)-(18), pairs of matching points 
are formed on the two sides of a boundary sur- 
face between adjacent trilinear hexahedrons, and 
the normal local field components at these points 
are added up. This is necessary because the cor- 
responding number of coefficients [bl is the same 
for each pair of adjacent hexahedrons. 

After some transformations it can be shown 
that the electric-field vector and the potentials, 
due to currents and charges inside the adopted 
model of a dielectric scatterer, needed in the 
point-matching solution with both forms of the 
polynomial current approximation as well as with 
both integral equations, are linear combinations 
of four basic types of integrals. The integrands in 
these integrals are three- or two-dimensional 
power functions multiplied by Green's function or 
its gradient, and the integration is performed over 
the volume of a trilinear hexahedron (Fig. 1) or 
over its side. According to the combined analyti- 
cal/numerical integration procedures that have 
been developed for the evaluation of the basic 
types of integrals [7], for points inside the trilin- 
ear hexahedron or close to its surface the princi- 
pal parts of the integrals are extracted and inte- 
grated analytically, while the individual numerical 
integrations were performed by the multiple 
Gauss-Legendre integration formula. This for- 
mula in conjunction with the polynomial basis 
functions enables very rapid recursive evaluation 
of multiple integrals. 

Galerkin Method 
If the Galerkin method [2] is adopted, however, 
the EFIE in eq. (12) results in the following 
equation: 

where (f,, E) is the inner scalar product over the 
volume V, of the mth trilinear hexahedron in 
the geometrical model of the scatterer, and f, 

is the weighting (testing) function defined in that 
hexahedron. Of course, in a Galerkin method, the 
weighting functions are the same as the basis 
functions defined earlier. 

On the other hand, the Galerkin method with 
the TPIE in eq. (14) results in an equation analo- 
gous to eq. (221, which contains the term 
(f,, grad[ @(J)]>. To avoid numerical differentia- 
tion implied in grad@, this term can be trans- 
formed by expanding div(f,@) and applying the 
divergence theorem. By doing this we obtain: 

where S, is the boundary surface of the mth 
trilinear hexahedron and dS, is directed outward 
with respect to th domain V,. After some alge- 
braic transformations, the corresponding general- 
ized impedances (i.e., the system-matrix elements) 
can be represented in the following form: 

x ( F g ) , (  F g ) a  durn durn dw, 

X A',") du, dv, dw, 

where Z:;') corresponds to the u-component of 
the testing function f i n  the mth hexahedron and 
the u component of J or D in the ath one. F 
denotes an arbitrary term of the testing series in 
eq. (15)-in the case of approximation of J, 
namely of that in eq. (18)-if D is treated as an 
unknown quantity. In addition, T~ designates u,, 
namely E,, in the case of approximation of J, 
namely D, respectively. Finally, A',") and rep- 
resent the potentials due to current distribution 
(and the corresponding charge distributions) re- 



lated to the individual basis functions defined in 
eq. (151, i.e. eq. (18) (in the nth hexahedron). 
They are evaluated on the basis of eqs. (7). The 
corresponding integration procedures have been 
very briefly discussed in the previous subsection. 

When using testing and basis functions given 
in eq. (18), aimed at automatically satisfying the 
continuity condition for D,,,, on the surfaces 
shared by adjacent trilinear hexahedrons, certain 
impedances Z:;"), evaluated on the basis of eq. 
(24), are added together with the corresponding 
impedances which relate to the hexahedrons adja- 
cent either to the mth or to the nth hexahedron. 

Finally, by solving the resulting system of lin- 
ear algebraic equations we find the Nu, unknown 
complex coefficients [a ]  or [bl. In this article, the 
Gauss elimination procedure is adopted for that 
purpose, with both test procedures outlined in 
this section. Once this has been completed, all 
the quantities of interest can be evaluated di- 
rectly. 

FOUR SPECIFIC METHODS BASED ON 

APPROACH FOR ANALYSIS OF 
DIELECTRIC SCATTERERS 

THE GENERAL ENTIRE-DOMAIN 

On the basis of the general theory outlined in the 
previous sections, the following four independ- 
ent entire-domain methods have been developed 
for the analysis of inhomogeneous dielectric 
scatterers: 

The point-matching method for solving the 
EFIE, eq. (121, with the current density 
vector, J, as the unknown. We shall refer to 
this method briefly as to the PEJ method. 
The Galerkin method for solving the TPIE, 
eq. (141, with the current density vector, J, 
as the unknown (the GPJ method). 
The point-matching method for solving the 
EFIE, eq. (12), with the equivalent electric 
displacement vector, D, as the unknown (the 
PED method). 
The Galerkin method for solving the TPIE, 
eq. (141, with the equivalent electric dis- 
placement vector, D, as the unknown (the 
GPD method). 

As explained, the basis functions adopted for the 
approximation of the current-density vector are 
given in eq. (151, and those for the approximation 
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of the equivalent electric displacement vector in 
eq. (18). In all four methods, the scatterer is 
approximated by trilinear hexahedrons. 

Four accompanying computer programs have 
been completed, enabling four independent 
methods of numerical analysis of dielectric scat- 
terers. Numerical results presented in the next 
section were obtained using these programs. 

NUMERICAL RESULTS AND 
DISCUSSION 

All numerical results obtained by the four pro- 
posed methods have been obtained on a PC- 
486/66 MHz (8-MB DRAM). The programs were 
written in Lahey F77L-EM/32 Fortran 77. For 
scatterers with curved surfaces, the geometrical 
model was always constructed so that the surface 
of the model approximated the scatterer surface 
in the best possible manner, with the condition 
that the volume of the model and the volume of 
the scatterer were the same. Symmetry was not 
utilized in any example. 

The most critical quantity in the analysis of 
dielectric scatterers is certainly the total electric 
field inside it. If it is accurate, the scattered field 
will certainly be accurate. This is why in practi- 
cally all examples which follow particular atten- 
tion was paid to the total electric field inside the 
scatterer. 

As the first example, consider a homogeneous 
lossless dielectric cube of relative permittivity 
E, = 4, illuminated by a plane wave of electric 
field strength Ei = 1 exp(-jp,z)i, V/m (Fig. 4). 
Let the length of the cube edge be a = A, = 2Ad, 
where Ad represents the wavelength in the dielec- 
tric. Shown in Figure 5 is the distribution of the 
x-component of the total electric field, Etot, inside 
the cube, along the x-axis, obtained by the four 
methods. The authors could not find any reliable 
results for the electric field inside a cubic dielec- 
tric scatterer. 

The cube was represented exactly by a single 
trilinear hexahedron (Nel = 1). In all four meth- 
ods it was assumed that Nu = Nu = N, = 4, which 
resulted in Nun = 375 unknowns. In the PEJ and 
PED methods, matching points were adopted ac- 
cording to the arguments of the Gauss-Legendre 
integration formula, eq. (21). Excellent agreement 
among the four sets of results can be observed. 
All the four methods required Tsys = 55 s for the 
solution of the resulting system of equations, and 
the field evaluation for Figure 5 and other output 
computations needed about 2 s. The matrix fill 
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Figure 4. A homogeneous dielectric cube in an incident, linearly polarized plane wave. The 
origin is at the cube center. 

times, including all operations preceding them, 
were as follows: (TmatIPEJ = 42.45 s, (TmatIGPJ = 

49.16 s, (TmatIPED = 45.53 s, and (TmatIGPD = 
54.21 s. As expected, the matrix fill time for the 
two Galerkin-based methods is somewhat longer 

than for the two point-matching methods, and 
additional time is needed in the case of more 
complex basis functions used for the approxima- 
tion of vector D. Note, however, that the differ- 
ences in the matrix fill times are actually surpris- 

r I I I I I I I I I 1 

0.6 

E 
2 0.4 

0.2 

0.0 I I I I I I I I I I 

-0.5 - 0 . 3  -0.1 0.1 0 .3  0 . 5  
x/ a 

Figure 5. Distribution of magnitude of the x-component of the total electric field, E,,, 
inside the cube in Figure 4, for = 4, a = A, = 2h,, and Ei, = 1 V/m, along the x-axis. 
( ) PEJ method; (0) GPJ method; (--) PED method; - GPD method. 
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ingly small if one has in mind that the Galerkin 
method requires another (volume or surface) in- 
tegration. This is due to extremely efficient inte- 
gration of the Galerkin integrals in the general- 
ized impedances in eq. (24) [71. 

Contrary to the results for the inner field, a 
number of results can be found in the literature 
for the far scattered field of a dielectric cube. The 
next example deals with the far scattered field of 
a dielectric cube, Figure 4, with E, = 4 and a = 
A,/5 = 2A,/5 (electrically small cube). Shown in 
Figure 6 are the results for the far scattered field 
obtained by the GPD method in two characteris- 
tic planes, normalized with respect to the maxi- 
mal value of that field. The results obtained by 
the other three methods are practically the same 
and are not shown. The adopted degrees of ap- 
proximation were Nu = N, = N, = 2. The num- 
ber of unknowns amounted to only Nu, = 81, and 
the total computing time to T',, = 5.48 s. These 
results are compared with those obtained by a 
subdomain method, 3D pulse approximations of 
vector J in 512 small cubes (1536 unknowns), and 
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point-matching solution of the TPIE, in which 
grad 4, was evaluated by finite differences [8]. 
Figure 6 shows excellent agreement of the two 
sets of results, in spite of the number of un- 
knowns in the proposed entire-domain method 
being almost 20 times less than in the subdomain 
method of ref. 8. 

Illustrated in Figure 7a is the cross-section of a 
sphere consisting of two homogeneous lossless 
dielectric half-spheres of relative permittivity 
q1 = 8 and E , ~  = 4. Let the electric field vector 
of the incident wave be Ei = 1 exp( -j&z)i, 
V/m, and the sphere diameter d = 2a = A, = 
2.343(Ad),,, where (A,),, = (Adl + Ad2)/2. Each 
half-sphere in Figure 7a is approximated by one 
trilinear hexahedron, as shown in Figure 7b, so 
that N,, = 2. The same degrees of approximation 
were adopted in the four methods, Nu = N, = N, 
= 3, in both hexahedrons. Matching points were 
adopted according to the arguments of the 
Gauss-Legendre integration formula. In the PEJ 
and GPJ methods, in which the unknown is vector 
J, the total number of unknowns amounted to 

I 1 1 l 1 l l I 1 I I I I I I ~ ~  

0 20 40 60 80 100 120 140 160 180 

0 , degrees 

Figure 6. Normalized far scattered field, 20 log(E/E,,(, of a homogeneous dielectric cube 
described in caption to Figure 5, of side length a = A,/5 = 2h,/5, versus 0, in planes 
C$ = 0" and C$ = 90". (-) GPD method, 81 unknowns; (000) method from ref. 8, 1536 
unknowns. 
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U 

(a) (b) 

Figure 7. A sphere consisting of two homogeneous hemispheres, in an incident plane wave. 
(a) Cross-section of the sphere. (b) Model of the sphere consisting of two trilinear 
hexahedrons; r, = (0.4678a, - 1.0226a, -0.4678~) and rg = (0.9354a, 0.0, -0.9354a). 

Nun = 384, while in the other two methods i t  
amounted to Nu, = 368. 

Illustrated in Figure 8a is the distribution of 
the y-component of the total inner electric field, 
l(Etot)y[, along the y-axis, obtained by the four 
methods, showing good agreement of the four 
sets of results. Note that the results obtained by 
the point-matching method on one side, and those 
obtained by the Galerkin method on the other 
side, are in excellent agreement, but that the two 
sets of results differ to some extent. It is quite 
likely that those obtained by the Galerkin method 
are more accurate, due to another integration, 
but the other results are also of acceptable 
accuracy. 

Let us concentrate our attention to the field 
values in the vicinity of the point y = 0 in Figure 
8a. This part of the figure is shown magnified in 
Figure 8b. In the PED and GPD methods, irre- 
spective of the overall quality of the solution, the 
boundary condition I(&,, ~ y ~ O ~ ) l / l ~ E t o , ~ , , ~ O  ')I = 
4/8 = 0.5 is satisfied exactly, being equivalent to 
the condition Dnorm(O-) = Dn,,,(O+) satisfied by 
all matching pairs of basis functions. It is seen 
from Figure 8b that the solutions obtained by the 
other two methods satisfy this boundary condition 
very well, despite that it was not enforced, but 
followed from the numerical solution. Evidently, 
this shows very good approximation of current 
and charge distribution. 

As the next example, consider a rodlike scat- 
terer of length I = 24,  = 4.739Xd, of square 
cross-section of area X&'l00, made of a homoge- 
neous lossy dielectric of complex permittivity 
E,, = 4 - j 6  (Fig. 9). Let the incident electric 
field be Ei = 1 exp( - j  p0z)i, V/m. Figure 10 
shows the distribution of the total inner electric 
field, Etot, along the scatterer long axis. The re- 
sults given are obtained by two methods which 
show the largest difference, the PEJ and the GPD 
methods. In all cases, it was assumed that N,, = 1; 
i.e., the rod was considered as a single tetrahe- 
dron. 

In the GPD method, it was assumed that Nu = 
8 and N ,  = N, = 1. This resulted in Nun = 108 
and T,,, = 10.99 s. The PEJ method was tested in 
the following six forms: 

1. Matching points distributed according to eq. 
(20, Nu = N, = 0 and N,, = 8. This re- 
sulted in Nun = 27 and T,,, = 1.15 s (PEJ1). 

2. Matching points, N,, and N, as in form 1, 
and Nu = 12. This resulted in Nun = 39 
(PEJ2). 

3. Matching points distributed along the scat- 
terer axis according to eq. (191, with Nu = 

12, N ,  = N, = 0 and 7 = 0.01 in eq. (20) 
(PEJ3). 

4. Same as form 3, with Nu = 8, Nu = N, = 1, 
and 7 = 0.01 (PEJ4). 
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Figure 8. (a) Distribution of the total electric field inside the sphere in Figure 7, with 
= 8, cr2 = 4, d = 20 = A,, and Ei = 1 exp( -j/3,z)iY V/m, along the y-axis. (b) Detail 

of (a) at y = 0. ( 0 )  PEJ method; (0) GPJ method; (--) PED method; - GPD method. 

5. Same as form 4, with 77 = 0.001 (PEJ5). 
6. Same as form 4, with 

Figure 10 shows good agreement between the 
results obtained by the GPD method and those 

obtained by forms (l), (31, and (6) of the PEJ 
method. The results obtained by form 2 of the 
PEJ method, however, are meaningless. This is 
very likely the consequence of some of the Nu + 
1 = 13 matching points, distributed according to 

= 0.1 (PEJ6). 
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Figure 9. A rodlike homogeneous lossy dielectric scatterer of square cross-section. 

eq. (21), being very close, so that the resulting 
system of linear equations is highly unstable. The 
results obtained by forms 4 and 5 of the PEJ 
method have relatively large discrepancies in lo- 
cal field values close to scatterer ends. This could 
probably be explained by matching points not 
being along the scatterer axis (as when N,. = N, = 

O), but being very close (7 = 0.01 or 0.001) to the 
edges and vertices of the scatterer, where the 
electric field varies very rapidly. On the other 
hand, in form 3 of the PEJ method (Nu = N, = 0) 
the choice of the parameter, 7, in the range 
0 < 7 I 0.1 was found to have practically no 
influence on the results. 

1.0 

0.8  

0.6 

0 .4  

0.2 

0.0 ' I I I I I I I I I 

-0.5 -0.3 -0. I 0.1 0.3 0.5 
x/ 1 

Figure 10. Distribution of the total inner electric field, E,,,, along the long axis of the 
rodlike scatterer in Figure 9, with 1 = 2h, = 4.739hd, a = &/lo, E,, = 1 V/m, and 
-zer = 4 - j6. (-----) GPD; (-1 PEJ1; ( ... ... 1 PEJ2; (0 0 0) PEJ3; (---I PEJ4; (--I 
PEJS; (U 0 0) PEJ6. 
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Consequently, the distribution of matching 
points according to eq. (21) in the case of high 
orders of approximation leads to unstable results, 
whereas for equidistant matching points and 
nonzero order of approximations the results de- 
pend on parameter 77. Of course, such problems 
are not present with the Galerkin method. Fi- 
nally, this example shows a deficiency of the two 
methods in which the unknown is vector D. 
Namely, the minimal order of polynomial approx- 
imation of vector D, defined earlier, is 1, so that it 
was not possible to adopt Nu = N, = 0 along 
electrically very short edges of the rod scatterer. 
This resulted in an unnecessarily large total num- 
ber of unknowns (Nun = 108) in the application 
of the GPD method. 

As an example of rapid convergence of the 
results, consider again the total field inside the 
scatterer from Figure 9, but with the degree Nu of 
the polynomial approximation along the scatterer 
axis as the parameter. Acceptable results were 
obtained with Nu as low as 4, and the results for 
Nu = 6 and those for Nu = 8 were practically the 
same. Note that the rodlike scatterer analyzed is 
of medium electrical length (I = 4.739hd). Similar 
convergence properties were found in all other 
cases considered. 

a 

Figure 11. 
wave. 

Consider next a cube of edge length a = 0.5h0, 
consisting of four homogeneous parts of equiva- 
lent relative complex permittivities E , , ~  = 2.5 + 
j0, cerZ = 5 + j0, cer3 = 3 - j4, and ser4 = 8 - j 6  
(Fig. 11). The cube is situated in the field of an 
incident plane wave of electric field E, = 

1 exp( - j Po z)i, V/m. Figure 12 shows the distri- 
bution of real part, imaginary part, and modulus 
of the x-component of the vector E,,, along the 
x-axis. Every homogeneous part of the cube is 
represented by one hexahedron (Nel = 41, and it 
was assumed that Nu = N,,, = 4 in all of them. 
The results were obtained in four ways: (1) by the 
GPD method with Nu = 1 in all the elements 
(Nun = 525, T,,, = 320.76 s); (2) by the GPJ 
method with Nu = 1 (Nun = 600); (3) by the GPJ 
method with Nu = 0 (Nun = 300); and (4) by the 
application of a specific form of the GPD method 
which results in Nu, = 240 and T,,, = 142.92 s. In 
the latter case, Nu = 1 was adopted, but the or- 
ders of approximation for individual components 
of the vector D in transversal directions (with 
respect to the direction of that component) were 
reduced for AN,,,, = 1. Thus, for example, the 
terms of the highest order in the expansion for 
the Du-component are proportional to (1 f 
u)u3w3, whereas the expansion for the D,-compo- 

t "  Y 

/ / 

A dielectric cube consisting of four homogeneous parts in the field of a plane 
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Figure 12. Distribution of the total inner electric field, (E,,,), along x-axis, for dielectric 
cube from Figure 11, with a = OSA,,  E , , ~  = 2.5 + j0, E , , ~  = 5 + j0,  E , , ~  = 3 - j4, E , , ~  = 8 
- j 6 ,  and EL, = 1 V/m. (-1 GPD method, Nu = 1, Nu, = 525; (---> GPJ method, 
Nu = 1, Nun = 600; (... GPJ method, Nu = 0, Nu, = 300; (000) GPD method 
(AM,,,  = l), Mu = 1, Nu, = 240. 

nents contains the highest-order term of the form 
u"(u4 - 1)w3 [see eq. (1811. 

Figure 12 shows good agreement of the sets of 
the results (l), (21, and (4). Note that the number 
of unknowns in result (2) is greater than in result 
(1) for about 14% because there are no common 
terms in adjacent volume elements. Note also 
that, by adopting AN,,,, = 1 in result (41, the 
total number of unknowns is more than halved 
with respect to result (11, and the total computing 
time is reduced for more than 50%. On the other 
hand, result (31, obtained with piecewise constant 
approximation of vector J along the x-axis, at 
some points differs considerably from findings 
obtained with piecewise linear approximation, al- 
though qualitatively they are not so much in 
error. 

It is of interest to check the degree of fulfill- 
ment of the boundary condition for vector 
(E,E,,,),,,, in planes x = -0.25a, x = 0, and 
x = 0.25~ in Figure 11. The exact ratios of the 
complex vector intensities are ( 2  + j O ) ,  (0.6 - 
j0.2) and (1.92 + j0.56), respectively. The corre- 
sponding numerically obtained ratios are: (2 + j O ) ,  
(0.6 - jO.81, and (1.92 + j0.56) for results (1) and 
(4); (1.755 + j0.04527), (0.7532 - j0.7309), and 

(1.893 +jO.2667) for result (2); and (0.6748 + 
j0.66161, (0.6206 - J0.3793, and (3.573 + j0.9220) 
for result (3). Of course, the boundary conditions 
in results (1) and (4), where the unknown is vector 
D, are satisfied exactly. The boundary conditions 
in result ( 3 ,  piecewise linear approximation of 
vector J, are satisfied with fair accuracy; whereas, 
in result (31, piecewise constant approximation of 
vector J, the results show large errors. 

As the last example, consider a thin elliptical 
disk of the shape shown in Figure 13 in dashed 
lines. Let the major and minor semiaxes of the 
ellipse be a = 0.64A0 and b = 0.32A0, and the 
disk thickness (normal to the plane of the figure) 
be d = 0.08A0. Assume that the electric field of 
the incident plane wave is E, = 1 exp[-jP,(x + 
z&)/2]i, V/m, and that the disk is made of a 
lossless, but inhomogeneous, dielectric of relative 
permittivity: 

2 d 
IzI I - (25) 2 

2 

(i) + (i) I 1, 
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Figure 13. Top view of a thin elliptical disk (---) and its approximation (-1 by trilinear 
hexahedrons. 

The elliptical disk is modeled quite accurately 
with only N,, = 4 trilinear hexahedrons, as indi- 
cated in Figure 13. The PEJ method is used for 
the analysis, with matching points according to 
eq. (21). It was assumed that Nu = 2, Nu = 4, and 
N, = 0 in all the four hexahedrons, which re- 
sulted in Nun = 180 and TI,, = 21.81 s. Note that 
all trilinear hexahedrons in the model contain 
continually inhomogeneous dielectrics. Figure 14 
shows the results for the normalized bistatic 
cross-section, Sbist/h& of the disk, in the planes 
4 = 0 and 4 = 180". These entire-domain results 
are compared with subdomain results from ref. 9, 
where the disk is approximated by a large number 
of small homogeneous parallelepipeds with a 3D 
pulse approximation of the field. The latter re- 
sults were multiplied by 0.5, because Su [9] appar- 
ently presented 20 log(Sbi,,/h2,) instead of the 
usual 10 log(S,,,,/A~). 

It is seen that, in the case of the inhomoge- 
neous dielectric disk from Figure 13, the pro- 
posed entire-domain method enabled the approx- 
imation of the disk by only four trilinear hexahe- 
drons containing a continuously inhomogeneous 
dielectric, while the subdomain approach re- 
quired very fine division of the disk into a large 
number of small elements with approximately 
constant permittivity. 

CONCLUSIONS 

A general entire-domain MOM approach and 
four independent methods within this approach 
are proposed for the analysis of lossy dielectric 
scatterers of arbitrary shape and inhomogeneity. 
The approach consists in solving a volume inte- 
gral equations using two basic steps: (1) the ap- 
proximation of the scatterer geometry by large 
trilinear hexahedrons; and (2) the approximation 
of the unknown vector function in the hexahe- 
drons by three-dimensional polynomials. The first 
two methods consider the total current density 
vector, J, as the unknown, approximated by sim- 
ple three-dimensional power series in three gen- 
erally nonorthogonal coordinates. In the other 
two methods, the equivalent electric displacement 
vector, D, is the unknown, approximated by spe- 
cific power series which automatically satisfy 
boundary conditions for the normal components 
of vector D at boundary surfaces of adjacent 
hexahedrons. The first and the third method solve 
the volume EFIE by point matching, and the 
second and the fourth the volume two-potential 
equation by the Galerkin method in which nu- 
merical differentiation is removed. 

In spite of the four methods being completely 
independent numerically, the results obtained by 
them, in most cases, are in excellent agreement. 
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Figure 14. Normalized bistatic cross-section, 10 log(S,,,,,/A~), of the inhomogeneous disk in 
Figure 13, of permittivity in eq. (25), versus 0, in planes 4 = 0” and 4 = 180”, for 
Ei = 1 exp[-j&(x + zJ?;)/2]i, V/m. (-1 PEJ method, N,, = 4, N,, = 180; (0.0) 
ref. 9. 

In addition, they are in excellent agreement with 
all available results of other authors (obtained by 
subdomain methods), in spite of requiring at least 
one order of magnitude fewer unknowns, with a 
correspondingly large reduction in computing 
time. Consequently, once the problem geometry 
has been adopted, the four methods seem to be a 
self-contained tool for validation of the results. 
Due to the small number of unknowns, surpris- 
ingly complex problems can be solved on standard 
personal computers. 

Although, of the four methods, some have 
advantages in solving specific problems, when 
solving other problems they may have deficien- 
cies. Therefore, none of them can be proclaimed 
as the best. Still, numerical results indicated that, 
in most cases, the Galerkin method used for 
solving the two-potential equation with vector D 
as the unknown could, on average, be considered 
as the most accurate, stable, and reliable. 

Finally, in the authors’ opinion, this article 
demonstrates that the entire-domain approach 
extends greatly the applicability of the moment- 
method solutions when compared with the subdo- 
main approach. Therefore, in spite of its relative 
mathematical and numerical complexity, it should 

not be considered a luxury. In our opinion, if we 
wish to promote the applicability of moment- 
method solutions to their extreme frontiers, the 
entire-domain approach is a necessity. 
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