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Abstract A new diakoptic method combining the finite-element method and the

method of moments is proposed for analysis of inhomogeneous anisotropic dielec-
tric and magnetic scatterers. The method splits the original electromagnetic system

into a number of closed-region finite-element method subsystems containing material
complexities and an open-region method of moments subsystem, which are analyzed

independently. The solution to the original problem is obtained from linear relations
between coefficients in expansions of equivalent electric and magnetic surface currents

on diakoptic boundary surfaces. Diakoptic electric sources and the magnetic field
in finite-element method subsystems are connected using dual sets of higher-order

hierarchical basis functions.

Keywords diakoptic analysis, domain decomposition, finite-element method, higher-
order modeling, numerical techniques, surface equivalence principle, scattering, inho-
mogeneous anisotropic materials

1. Introduction

The finite-element method (FEM) is, by its inherent features, especially suitable for

modeling and analysis of structures that contain inhomogeneous, complex electromag-

netic materials, and geometrical irregularities. The FEM is well established as a method

of choice for such applications, with the analysis of open-region scattering structures

being performed, truncating the FEM domain by a hybridization with the method of

moments (MoM) or by some sort of a boundary condition. On the other hand, one possible

general strategy aimed at extending the practical applicability of the FEM over its inherent

numerical limit and considerably enhancing its efficiency in real-world simulations is the

diakoptic approach (Olćan et al., 2006, 2007, 2008a, 2008b, 2010; Manić et al., 2012b,
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Higher-Order FEM-MoM-Diakoptic Method 223

2013), according to which the solution of a large and complex electromagnetic system is

found as a linear combination of solutions of diakoptic subsystems, using explicit linear

relations between coefficients in expansions of equivalent electric and magnetic surface

currents on boundary surfaces of subsystems.

The diakoptic analysis of electromagnetic systems is formally similar to the diakoptic

approach in circuit theory (Kron, 1963). However, the present diakoptic analysis is based

on the surface equivalence principle and operates with coefficients in expansions of

surface electric and magnetic currents and volume electromagnetic fields. The diakoptic

analysis also belongs to the class of domain decomposition methods (Lee et al., 2005;

Li & Jin, 2007; Zhao et al., 2008; Ilić & Notaroš, 2009). However, diakoptics explicitly

takes into account linear relations between coefficients of the equivalent surface current

expansions, with each electromagnetic subsystem being represented by linear relations

written in the form of matrices. In addition, the diakoptic approach uses a direct solution

of the diakoptic linear system of equations.

This article presents a new FEM-MoM-diakoptic method for analysis of inhomo-

geneous anisotropic dielectric and magnetic scatterers in the frequency domain as a

continuation of the work in Manić et al. (2012b, 2013) and Olćan et al. (2006, 2007,

2008a, 2008b, 2010). The method splits the original electromagnetic system into a

number of closed-region subsystems containing material complexities, analyzed by an

FEM technique (FEM diakoptic subsystems), and an open-region subsystem enclosing

the FEM subsystems, analyzed by an MoM technique (MoM diakoptic subsystem). Each

of the subsystems is analyzed completely independently, applying FEM or MoM solvers

to obtain linear relations between coefficients in the expansions of equivalent electric and

magnetic surface currents on the boundary surface of each subsystem (diakoptic surfaces).

In the final system of equations, the only unknowns are the expansion coefficients on

diakoptic surfaces.

The method implements Lagrange-type generalized curved parametric hexahedral

finite elements of arbitrary geometrical-mapping orders, filled with inhomogeneous aniso-

tropic materials with continuous spatial variations of complex relative permittivity and

permeability tensors described by Lagrange interpolation polynomials of arbitrary mate-

rial-representation orders. Curl-conforming hierarchical polynomial vector basis functions

of arbitrary field-expansion orders are used for the approximation of the electric field

vector within the finite elements, while divergence-conforming higher-order vector bases

on generalized curved parametric quadrilaterals are implemented for diakoptic surfaces.

Furthermore, the connection between the diakoptic electric sources and the magnetic

field in the FEM subsystems is enforced using dual sets of higher-order basis func-

tions explicitly satisfying the natural relation between curl-conforming and divergence-

conforming quantities when closing the FEM domain by a boundary surface with fictitious

equivalent surface currents. Finally, this diakoptic method inherently allows touching of

the subsystems; i.e., the subsystems can share a common diakoptic boundary—without

requirements for introduction of additional basis functions. Note that, theoretically, the

diakoptic surfaces can be anywhere: away from the scatterers, at the boundary of a

scatterer, or even crossing the volume of a scatterer.

The rest of this article is organized as follows. Section 2 presents the theory of the

FEM-MoM-diakoptic method for analysis of inhomogeneous anisotropic dielectric and

magnetic scatterers, starting with the surface equivalence principle, and deriving linear re-

lations between diakoptic coefficients and representing electromagnetic subsystems by di-

akoptic matrices. It also presents the implementation of the method based on a magnetic-

field FEM diakoptic formulation and double-higher-order numerical discretization. In
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224 A. B. Manić et al.

Section 3, the proposed diakoptic method is validated in several characteristic scattering

examples.

2. FEM-MoM-Diakoptic Method for Inhomogeneous
Anisotropic Scatterers

2.1. Theory of FEM-MoM-Diakoptics for Scattering Analysis

The diakoptic method is based on the surface equivalence principle (Kolundžija &

Djordjević, 2002; Harrington, 2001). For instance, consider an arbitrary closed surface

S , as shown in Figure 1(a), which divides the original electromagnetic system into two

regions, with sources of electromagnetic fields (e.g., lumped generators or incident fields

in the system) assumed to exist in both regions. Employing the surface equivalence

principle, equivalent sources are placed at each side of the boundary S (in each of the

regions) and are chosen so that the electric and magnetic fields generated by the sources

inside each individual region remain the same as in the original system, while the fields

in the other region are annulled, as illustrated in Figures 1(b) and 1(c). For the inner

region (reg 1), the densities of equivalent electric and magnetic surface currents are given

by Jreg1
e D n � H1S and M

reg1
e D �n � E1S , where n denotes the inward looking

unit normal on S , and E1S and H1S stand for the electric and magnetic field vectors,

respectively, on the inner side of S in the original system in Figure 1(a). The equivalent

sources for the outer region (reg 2) are obtained in an analogous fashion. Applying

the tangential continuity conditions for the fields in the original system, the following

relations between equivalent sources for the two regions are obtained:

Jreg1
e D �Jreg2

e and Mreg1
e D �Mreg 2

e ; (1)

which will later be used explicitly to connect unknown variables in the diakoptic method.

Next, the example depicted in Figure 2 is used to describe the implementation of

the diakoptic analysis combining FEM and MoM solvers. The diakoptic approach starts

with subdividing the original electromagnetic system into a number of arbitrary non-

overlapping subsystems, as shown in Figure 2(a), where the so-called diakoptic boundary

is the surface enclosing different subsystems and, in general, containing a number of

disconnected closed surfaces. In the present method, an FEM technique is used for the

Figure 1. Illustration of the surface equivalence principle as the theoretical foundation of the FEM-
MoM-diakoptic method: (a) original electromagnetic system, (b) equivalent problem for interior
region, and (c) equivalent problem for exterior region.
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Higher-Order FEM-MoM-Diakoptic Method 225

Figure 2. Application of FEM-MoM-diakoptic technique for scattering analysis: (a) original
electromagnetic system split into NFEM C1 parts (subsystems), (b) NFEM closed-region subsystems
containing material complexities analyzed by FEM technique (FEM diakoptic subsystems), and
(c) an open-region subsystem analyzed by MoM technique (MoM diakoptic subsystem).

analysis of each of the closed-region subsystems (NFEM FEM subsystems), as indicated

in Figure 2(b), while the open-region subsystem, shown in Figure 2(c), is analyzed

invoking an MoM technique (MoM subsystem). Second, the diakoptic boundary is used

as an interface between the FEM and MoM domains (subsystems) employing the surface

equivalence principle (Figure 1) and allowing each of the subsystems to be independently

analyzed and then connected back together through relations in Eq. (1). Consequently,

when implementing the diakoptic approach using FEM and MoM solvers, the unknowns,

in general, are (i) distributions of electric and magnetic fields of intensities E and H in

the FEM regions and (ii) distributions of equivalent surface electric and magnetic currents

of densities Je and Me at the diakoptic boundary.

Let the total number of unknown coefficients for the approximation of E and H,

placed in column-matrices Œe� and Œh�, respectively, for all FEM subsystems be N FEM
tot D

N e
tot C N h

tot, where N e
tot D

PNFEM

iD1 N e
i and N h

tot D
PNFEM

iD1 N h
i are the total numbers of

coefficients in Œe� and Œh�, and N e
i and N h

i are the respective numbers of coefficients for

the i th FEM subsystem. In addition, there are 2D unknowns for the approximation of Je

and Me at the diakoptic boundary (the union of NFEM disconnected boundary surfaces

in Figure 2(b)), namely, D coefficients for Je in the column-matrix Œje� and the same

number of coefficients for Me in Œme�, where D D
PNFEM

iD1 Di , with Di being the number

of diakoptic coefficients associated with the i th FEM subsystem (i D 1; 2; : : : ; NFEM). It

is essential that the column-matrices Œje� and Œme� are of the same dimensions.

Based on the linearity of the electromagnetic system in Figure 2(a), the objective

of the diakoptic analysis of each of the subsystems in Figures 2(b) and 2(c) is to define

linear relations between electric and magnetic diakoptic sources belonging to the diakoptic

boundary of the subsystem in the following form:

Œjek� D ŒYk�Œmek� C Œjek �0; k D 1; 2; (2)

where k D 1 denotes the inner side (FEM side) of the union of all disconnected diakoptic

subdomains, k D 2 denotes the outer side (MoM side) of the same union, ŒYk� is the

D � D diakoptic matrix of the subsystem, Œjek�0 is the D � 1 column matrix containing

coefficients of Je that represent the excitation in the subsystem. To numerically calculate
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226 A. B. Manić et al.

the matrix ŒYk �, it is assumed that all excitations in the subsystem are turned off and

that the subsystem is excited with one, the j th, unit-valued coefficient in Œmek�, while

all other coefficients in Œmek� are equal to zero. By using the FEM solver, coefficients of

E, H, and Je are calculated in the FEM subsystems, with the obtained coefficients of Je

representing, numerically, the j th column of the matrix ŒYk �, and similarly for the MoM

subsystems. While MoM matrices are dense, FEM matrices are sparse and are stored and

computed as such.

In the same analysis, the linear relations between coefficients in Œme1� and those in

Œe� and Œh� are obtained. These relations can be written as

"

e

h

#

D ŒC�Œme1� C
"

e

h

#

0

; (3)

with ŒC� being of dimensions N FEM
tot �D. The matrix ŒC� is evaluated during the calculation

of matrices ŒY1� in the same way, column by column, exciting the respective subsystem

by a single coefficient in Œme1� at the time, with the computed coefficients of E and H

thus filling the respective column of the matrix ŒC� and stored to be used for subsequent

calculation of the final solution.

The excitations Œjek �0 and Œ e

h
�0 in Eqs. (2) and (3) are found as the responses of

a given subsystem stipulating that all coefficients in Œmek � are set to zero, while the

original excitation is turned on. By the standard FEM and MoM analysis, the coefficients

of Je, E, and H are calculated, which constitute, in the numerical sense, the respective

column-matrices Œjek�0 and Œ e

h
�0. The relations in Eqs. (2) and (3) will be discussed in

the following sections with specifics given for both FEM and MoM solvers.

To obtain the solution of the original electromagnetic problem (Figure 2(a)), using

matrices that represent different subsystems in Eqs. (2) and (3), the diakoptic coefficients

of Je and Me are related on the diakoptic boundary between FEM and MoM subsystems

as follows:

�Œje1� D Œje2� D Œje�; �Œme1� D Œme2� D Œme�; (4)

utilizing the facts that the equivalent sources in Eq. (1) have opposite signs and that the

directions of vectors n in Figures 1(b) and 1(c) are opposite. Note that the mutual relations

connecting the diakoptic coefficients obtained for the interior side of the diakoptic surface

for any subsystem must also be satisfied on the surface outside that subsystem. This

property is further used when combining Eqs. (2) and (4) to arrive to the following

diakoptic matrix system of equations:

.ŒY1� � ŒY2�/Œme� D �Œje1�0 C Œje2�0; (5)

whose solution is Œme�. This system of equations is solved with a direct solver (i.e., the

system is factorized using lower–upper (LU) decomposition, carrying out partial pivoting

with row interchanges, and then forward and backward substitutions are performed),

since it is dense in the general case. The diakoptic coefficients in Œjek� (k D 1; 2) are then

computed from Œme� using Eq. (2), and the coefficients in Œe� and Œh�, for subsystems

in Figures 2(b) and 2(c), are obtained from Eq. (3). Once these latter coefficients are

obtained, the electromagnetic field at any point in space can be calculated, as well as

any other quantity of interest for the original electromagnetic structure (in Figure 2(a)).
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Higher-Order FEM-MoM-Diakoptic Method 227

2.2. Double-Higher-Order Magnetic-Field FEM

Diakoptic Implementation

The diakoptic method described in the previous sections is now applied in conjunction

with double-higher-order FEM and MoM solvers based on higher-order geometrical

modeling and higher-order field/current modeling. In specific, the building block for

volumetric modeling in FEM subsystems (Figure 2(b)) is a Lagrange-type interpolation

generalized hexahedron of arbitrary geometrical orders Ku, Kv , and Kw (Ku; Kv; Kw �
1), shown in Figure 3(a) and analytically described as (Ilić & Notaroš, 2003)

r.u; v; w/ D
Ku
X

iD0

Kv
X

j D0

Kw
X

kD0

rijkLKu

i .u/LKv

j .v/LKw

k .w/;

LKu

i .u/ D
Ku
Y

lD0
l¤i

u � ul

ul � ui

;

�1 � u; v; w � 1;

(6)

where rijk D r.ui ; vj ; wk/ are position vectors of interpolation nodes, and L
Ku

i .u/

represents Lagrange interpolation polynomials in the u coordinate, with ui being defined

as ui D .2i � Ku/=Ku (i D 0; 1; : : : ; Ku) and similarly for L
Kv

j .v/ and L
Kw

k .w/.

The same polynomials in Eq. (6) are used to describe the continuous spatial variations

of both the complex permittivity and permeability tensors, ".u; v; w/ and �.u; v; w/, of

an inhomogeneous anisotropic material filling the generalized hexahedral element in

Figure 3(a), as proposed in Manić et al. (2012a). In specific, the xx-component of " is

Figure 3. Lagrange-type curved parametric elements for higher-order FEM-MoM-diakoptic anal-
ysis (Figure 2) of inhomogeneous anisotropic dielectric and magnetic scatterers: (a) generalized
FEM hexahedron defined by Eq. (6) and (b) generalized MoM quadrilateral patch.
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228 A. B. Manić et al.

incorporated in the FEM model as

"xx.u; v; w/ D
Mu
X

mD0

Mv
X

nD0

Mw
X

pD0

"mnp
xx LMu

m .u/LMv

n .v/LMw

p .w/; (7)

where Mu, Mv , and Mw (Mu; Mv; Mw � 1) are arbitrary material-representation polyno-

mial orders (independent from Ku, Kv , and Kw); "
mnp
xx D "xx.rmnp / denotes the respective

permittivity values at interpolation nodes rmnp corresponding to orders Mu, Mv , and Mw ,

and similarly for all remaining components of " and for all components of �.

The diakoptic surface enclosing each of the FEM domains is modeled using Lagrange-

type generalized curved parametric quadrilaterals in Figure 3(b) (Djordjević & Notaroš,

2004), which are surface two-dimensional (2-D) versions of the hexahedron in Figure 3(a)

and are conformal with the sides of hexahedra belonging to the diakoptic surface (Ilić

et al., 2009).

This work utilizes the H -field FEM formulation (except in the last example, where

the E-field FEM formulation is used) and expands the magnetic field by means of curl-

conforming hierarchical polynomial vector basis functions of arbitrary field-expansion

orders Nu, Nv , and Nw (Nu; Nv; Nw � 1) introduced in Ilić and Notaroš (2003). Further-

more, in the field expansion, basis functions that possess tangential components at the

boundary (marked by “boundary”) are distinguished from those that do not (“interior”),

as described in Jin and Riley (2008):

H D
N h

tot
X

iD1

hi fi D
NINTERIOR

X

iD1

hIi fIi C
NBOUNDARY

X

iD1

hBi fBi (8)

Boundary volume basis functions are further used to generate divergence-conforming

surface basis functions as n � fBi jS for expanding the diakoptic surface currents in the

following form (Manić et al., 2013):

Je D n � HjS D
NBOUNDARY

X

iD1

jei .n � fBi /

ˇ

ˇ

ˇ

ˇ

ˇ

S

; (9)

Me D �n � EjS D
NBOUNDARY

X

iD1

mei .n � fBi /

ˇ

ˇ

ˇ

ˇ

ˇ

S

; (10)

where n is adopted to be the outward looking unit normal to the enclosed diakoptic sur-

face S .

To numerically establish the matrix relationships in Eq. (2), the FEM solver dis-

cretizes a Galerkin-type weak form of the curl-curl magnetic-field vector wave equation

Z

V

.r � fi / � ."
�1

r r � H/dV � k2
0

Z

V

fi � .�rH/dV D jk0

I

S

fi � .n � E/dS; (11)

with k0 D !
p

"0�0 being the free-space wave number (! is the angular frequency of the

time-harmonic excitation in the system). This discretization leads to a matrix equation

with the unknowns coefficients being only those describing boundary variables,

�

FBB � FBI

�

F �1
II FIB

��

ŒhB� D �jk0ŒhfB; n � fBi�Œme�; (12)
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Higher-Order FEM-MoM-Diakoptic Method 229

and in which the connection in Eq. (10) is employed on the right-hand side of the

equation such that magnetic diakoptic sources can numerically be considered as excitation

of the system. In Eq. (12), FBB, FBI , FIB, and FII are the submatrices of a well-known

FEM matrix (Ilić & Notaroš, 2003), with FIB, for instance, standing for the submatrix

corresponding to testing functions belonging to a set of the interior FEM functions

and basis functions being the boundary functions, and the operator ha; bi is a standard

surface integral of a dot product of vector variables a and b. Note that while the matrix

ŒhfB; n � fBi� in Eq. (12) is ill-conditioned, this does not deteriorate the overall accuracy

of the method, as shown in examples presented in this article (and evaluated in other

cases that are not shown).

Next, boundary coefficients in the expansion of the magnetic field are equated to the

appropriate electric-current coefficients using Eq. (9) so that a diakoptic linear relation in

Eq. (2) can be established by inverting the system matrix in Eq. (12). Denoting the local

diakoptic matrix of the i th FEM subsystem in Figure 2(b) by ŒYi
1� and the corresponding

source column-matrices by Œmi
e� and Œji

e� gives

�

Yi
1

� �

mi
e

�

D
�

ji
e

�

;

�

Yi
1

�

D �jk0

�

FBB � FBI

�

F �1
II FIB

���1
ŒhfB; n � fBi�;

i D 1; 2; : : : ; NFEM;

(13)

and the global diakoptic matrix ŒY1� given in Eq. (5) is then assembled using the local

matrices as follows:

ŒY1� D

D1 D2 � � � DNFEM

$ $ $
D1 l Y1

1

D2 l Y2
1

:::
: : :

DNFEM
l Y

NFEM

1

2

6

6

6

6

4

3

7

7

7

7

5

. (14)

Once the diakoptic excitations Œme� are found from Eq. (5), the magnetic field inside

each of the FEM domains can be calculated based on Eq. (3) using ŒC�, which, in turn,

can easily be obtained from Eq. (11) in terms of appropriate local matrices in the same

fashion as in Eq. (14).

In cases where the original electromagnetic system (Figure 2(a)) is subdivided into a

number of touching FEM subsystems, the adjacent subsystems touch each other through

parts of the diakoptic surface, which is meshed in a way that a generalized quadrilateral

patch belonging to one side of the common area has its match on the opposite side;

i.e., the meshes on opposite sides of the diakoptic surface are conformal. Even though

spatial positions of touching quadrilaterals are the same, independent subsystems are

pre-processed separately. In this setup, the touching quadrilaterals need to have opposite

orientations; that is, the directions of normal vectors n should be opposite to one another,

which is ensured by a simple adjustment of the two local parametric coordinate systems

for the two coinciding patches. Next, touching subsystems are assumed to be immersed in

the air-filled open-region subsystem; hence, an infinitesimally thin layer of air is consid-

ered to exist between the touching quadrilaterals. Consequently, touching FEM domains

influence each other through an MoM domain, where a numerical solver is applied to
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a structure consisting of touching and other surfaces. The only issue with applying the

MoM solver relates to the calculation of singular and hyper-singular Galerkin impedance

matrix elements (Djordjević & Notaroš, 2004) due to the mutual contributions of surface

currents belonging to two touching surfaces. Since touching surfaces (faces of the adjacent

diakoptic domains), although belonging to two distinct diakoptic domains, actually share

a unique surface in space, the corresponding Galerkin impedances are computed by

applying a self-integration procedure, with testing and basis functions belonging to the

two distinct surfaces coinciding in space. Namely, the singularity extraction method for

calculation of singular and hyper-singular MoM operators (Notaroš, 2008; Djordjević

& Notaroš, 2004; Notaroš & Popović, 1997) is utilized. Note also that in the case of

touching domains, matrix ŒY2� is not diagonal-dominant, and it influences the final matrix

obtained by the diakoptic method.

Note, finally, that any other FEM and/or MoM numerical discretization is possible

within the framework of the diakoptics, including low-order elements and bases.

3. Numerical Results

A special parallel version of the FEM-MoM-diakoptic solver based on the message

passing interface (MPI) basic linear algebra communication subprograms (BLACS) is

developed and run on a CrayXT6m platform (Cray Inc., 2011). The Cray supercomputer

used for simulations contains 52 compute nodes, with a total of 104 AMD Magny Cours

64-bit 1.9-GHz processors (two per node), where each processor has 12 cores. Thirty-two

GB of RAM is available on each node, while the interconnection between the nodes is

SeaStar2C with 2D torus topology.

3.1. 2-D Array of Dielectrically Coated Perfect Electric Conductor

(PEC) Spherical Scatterers

As the first example of the application and validation of the new diakoptic method,

consider a 2-D array of 4 � 4 dielectrically coated spherical PEC scatterers, depicted in

Figure 4. For each scatterer, the PEC sphere radius is r D 100 mm, and the thickness

Figure 4. 2-D array of dielectrically coated spherical PEC scatterers.
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Higher-Order FEM-MoM-Diakoptic Method 231

and relative permittivity of the coating are d D 35 mm and "r D 4, respectively, while

the center-to-center distances between adjacent scatterers are s D 400 mm. The original

system is divided into 17 diakoptic subsystems, with 16 FEM subsystems modeling

individual spherical scatterers and 1 open-region MoM subsystem. The geometrical model

of each spherical scatterer is comprised of six FEM curvilinear hexahedra of the second

geometrical orders (Ku D Kv D Kw D 2) modeling the dielectric coating, with PEC

boundary conditions on the inner surfaces and six curvilinear quadrilateral patches on

the outer surfaces, coinciding with the adopted diakoptic boundary. The adopted field

approximation orders in all FEM hexahedra are Nw D 2 in the radial direction and

Nu D Nv D 4 in other two (transversal) directions, and these latter orders are used

for current expansions on the MoM patches (on the diakoptic boundaries) as well. This

results in a total of D D 3,072 diakoptic unknowns.

Figure 5 presents the normalized bistatic radar cross-section (RCS), �3D=�2
0 (�0

henceforth being the free-space wavelength), of the array at a frequency f D 0:5 GHz

as a function of the scattered angle in two characteristic plane cuts. The excitation wave

is incident from the direction defined by �inc D 90ı and �inc D 0, where � and � are

angular coordinates in the spherical coordinate system shown in Figure 4. The same .�; �/

notation will be used in all examples in this section. Excellent agreement of diakoptic

results is observed with the solution obtained by WIPL-D (pure-MoM commercial soft-

ware; WIPL-D d.o.o., 2013), which serves as a reference. The total number of unknowns

used for modeling in WIPL-D is 9,216. The approximately three-times reduction in the

number of the diakoptic unknowns, when compared with the commercial higher order

MoM software, comes from the implemented geometrically higher-order modeling and

diakoptic compression. Note also that the analysis of this problem using a low-order

variant of the proposed diakoptic method, with first-order (rooftop) basis functions on

patches that are not larger than �=10 in each dimension (with � being the wavelength

in the dielectric medium), would require D D 19,200 diakoptic unknowns and about

244 times longer time to solve the matrix system of equations and about 39 times greater

RAM for the simulation than the presented higher-order diakoptic solution.

Figure 5. Normalized bistatic RCS of the array of scatterers in Figure 4 for homogeneous
and continuously inhomogeneous dielectric coatings, respectively, computed by the FEM-MoM-
diakoptic method and by the pure-MoM commercial software WIPL-D: (a) � D 0 cut and (b)
� D 90ı cut.
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232 A. B. Manić et al.

In addition, Figure 5 gives the RCS results for the same geometry and frequency

but with the dielectric coating being made from a continuously inhomogeneous dielectric

material whose relative permittivity undergoes a linear radial variation from "r D 4 at

the PEC boundary to "r D 10 at the outer surface of the scatterer. The higher-order

geometrical and numerical model is the same as in the previous case but with M D 1 in

Eq. (7) for the local radial direction to model the dielectric inhomogeneity. The solution

using the continuously inhomogeneous FEM-MoM-diakoptic model is compared with a

WIPL-D solution for a three-layer piecewise homogeneous approximate model of the

dielectric coating (with equivalent permittivities calculated as the mean value of the in-

homogeneous profile for each of the equally thick layers), which takes 51,712 unknowns,

and a good agreement of the two sets of results is observed.

The total computation time for the FEM-MoM-diakoptic analysis of scatterers with

both homogeneous and continuously inhomogeneous dielectrics (in Figure 5) is 2 min

27 sec, and the RAM used for the storage of the diakoptic matrices is 288 MB; running

the parallel code on a 2 � 2 process grid, all processes are on a single compute node.

3.2. Dielectric Scatterer Modeled by Multiple Touching

FEM Domains

The next example considers a dielectric ("r D 2:25) brick-shaped scatterer, shown in

Figure 6, illuminated by a uniform plane wave incident from the direction defined by

�inc D 90ı and �inc D 0, with electric and magnetic field vectors given by Einc D
�1iz V/m and Hinc D ���1

0 iy A/m at the global coordinate origin, where �0 D
p

�0="0

stands for the free-space intrinsic impedance. The operating frequency is f D 250 MHz.

The brick is modeled by four adjacent cubical FEM elements, each with edge length

a D 1 m and enclosed by the diakoptic surface with air as the outer medium. All

elements in the model are of the first geometrical order (Ku D Kv D Kw D 1), whereas

the orders of the field expansions (in all FEM elements in all directions) and current

expansions (on all square MoM patches surrounding each of the FEM subdomains) are

all the same and equal to 5. The total number of unknowns in the final system of equations

is D D 1,200, while the total number of unknown coefficients used for magnetic field

expansion is N h
tot D 2,160.

Shown in Figure 7(a) is the computed real part of Hy in the FEM domains in the

vertical plane defined by x D 0 placed in the middle of the scatterer. For comparison,

Figure 6. Brick-shaped dielectric scatterer modeled by four touching cubical FEM diakoptic sub-
systems.
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Higher-Order FEM-MoM-Diakoptic Method 233

Figure 7. Real part of the internal magnetic field component Hy in the vertical plane (x D 0) in the
middle of the scatterer in Figure 6 obtained by: (a) FEM-MoM-diakoptic method and (b) WIPL-D
(color bar units are in mA/m).

the same solution obtained by WIPL-D is shown in Figure 7(b) as a reference. It can be

concluded from the figure that the agreement of the diakoptic results with the reference

results is very good. Running the code in a single process, the FEM-MoM-diakoptic

solution takes 56 sec of simulation time and uses 43.9 MB of RAM to store the

diakoptic matrices.

3.3. 3-D Array of Cubical Dielectric Scatterers

Next, consider a three-dimensional (3-D) array of cubical dielectric scatterers, shown in

Figure 8. The cube edges and side-to-side distances between neighboring cubes amount

to a D s D 1�0, and the relative permittivity of the dielectric is "r D 2:25. The structure

is modeled by 513 diakoptic subsystems (512 FEM domains and 1 open-region MoM

domain). The volume and surface elements in the model are of the first geometrical

orders, Ku D Kv D Kw D 1, while the field and current expansion orders are all the

same and equal to 3. The size of the system of diakoptic equations is D D 55,296.

Figure 8. 3-D array of cubical dielectric scatterers.
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234 A. B. Manić et al.

Figure 9. Normalized bistatic RCS of array of scatterers in Figure 8 obtained by FEM-MoM-
diakoptic method and by WIPL-D: (a) � D 0 cut and (b) � D 90ı cut.

Figure 9 displays two characteristic normalized bistatic RCS plane cuts for uniform

plane wave excitation of the system shown in Figure 8, with the results obtained by

the diakoptic method being compared with the reference WIPL-D solution. Excellent

agreement of the two sets of results is observed from the figure. The total number of

unknowns used for modeling in WIPL-D if no symmetries were exploited is 110,592.

Similarly to the first example, when comparing the diakoptic approach to the pure

MoM higher-order solution (WIPL-D), the reduction in the number of unknowns in the

final system of equations is by two times. However, note that the higher-order FEM-

MoM-diakoptic method would allow modeling of inhomogeneous and/or anisotropic

scatterers in the array in Figure 8 at essentially the same computational cost. Running

the FEM-MoM-diakoptic parallel code on a 16 � 16-process grid, on 16 compute nodes

(16 processes per node), the simulation time is 30 min 12 sec, and the RAM consumption

for the storage of the diakoptic matrices is 91.1 GB. Note also that when compared to the

higher-order diakoptic solution, the low-order diakoptic model specified in Section 3.1

would require 7.11 times more diakoptic unknowns, about 358 times longer direct-solver

solution time and about 50 times larger RAM.

3.4. 2-D Array of PEC Spheres with Cloaking Dielectric/Magnetic

Metamaterial Covers

The final example is a 2-D array of cloaked spherical PEC scatterers, depicted in

Figure 10. The radii of the PEC spheres are R1 D 1 m, thicknesses of the cloaks

are d D 0:1 m (outer radii of the cloaks are R2 D R1 C d ), and distances between the

scatterer centers are L D 5 m. Each transformation-based metamaterial spherical cloak

relies on the theory derived in Pendry et al. (2006), whereas its detailed analysis by

the higher-order FEM-MoM can be found in Savić et al. (2013). The scatterer geometry

and incident plane wave direction are shown in Figure 10. In the FEM-MoM-diakoptic

analysis, each of the cloaked regions is modeled by six curvilinear hexahedra of fourth

geometrical orders, Ku D Kv D Kw D 4, enclosed by six quadrilaterals conformal to

the outer cloak surface. The adopted field approximation orders are Nu D Nv D Nw D 5

for all FEM hexahedra, while the current approximation orders are Nu D Nv D 4 for all

MoM patches. The total number of diakoptic unknowns amounts to D D 768. Continuous
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Higher-Order FEM-MoM-Diakoptic Method 235

Figure 10. 2-D array of PEC spheres with cloaking metamaterial covers; permittivity and perme-
ability tensors are given in Eq. (15).

spatial variations of the medium tensors " and � in the cloaked regions, obtained from

the linear cloak transformation in the spherical .r; �; �/ coordinate system, are given by

(Savić et al., 2013)

" D � D

2

6

6

6

6

6

6

6

6

4

R2.R1 � r/2

.R2 � R1/r2
0 0

0
R2

R2 � R1

0

0 0
R2

R2 � R1

3

7

7

7

7

7

7

7

7

5

; (15)

where R1 and R2 are the inner and outer radii, respectively, of the spherical cloak. The

Cartesian equivalents of " and � are implemented using Eq. (7) with Mu D Mv D
Mw D 6.

Shown in Figure 11 is the normalized backscattering RCS of the array of cloaked

spheres at f D 55 MHz obtained by the FEM-MoM-diakoptic method in the � D 0

plane. For the purpose of validation of the numerical solution, the computed RCS of

the array of uncloaked PEC spheres, with the continuously inhomogeneous anisotropic

FEM elements constituting the cloaking layer being replaced by homogeneous air-filled

elements having all field and current expansions and other parameters in the FEM-MoM-

diakoptic analysis the same as in the cloak model, is also shown in Figure 11, where it is

compared with the WIPL-D solution, and excellent agreement of the two sets of results

is observed. In addition, while having in mind that the cloak is theoretically ideal (RCS

theoretically vanishes), a WIPL-D solution for a homogeneous air-filled sphere is shown

as a reference, giving a clear insight into what a typical numerical solution for the given

geometry and an ideal invisibility material (scattering from free-space) would be. A very

significant reduction in the numerically obtained scattering cross-section of the array of

cloaked spheres with respect to the array of PEC spheres is observed from the figure;

namely, the RCS is so low that it is on par with the best numerical approximation of
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236 A. B. Manić et al.

Figure 11. Normalized bistatic RCS in the � D 0 plane of: (i) the cloaked array in Figure 10
computed using FEM-MoM-diakoptics, (ii) the array of homogeneous air-filled spheres obtained
using WIPL-D, (iii) the array of uncloaked spheres with cloaks replaced by homogeneous air layers
calculated by FEM-MoM-diakoptics, and (iv) the array of PEC spheres obtained by WIPL-D.

the zero backscatter from an empty spherical region of the same size as the original

scatterer, as verified by WIPL-D. The total number of FEM unknowns is N e
tot D 2,260

(computation time: 24 min 5 sec, RAM: 18 MB, single process), while the total numbers

of unknowns in WIPL-D simulations are 3,456 for the array of air-filled spheres and

1,728 for the array of PEC spheres.

4. Conclusions

This article has presented a new FEM-MoM-diakoptic method for analysis of inhomoge-

neous anisotropic dielectric and magnetic scatterers in the frequency domain. The method

splits the original electromagnetic system into a number of closed-region FEM diakoptic

subsystems containing material complexities and an open-region MoM diakoptic sub-

system. Each of the subsystems is analyzed completely independently applying FEM or

MoM solvers, and the solution to the original problem is obtained from linear relations

between coefficients in expansions of equivalent electric and magnetic surface currents

on diakoptic boundary surfaces. The method implements large curved hexahedral finite

elements filled with inhomogeneous anisotropic materials. Diakoptic electric sources and

the magnetic field in FEM subsystems are connected using dual sets of hierarchical

polynomial vector basis functions explicitly satisfying the natural relation between curl-

conforming and divergence-conforming quantities. A technique enabling touching of the

subsystems, i.e., that the subsystems share a common diakoptic boundary, has been

introduced in the diakoptic method.

The proposed higher-order FEM-MoM-diakoptic method and its versatility, accuracy,

and efficiency have been validated and demonstrated in several characteristic examples
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Higher-Order FEM-MoM-Diakoptic Method 237

of finite arrays of dielectric, dielectric/magnetic, and dielectrically coated PEC scatterers.

Numerical results include analysis of scatterers with straight edges and pronounced

curvature, a scatterer modeled by multiple touching FEM diakoptic domains, and a

transformation-based metamaterial cloaking structure, with the continuously inhomoge-

neous anisotropic cloaking region modeled using large curved finite elements that allow

continuous spatial variations of complex permittivity and permeability tensors and high-

order FEM field approximations.
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Ilić, M. M., M. Djordjević, A. Ž. Ilić, & B. M. Notaroš. 2009. Higher order hybrid FEM-MoM
technique for analysis of antennas and scatterers. IEEE Trans. Ant. Propagat. AP-57:1452–
1460.

Jin, J. M., & D. J. Riley. 2008. Finite element analysis of antennas and arrays, sect. 3.3, 77–86.
New York: John Wiley & Sons.
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Manić, A. B., S. B. Manić, M. M. Ilić, & B. M. Notaroš. 2012a. Large anisotropic inhomoge-
neous higher order hierarchical generalized hexahedral finite elements for 3-D electromagnetic
modeling of scattering and waveguide structures. Microw. Opt. Technol. Lett. 54:1644–1649.
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