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Abstract

Several new excitation and load models are proposed for electromagnetic analysis in the context of a Galerkin-type large-domain (higher-

order) boundary element method (BEM) or Method of moments for structures composed of thin wires, metallic surfaces, and imperfect

inhomogeneous dielectric bodies. The models represent a natural generalization of point-delta generators and loads for wires. They are used

for excitation and loading of metallic quadrilateral surface elements and dielectric hexahedral volume elements, and are termed line-delta and

surface-delta generators and loads, respectively. The corresponding Galerkin generalized impedance and voltage matrix elements are derived

and incorporated in the large-domain BEM outlined in the paper. The accuracy and usefulness of the proposed excitation and load models are

illustrated on a number of characteristic examples. It is believed that these models can also be included in other BEMs for analysis of

electromagnetic systems in frequency domain with comparable advantages.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Modelling and treatment of excitations and loads is one

of the most delicate, and most important, problems in

numerical analysis of electromagnetic structures based on

the boundary element method (BEM) or the method of

moments (MoM) [1]. Even for the structures containing

only thin wires, none of the several approaches for

excitation and load modeling in the context of the BEM/

MoM [2] cannot be said to represent an ideal solution for all

geometrical and material configurations and all practical

occasions. The delta-function (point) voltage generator

along wires is simple, but the susceptance it yields increases

with the degree of current approximation. The TEM

magnetic-current frill, which originated in the approxi-

mation of the coaxial-cable excitation, does not have this

deficiency. However, because of the assumption implicit in

the frill generator that the system is axially symmetrical in

the vicinity of the generator, it is of limited usefulness in the

analysis of general three-dimensional (3D) structures, and

great caution needs to be exercised whenever it is used. The

coaxial-cable feed may be simplified as a thin filament of

impressed current, which must be electrically very short.

This simple current probe generator can replace the TEM

frill generator in some applications. The fourth choice is a

voltage gap generator, producing a scalar-potential jump

across a gap (of finite width) between two wire segments. In

fact, these four models appear to be the only ones that have

been used for approximating concentrated excitations of

arbitrary electromagnetic structures. Thus, in order to excite

a structure by concentrated generators, it was necessary to

have some wire segments, however short, although the

structure itself might not have any wires at all. Another

possibility is a gap generator between two narrow strips, but

it is not uniquely defined, because its width, except that it

should be small when compared with the wavelength, can

have any value.

Similarly, for the approximation of concentrated loads

mostly delta loads and short-wire segment loads appear to

have been used. To simulate a concentrated load it was also
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necessary to have at least a short wire segment, although the

structure may not have wires at all.

This paper proposes several new excitation and load

models that represent a natural generalization of the delta

excitations and loads for wires. The new excitation and load

models are used with infinitely thin metallic plates and

(imperfect) dielectric bodies. For plates, two sides of a

common edge of two joined conducting surfaces are

assumed to be at different potentials, i.e. that across the

edge there is a scalar-potential jump (the same along the

edge). This jump may be due to fictitious generators

distributed along this line, and acting normally to it. Such a

distributed generator can appropriately be named the line-

delta generator. Alternatively, the scalar-potential jump

may be due to a voltage drop across a fictitious or actual

load in the form of a line (e.g. the load between the two strip

segments of a printed antenna or circuit), where the voltage

drop is produced by the current component normal to the

line. We term such a load the line-delta load. Physically,

line-delta generators should be short when compared with

the wavelength. This restriction does not apply to line-delta

loads.

For two (imperfect and inhomogeneous) dielectric

bodies in contact over a common side, we similarly assume

a scalar-potential jump through this surface (the same over

the entire surface). In the excitation case, we attribute this

jump to generators distributed over the surface and acting

normally to it at all points. Such a generator we term the

surface-delta generator. In the load case, we assume that

there is a distributed load over the surface such that a current

normal to it produces a scalar-potential jump across it. We

term such a load the surface-delta load. Physically, the

extent of the surface-delta generators in any direction needs

to be much smaller than the wavelength, while such a

restriction does not apply to surface-delta loads.

It will be shown that these simple types of generators and

loads are very useful in the BEM analysis of 3D

electromagnetic structures. As a simple example, an antenna

in the form of two thin metallic sheets does not need any

more a short wire segment with a generator between them,

requiring wire-to-plate junctions with all associated pro-

blems. Instead, a line-delta generator can be assumed

between a narrow edge common to the two plates. As

another example, an antenna made of an imperfect dielectric

can be driven directly by a surface-delta generator; the

excitation of such an antenna with classical excitations

along wires is not only much more difficult to model, but

also very sensitive to the model size and shape.

The novel types of excitations and loadings can, in

principle, be used with any type of numerical solution

based on the integral-equation formulation in frequency

domain. In this paper, the algorithms for their inclusion in

the numerical model are derived in detail for a Galerkin-

type large-domain (higher-order) BEM (MoM) for

analysis of general 3D electromagnetic structures, com-

posed of thin wires, metallic surfaces, and dielectric

bodies. In the method, the wires are modeled by straight-

wire segments [3], surfaces by bilinear quadrilaterals [4],

and volume elements by trilinear hexahedrons [5].

Approximate current distributions in all elements are

adopted to be high-degree polynomials (in one, two or

three dimensions) [3–5], which make possible for the

elements to be of large electrical size. The method,

consequently, belongs to the group of higher-order or

large-domain (often referred to as entire-domain) methods

[3–7]. Although relatively specific, the authors believe

that the derivations can be of significant help in

introducing the proposed excitations and loadings in

other BEM/MoM techniques, and even in techniques not

aimed at solving integral equations (e.g. in the finite

element methods [8]).

Section 2 of the paper reviews the excitation and load

models for wires, whereas Sections 3 and 4 describe the new

proposed excitation and load models for surfaces and

bodies, respectively, all in the context of the large-domain

BEM. Given in Section 5 are the numerical examples

illustrating the usefulness of the new types of excitation and

load and showing good stability of the results. It is also

shown that very good agreement of the results is obtained

with approximately equivalent excitations, as well as with

approximately equivalent loads, of different types.

2. Brief overview of excitation and load models for wires

Since the proposed extensions of excitations and loads

lean heavily on those for wires, we first review briefly basic

concepts connected with wires in a large-domain BEM

solution for current distribution along wires.

Consider an arbitrary wire structure situated in a time-

harmonic incident (impressed) field of complex electric

field intensity E i and angular frequency v. This field

induces line currents, of intensity I, along the generatrices of

wires, lwires (the reduced-kernel approximation for wires).

The induced currents, considered in free-space, are the

sources of the scattered field

Es ¼ 2jvm0

ð
lwires

Il0 þ
1

b2
0

dI

dl
grad

 !
g dl; ð1Þ

where l 0 is the unit vector along the wire. The free-space

Green’s function, g, is given by

g ¼
e2jb0R

4pR
; b0 ¼ v

ffiffiffiffiffiffi
10m0

p
; ð2Þ

with R being the distance of the field point from the source

point and b0 the free-space phase coefficient. On wire

surfaces, the locally longitudinal tangential component of

the total electric field vector, Etotal ¼ Ei þ Es; is zero. By

the theorem on extended boundary conditions [9], this

request can be transferred to the wire axis, resulting in

2ðEsÞaxial ¼ ðEiÞaxial ðalong wiresÞ: ð3Þ
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Eq. (3), which includes Eqs. (1) and (2), represents an

electric-field integral equation (EFIE) for current distri-

bution I along wires.

2.1. Geometrical model and current approximation

for wires

The building-block for approximating wires in our large-

domain BEM/MoM technique is a straight-wire segment,

Fig. 1. The parametric equation of the segment axis is

rðuÞ ¼ r0 þ ruu; 0 # u # 1: ð4Þ

In this equation, r(u ) is the position vector of a point on

the segment axis with the local coordinate u, r0 the

position vector of the segment starting point, O, and ru

a constant vector representing the difference between the

position vector of the segment end point, A, and r0. Let

us also introduce the length coordinate x defined by the

relation x ¼ x1u; where x1 represents the actual length of

the segment (Fig. 1).

We approximate the current I along the segment by a

large-domain series of polynomial basis functions with

unknown coefficients. The basis functions are in the

following form:

IðbÞi ðuÞ ¼ PiðuÞ ¼
ui
2 u; i – 1

u; i ¼ 1

(
; 0 # u # 1;

i ¼ 0; 1;…;Nu;

ð5Þ

where Nu is the order of approximation. Note that of all the

adopted basis functions only u and ð1 2 uÞ are nonzero at

one of the segment ends (these are, in fact, 1D rooftop

functions). They are used to satisfy the boundary conditions

(Kirchhoff’s current law) at the segment ends. All the other

basis functions are zero at the segment ends, and are used to

improve the approximation of current along the segment

(Fig. 2). The unknown coefficients are obtained by MoM. If

we use the Galerkin type of the method of moments [1], the

testing (weighting) functions are the same as the basis

functions, IðtÞi ðuÞ ¼ IðbÞi ðuÞ: Note that Nu can be large, which

allows the current to be approximated accurately along

segments as long as few wavelengths (large-domain

method).

Eq. (3), applied to the wire segment in Fig. 1, becomes

2EsuðuÞ ¼ EiuðuÞ; 0 # u # 1; ð6Þ

where Eiu and Esu are the longitudinal components

(u-components) of the impressed and scattered field,

respectively, along the segment axis. The corresponding

method-of-moments equation is

½Z�½a� ¼ ½U�; ð7Þ

where the matrices [Z] and [U] are known as the matrix of

generalized impedances and that of generalized voltages,

respectively. The matrix [a ] contains the unknown current-

distribution coefficients (unknowns of the problem).

2.2. Excitation of wires

Generally, all excitations can be considered as distrib-

uted. For an electric field having an Eiu(u ) axial component,

the Galerkin generalized voltages are evaluated as

Ui ¼
ð1

u¼0
IðtÞi ðuÞEiuðuÞdx ¼ x1

ð1

u20
PiðuÞEiuðuÞdu;

i ¼ 0; 1;…;Nu:

ð8Þ

Two most commonly used excitations of wires are the TEM

magnetic-current frill and the delta-function voltage gen-

erator. The first approximates the coaxial-line excitation. If

the frill is centered at the origin of a local cylindrical

ðr–f–zÞ coordinate system with the frill axis along the z-

axis, the impressed electric field is of the form [2]

Eiðr;f; zÞ ¼ 2
4V

lnðb=aÞ
z
ðb

a

ðp

0

cos c

R

dgðRÞ

dR
dc drirðfÞ

�

þ
ðp

0
gðRÞlr¼b

r¼adciz

�
; ð9Þ

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2 þ r2 2 2rr cos c

q
:

In this expression, g is the Green’s function given by Eq. (2),

V is the voltage at the coaxial line opening, and a and b are

the inner and the outer radius of the cable (and of the frill). It

is assumed that b 2 a is small in terms of the wavelength, so

that the TEM mode at the opening is dominant. The GalerkinFig. 1. Straight wire segment.

Fig. 2. Two interconnected wire segments with polynomial basis/testing

functions.

B.M. Notaroš, B.D. Popović / Engineering Analysis with Boundary Elements 27 (2003) 333–343 335



generalized voltages are obtained by introducing this

expression into Eq. (8).

The TEM magnetic-current frill excitation is sometimes

used as excitation of wires generally, by defining arbitrarily

its parameters. Note, however, that the frill is axially

symmetrical, so that excitation of a segment that is not

coaxial with the frill is questionable. For example, consider

a simple V-dipole antenna. Let the angle between the dipole

arms be any angle less than 908. Meaningless results are

obtained with the TEM frill if its axis is directed along one

of the two arms. Only if it is positioned symmetrically with

respect to them (which in this case is perhaps logical to do),

do the results agree well with those obtained by the point-

delta generator excitation. However, if there are more than

two wires at a junction, e.g. forming an inverted umbrella

with the angle less than 908 between the wires, and one wire

is excited at the junction by a TEM frill, it is virtually

impossible to estimate in advance whether the results will be

reliable, or not. Many other examples could be found in

which the results obtained by a TEM frill are unpredictable,

and frequently meaningless. As a conclusion, the TEM

magnetic-current frill excitation should be used with

extreme care.

A delta generator is simply a jump in the electric scalar

potential across a junction of two wires. We shall term this

kind of excitation the point-delta generator (instead of the

usual term ‘point generator’). Referring to Fig. 2, let the

point-delta generator be at the point O, at the starting point

of the segment OA. Then

EiuðuÞ ¼ VdðxÞ; ð10Þ

where V is the generator electromotive force, and d(x )

Dirac’s delta-function. When we substitute this into Eq. (8),

for the Galerkin generalized voltages we obtain

Ui ¼ VPið0Þ
ð1

u¼0
dðxÞdx ¼

V ; i ¼ 0

0; i – 0

(
;

i ¼ 0; 1;…;Nu;

ð11Þ

since [see Eq. (5)] P0ð0Þ ¼ 1; and Pið0Þ ¼ 0 for i . 0.

2.3. Loads along wires

The most general load along wires is a continuous

distributed load. Let per unit length it be given by Z0(u ). The

electric field necessary to maintain the current along such a

loaded wire can be represented as a compensating field

EcuðuÞ ¼ 2Z 0ðuÞIðuÞ; ð12Þ

which we introduce into Eq. (8). According to Eq. (7), this

results in the following additions to the Galerkin generalized

impedances:

DZii0 ¼ 2
ð1

u¼0
IðtÞi ðuÞEcuðuÞdx

¼
ð1

u¼0
Z 0ðuÞIðtÞi ðuÞIðbÞ

i0
ðuÞdx

¼ x1

ð1

u¼0
Z 0ðuÞPiðuÞPi0 ðuÞdu;

i; i0 ¼ 0; 1;…;Nu:

ð13Þ

Let now at point O in Fig. 2 be a concentrated (point-

like) load of impedance Z0. The voltage across the load can

be replaced by a compensating generator of electromotive

force

Vc ¼ 2Z0Ið0Þ; ð14Þ

with the reference direction indicated in Fig. 2. The

corresponding compensating electric field is given by

EcuðuÞ ¼ 2Z0Ið0ÞdðxÞ: ð15Þ

It results in the following addition to the Galerkin

generalized impedances:

DZii ¼ Z0P2
i ð0Þ ¼

Z0; i ¼ 0

0; i – 0

(
; i ¼ 0; 1;…;Nu: ð16Þ

We shall term such loads the point-delta loads.

3. Excitation and load models for plates

In the case of an electromagnetic structure composed of

metallic surfaces (plates), the scattered field is produced by

induced surface currents, of density Js, over the structure

surface, Splates. Eq. (1) thus becomes

Es ¼ 2jvm0

ðð
Splates

Js þ
1

b2
0

divsJsgrad

 !
g dS: ð17Þ

The corresponding EFIE for the surface current density Js

over plates is obtained by stipulating that the tangential

component of the total electric field at the plate surface be

zero, which yields

2ðEsÞtangential ¼ ðEiÞtangential ðover platesÞ: ð18Þ

3.1. Geometrical model and current approximation

for plates

In a large-domain BEM/MoM approach, it appears to be

extremely convenient to approximate metallic surfaces

by a system of parametric bilinear quadrilateral subsurfaces

[4,7], Fig. 3. Such a quadrilateral is uniquely defined by its

four vertices, which can be practically arbitrarily positioned

in space. Its surface is curved, but its edges and all

parametric lines are straight. In the u–v parametric
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coordinate system in Fig. 3 it is defined by

rðu; vÞ ¼ r0 þ ruu þ rvv þ ruvuv; 0 # u; v # 1: ð19Þ

In this definition, r(u, v ) is the global position vector of a

quadrilateral point with local coordinates u and v, r0 is the

position vector of the local coordinate origin, O, and ru, rv,

and ruv are constant vectors which can be expressed easily in

terms of r0 and the position vectors of the other three

quadrilateral vertices.

The current density vector over bilinear quadrilaterals is

conveniently represented by two local components as

Jsðu; vÞ ¼ Jsuðu; vÞiuðvÞ þ Jsvðu; vÞivðuÞ: ð20Þ

The local base unit vectors are given by

iuðvÞ ¼
1

euðvÞ

›rðu; vÞ

›u
; ivðuÞ ¼

1

evðuÞ

›rðu; vÞ

›v
; ð21Þ

where euiev are the Lamé coefficients,

euðvÞ ¼
›rðu; vÞ

›u

				
				; evðuÞ ¼

›rðu; vÞ

›v

				
				: ð22Þ

We adopt the following higher-order basis and test

functions for the u-component of the surface current density

vector [4,7]:

JðbÞ
suijðu; vÞ ¼ JðtÞ

suijðu; vÞ

¼
1

evðuÞsin auvðu; vÞ
PiðuÞQjðvÞiuðvÞ;

0 # u; v # 1; i ¼ 0; 1;…;Nu; j ¼ 0; 1;…;Nv;

ð23Þ

where PiðuÞ is defined in Eq. (5), and

QjðvÞ ¼ vj
; j ¼ 0; 1;…;Nv: ð24Þ

Nu and Nv are the orders of approximation, and auvðu; vÞ is

the angle between the u and v coordinate line at ðu; vÞ: The

v-component of Js is represented in analogous manner. In

analogy with wires, these basis functions are used to impose

the continuity boundary conditions along quadrilateral

edges shared with other quadrilaterals, and along free

quadrilateral edges, of the normal component of vector Js.

Contained in the expressions of the Galerkin generalized

impedances for bilinear quadrilaterals, we need its area

element,

dSuvðu; vÞ ¼ dluðvÞdlvðuÞsin auvðu; vÞ; ð25Þ

where the line elements along the coordinate lines are given

by

dluðvÞ ¼ euðvÞdu; dlvðuÞ ¼ evðuÞdv: ð26Þ

3.2. Excitation of conducting surfaces

The most general excitation of a conducting surface is

that distributed arbitrarily over it. The Galerkin generalized

voltages for such an excitation are

Uij ¼
ð1

u¼0

ð1

v¼0
JðtÞ

suijðu; vÞ·Eiðu; vÞdSuvðu; vÞ

¼
ð1

u¼0

ð1

v¼0
PiðuÞQjðvÞ

›rðu; vÞ

›u
·Eiðu; vÞdu dv;

i ¼ 0; 1;…;Nu; j ¼ 0; 1;…;Nv:

ð27Þ

Note that, in the Galerkin method, we have an analogous

expression for testing by the v-component of the current

density vector, JðtÞ
svijðu; vÞ:

This excitation model is appropriate in the analysis of

metallic scatterers, but not for antennas, where wire

segments with generators have to be added to the structure,

although it might not have it at all. The problems associated

with wire-to-surface junctions are well known. To avoid

this, we introduce generators acting along common edges of

two or more conducting surfaces. Such distributed gen-

erators are assumed to produce a scalar-potential jump along

the common edge. Although it can be made variable along

the edge, this seems to be of purely academic interest, and

we consider only the case of scalar-potential jump constant

along the edge. Being extensions to point-delta generators

for wires, it seems appropriate to term such generators the

line-delta generators.

Let a line-delta generator be associated with the edge OA

of the bilinear quadrilateral OABC in Fig. 3. Let the

quadrilateral be planar, which simplifies the derivations

greatly, and does not impair the practical usefulness of the

generator, since it is restricted to the very edge shared by the

(possibly curved) quadrilaterals. The compensating

impressed electric field resulting in the potential difference

V across the common edge, with respect to the reference

direction in Fig. 3, is

Eiðu; vÞ ¼ VdðxÞix; ð28Þ

where the x-axis is normal to the line generator, and is in the

plane of the quadrilateral OABC. Introducing this into

Eq. (27) yields the following expression for the Galerkin

Fig. 3. Two bilinear quadrilaterals with common edge.
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generalized voltages:

Uij ¼
ð1

u¼0

ð1

v¼0
JðtÞsuijðu; vÞEiðu; vÞiuðvÞ·ixdSuvðu; vÞ

¼ VPið0Þ
ð1

u¼0
dðxÞ dx

ð1

v¼0
QjðvÞdv

¼
V =ðj þ 1Þ; i ¼ 0

0; i – 0

(
;

i ¼ 0; 1;…;Nu; j ¼ 0; 1;…;Nv:

ð29Þ

where the following geometrical relations were used (see

Fig. 3):

iuðvÞ·ix ¼ cos bðu; vÞ; dluðvÞcos bðu; vÞ ¼ dx;

cos bðu; vÞ ¼ sin auvðu; vÞ:

ð30Þ

Note that the generalized voltages relating to the v-

component of the test functions are zero, since ivð0Þ·ix ¼ 0:

3.3. Loads over conducting surfaces

The most general type of loading over a conducting

surface is a load distributed over the surface in arbitrary

manner. Let the surface impedance over the surface be

Zsðu; vÞ (V/square). It can be introduced into the equations

by considering the field driving the current over the surface

as a compensating impressed electric field

Ecðu; vÞ ¼ 2Zsðu; vÞJsðu; vÞ: ð31Þ

According to Eqs. (27) and (7), this results in the following

additions to the Galerkin generalized impedances relating to

the u-component of a test function and the u-component of a

basis function:

DZiji0j0 ¼ 2
ð1

u¼0

ð1

v¼0
JðtÞ

suijðu; vÞ·Ecðu; vÞdSuvðu; vÞ

¼
ð1

u¼0

ð1

v¼0
Zsðu; vÞ·J

ðtÞ
suijðu; vÞ·J

ðbÞ
sui0j0

ðu; vÞdSuvðu; vÞ

¼
ð1

u¼0

ð1

v¼0
Zsðu; vÞPiðuÞQjðvÞPi0 ðuÞQj0 ðvÞ

	
euðvÞ

evðuÞsin auvðu; vÞ
du dv;

i; i0 ¼ 0; 1;…;Nu; j; j0 ¼ 0; 1;…;Nv: ð32Þ

Similar expressions are obtained for combinations of the test

and basis function u–v and v–v (a combination v–u results

in the same expression as u–vÞ:

A load over a surface analogous to the point-delta load

can be introduced by assuming the distributed load to exist

only along a very narrow strip near a quadrilateral edge. In

the limit of infinitely narrow strip with finite impedance

across the strip we thus obtain a line-delta load. Assume a

line-delta load Z0 to exist along the edge OA in Fig. 3. The

electromotive force of the corresponding compensating

line-delta generator is now not constant along the load line,

since surface current density is not generally constant along

it. The compensating impressed electric field across the line-

delta load is given by

Ecðu; vÞ ¼ 2Z0lvðuÞJ
ðbÞ
suijðu; vÞdðxÞix; ð33Þ

where lvðuÞ is the length of the part of v parametric line

which belongs to the quadrilateral [lvð0Þ is the length of the

quadrilateral edge OA]. This results in the following

additions to the impedance matrix:

DZijij ¼
Z0=ð2j þ 1Þ; i ¼ 0

0; i – 0

(
; i ¼ 0; 1;…;Nu;

j ¼ 0; 1;…;Nv:

ð34Þ

4. Excitation and load models for bodies

Consider an electromagnetic structure composed of

volume dielectric bodies with losses and excited by a

field E i. The density of the total (polarization plus

conduction) induced volume current, J, inside the volume

of the structure, Vbodies, is given by the generalized local

Ohm’s law

J ¼ seEtotal; se ¼ sþ jvð12 10Þ; ð35Þ

where s, 1 and se are the conductivity, permittivity, and

equivalent conductivity of the material, respectively.

Using the same Green’s function as in Eq. (2), the

scattered field is expressed as

Es ¼ 2jvm0

ððð
Vbodies

J þ
1

b2
0

div J grad

 !
g dV ; ð36Þ

and hence the EFIE for the current density J inside

dielectric bodies

2Es þ
J

se

¼ Ei ðinside bodiesÞ: ð37Þ

4.1. Geometrical model and current approximation

for bodies

In analogy with conducting surfaces, we model imper-

fect-dielectric bodies by parametric volumes in the form of

trilinear hexahedrons [5–7], Fig. 4. A trilinear hexahedron

is defined uniquely by its eight vertices, that can be almost

arbitrarily positioned in space. Its edges, and all coordinate

lines, are straight, and its sides are bilinear quadrilaterals. It

is defined by the following parametric equation:

rðu; v;wÞ ¼ r0 þ ruu þ rvv þ rww þ ruvuv þ ruwuw

þ rvwvw þ ruvwuvw; 0 # u; v;w # 1:
ð38Þ

Concerning the unknown quantity to be approximated

and determined in the MoM, it is numerically much more

convenient to substitute J as the unknown in Eqs. (36) and
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(37) by the equivalent electric displacement vector, D, the

normal component of which is continuous at all surfaces of

discontinuity in dielectric parameters inside the dielectric.

This vector is related with the total electric field and with the

current density in the dielectric as follows:

D ¼ 1eEtotal; 1e ¼ 12 j
s

v
; J ¼ jvKD;

K ¼
1e 2 10

1e

:

ð39Þ

In these relationships, 1e and K are the equivalent

permittivity and electric contrast of the dielectric, respect-

ively. The vector D is represented in a trilinear hexahedron

by its three local components,

Dðu; v;wÞ ¼ Duðu; v;wÞiuðv;wÞ þ Dvðu; v;wÞivðu;wÞ

þ Dwðu; v;wÞiwðu; vÞ; ð40Þ

where the local base unit vectors and the Lamé coefficients

are obtained in a manner similar to that for bilinear

quadrilaterals. It appears that it is very suitable to adopt

the following basis and testing functions in this case [5]:

DðbÞ
uijkðu; v;wÞ ¼ DðtÞ

uijkðu; v;wÞ

¼
1

evðu;wÞewðu; vÞsin avwðu; v;wÞsin auðvwÞðu; v;wÞ

	PiðuÞQjðvÞQkðwÞiuðv;wÞ;

0 # u; v;w # 1; i ¼ 0; 1;…;Nu;

j ¼ 0; 1;…;Nv; k ¼ 0; 1;…;Nw:

ð41Þ

The angle auðvwÞðu; v;wÞ is that between the u coordinate line

and the v–w coordinate surface. We use these basis function

to satisfy the boundary condition for the continuity of the

normal component of vector D over a bilinear quadrilateral

shared by two hexahedrons. The expression for the

components Dv and Dw are analogous.

The volume differential element of a trilinear hexahedron

is given by

dVuvwðu; v;wÞ ¼ euðv;wÞevðu;wÞewðu; vÞiuðv;wÞ·½ivðu;wÞ

£ iwðu; vÞ�du dv dw

¼ euðv;wÞevðu;wÞewðu; vÞsin avwðu; v;wÞ

	 sin auðv;wÞðu; v;wÞdu dv dw: ð42Þ

4.2. Excitation of bodies

The most general type of excitation of bodies is that

distributed over its entire volume. The Galerkin generalized

voltages related to the u-component of the test function in

this case is

Uijk ¼
ð1

u¼0

ð1

v¼0

ð1

w¼0
DðtÞ

uijkðu; v;wÞ·Eiðu; v;wÞ

dVuvwðu; v;wÞ

¼
ð1

u¼0

ð1

v¼0

ð1

w¼0
PiðuÞQjðvÞQkðwÞ

›rðu; v;wÞ

›u
·

Eiðu; v;wÞdu dv dw;

i ¼ 0; 1;…;Nu; j ¼ 0; 1;…;Nv;

k ¼ 0; 1;…;Nw:

ð43Þ

If we assume the excitation to exist in a very thin volume

near a hexahedron side, in the limit when this thickness

becomes vanishingly small, but the difference of the scalar-

potential across the hexahedron side, normal to it, remains

finite, we obtain an excitation analogous to the point-delta

and line-delta generators. We term such an excitation the

surface-delta generator. Of practical importance are only

surface-delta generators with constant voltage over the

entire bilinear quadrilateral, and we consider this case only.

Let the side OABC of the hexahedron OABCDEFG in

Fig. 4 contain a surface-delta generator. To simplify

derivations, let us assume that this hexahedron side is

planar, and the x-axis be normal to it. We replace the

generator by an impressed electric field as in Eq. (28), where

the generator electromotive force, V, has the reference

direction as in Fig. 4. The corresponding Galerkin

generalized voltages for the u-component of the test

functions are

Uijk ¼ VPið0Þ
ð1

u¼0
dðxÞdx

ð1

v¼0
QjðvÞdv

ð1

w¼0
QkðwÞdw

¼
V =½ðj þ 1Þðk þ 1Þ�; i ¼ 0

0; i – 0
;

(

i ¼ 0; 1;…;Nu; j ¼ 0; 1;…;Nv;

k ¼ 0; 1;…;Nw:

ð44Þ

Fig. 4. Two trilinear hexahedrons with common side.
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This expression is obtained in a manner similar to that in

obtaining Eq. (29), noting that in this case (Fig. 4)

cos bðu; v;wÞ ¼ sin auðvwÞðu; v;wÞ: ð45Þ

The voltages corresponding to v- and w-components of the

test functions are zero, since ivð0;wÞ·ix ¼ 0 and iwð0; vÞ·

ix ¼ 0:

4.3. Loads inside bodies

Since there is always an electric field at all points of a

volume element, it can be visualized as a load distributed

throughout the volume. We again introduce a compensating

impressed electric field

Ecðu; v;wÞ ¼ 2Gðu; v;wÞDðu; v;wÞ;

Gðu; v;wÞ ¼
1

1eðu; v;wÞ
;

ð46Þ

where Gðu; v;wÞ may be termed the equivalent elastance of

the material. As a result, we have the following corrections

of the Galerkin generalized impedances for the u-com-

ponent of the test functions and the u-component of the basis

functions:

DZijki0j0k0 ¼2
ð1

u¼0

ð1

v¼0

ð1

w¼0
DðtÞ

uijkðu;v;wÞ·Ecðu;v;wÞ

	dVuvwðu;v;wÞ

¼
ð1

u¼0

ð1

v¼0

ð1

w¼0
Gðu;v;wÞPiðuÞQjðvÞQkðwÞPi0 ðuÞ

	Qj0 ðvÞQk0 ðwÞ

	
euðv;wÞ

evðu;wÞewðu;vÞsinavwðu;v;wÞsinauðv;wÞðu;v;wÞ

	dudvdw;

i;i0 ¼0;1;…;Nu; j;j0 ¼0;1;…;Nv; k;k0 ¼0;1;…;Nw:

ð47Þ

We can superimpose to this volume load a load concentrated

near a hexahedron side, in analogy with point-delta and line-

delta loads. We shall term such a load the surface-delta

load. Assume that such a load, Z0, exists over the

hexahedron side OABC (Fig. 4). The compensating

impressed electric field is

Ecðu;v;wÞ¼2jvZ0SvwðuÞKðu;v;wÞDðbÞ
uijkðu;v;wÞdðxÞix; ð48Þ

where SvwðuÞ is the area of the part of v–w parametric

surface which belongs to the hexahedron [Svwð0Þ is the area

of the hexahedron side OABC]. Note that this field is not

constant over the loaded surface, since current density is not

generally constant. The corresponding addition to

the Galerkin impedance matrix is

DZ0jk0jk ¼ jvZ0Svwð0Þ
ð1

v¼0

ð1

w¼0

	
v2jw2kKð0;v;wÞ

evð0;wÞewð0;vÞsinavwð0;v;wÞ
dv dw;

j¼ 0;1;…;Nv; k¼ 0;1;…;Nw

ð49Þ

ðDZ ¼ 0 for i– 0Þ:

5. Numerical examples

All the described excitations and loads have been

included in a general large-domain (higher-order) integral-

equation method for analysis of 3D electromagnetic

structures composed of thin wires, metallic surfaces, and

inhomogeneous dielectric bodies [7], and the associated

General ElectroMagnetic code, GEM. Numerical results

presented below were all obtained by GEM.

5.1. Metallic surface antenna

As the first example, consider half a bow-tie antenna

above a ground plane, Fig. 5, driven at the base (at the

ground plane) by a line-delta generator. The dimensions of

the antenna are given in the figure caption. The conductance

and susceptance of the antenna versus frequency are shown

in Fig. 6. Also shown are experimental results [4] and those

for the same antenna with a short cylindrical segment of

diameter the same as the strip width (the segment is short,

and there is no need for the equivalent diameter), driven by a

TEM magnetic-current frill with b=a ¼ 2:3: We see an

excellent agreement between the three sets of results. Note

that if the wire segment is used, a wire-to-plate junction

model [4] is needed.

Fig. 5. Half a bow-tie antenna above ground plane (w ¼ 6 mm;d ¼ 110 mm;

h ¼ 108 mm; s ¼ 12 mm).
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5.2. Printed strip antenna

Shown in Fig. 7 is a printed strip monopole antenna

above a ground plane. The details are given in the figure

caption. The antenna is considered with the finite dielectric

substrate, as indicated. Fig. 8 shows the antenna conduc-

tance and susceptance versus frequency, compared with the

results for the equivalent wire antenna with coaxial

magnetic coating obtained with WireZeus [3] (this equiv-

alency is possible for printed narrow-strip antennas on thin

substrates). An excellent agreement of the two sets of results

is observed.

Note that if a model with a point-delta generator (or a

TEM magnetic-current frill) is used, in conjunction with Js

and D as unknown quantities over the strip and in the

dielectric substrate, respectively, a short wire segment is

needed, which has to be partly immersed into the dielectric

substrate. As a consequence, delicate partitioning of the part

of the substrate which is in contact with the wire is required,

resulting in less stable results.

5.3. Capacitively loaded strip antenna

The impedance and radiation pattern of thin cylindrical

antennas can be made remarkably broadband by appropriate

loads along their length [2]. Capacitive loads are easiest to

manufacture, and do not introduce losses. We consider such

a case as an example.

If there are only few loads separated by distances much

greater than the wire radius, any technique for thin-wire

analysis can predict the antenna properties accurately. If the

loads are close, however, this is not possible due to the

reduced kernel approximation. The proposed line-delta

loads and generators enable a significantly more accurate

analysis of such structures.

Consider the capacitively loaded strip monopole

antenna sketched in Fig. 9. The dimensions of the strip

segments are given in the figure caption. Let the

capacitance between the strips be C ¼ 1.3 pF, corre-

sponding to a reactance of XC ¼ 2j122 V at 1 GHz.

Shown in Fig. 10 is the conductance and susceptance of

the antenna. We observe that the antenna exhibits a

remarkable broadband property in its admittance.

Fig. 6. Conductance (G ) and susceptance (B ) of the antenna from Fig. 5,

versus frequency — line-delta generator, – – – TEM magnetic-current

frill, X, W measured [4].

Fig. 7. Printed strip monopole antenna above ground plane (h ¼ 250 mm;

w ¼ 10 mm; a ¼ 40 mm; b ¼ 270 mm; 1r ¼ 2; thickness of the substrate is

t ¼ 2 mm).

Fig. 8. Conductance (G ) and susceptance (B ) of the antenna from Fig. 7,

versus frequency — line-delta generator, X, W equivalent wire antenna with

coaxial magnetic coating (results obtained with WireZeus [3]).
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5.4. Imperfectly-conducting rod antenna

Consider next a simple example of a resistive rod of

square cross-section, of cross-section area S ¼ 1 cm2; and

of length l ¼ 50 cm: Let the rod be made of a conductive

material, of relative permittivity 1r ¼ 1 and conductivity

s ¼ 1S=m: Assume that the rod is excited in the middle by a

surface-delta generator of frequency f ¼ 300 MHz; and emf

V ¼ ð1 þ j0ÞV : Due to large losses, such an antenna

practically does not radiate (the antenna efficiency is only

h . 1%).

The structure was analyzed in two ways: (1) as described,

using the volume formulation of the Galerkin large-domain

method (Section 4), and (2) as an equivalent wire dipole

(Section 2), of radius a ¼
ffiffiffiffiffi
S=p

p
(the electrostatic equivalent

radius of the square rod), with a constant resistance per unit

length of R0 ¼ 1=ðsSÞ ¼ 10 V=m: (For evaluating R0 we can

use the dc formula, since the skin effect is not pronounced-

the skin depth is about 3 cm.)

Fig. 11 shows the current intensity, I(u ), along one half

of the rod, obtained by the two procedures. The

admittance as observed by the surface-delta generator is

Yrod ¼ ð0:995 þ j0:976Þ mS; while the admittance

observed by the point-delta generator is Ywire ¼ ð1:06 þ

j1:04Þ mS: From Fig. 11 and from the admittance values

we notice an excellent agreement of the two groups of

results, i.e. that the surface-delta generator yields the

results of the same order of accuracy as the point-delta

generator.

5.5. Conical dielectric antenna

As another example of the application of the surface-

delta generator, consider the conical dielectric antenna of

square cross-section shown in Fig. 12. We assume the

antenna to be excited by the indicated surface-delta

generator. Note that any other generator model (e.g. two

plates pressed onto the small frustums and interconnected

by a short piece of wire with a point-delta generator) would

be both very complicated, and the results could be quite

unstable. The excitation with the surface-delta generator is

the simplest possible and yields very stable results. In

addition, this kind of excitation is simple to realize using a

section of a strip line.

Let the relative permittivity of the cone be 1r ¼ 25; the

generator region be of side a ¼ 2 cm; the large base of

Fig. 9. Capacitively loaded strip monopole antenna. The strip width is

w ¼ 0:84 cm; and the segment lengths, l1; l2;…; l17; equal to (centimeters):

3.01, 2.97, 2.87, 2.65, 2.5, 2.2, 1.9, 1.7, 1.4, 1.1, 1.0, 0.8, 0.6, 0.5, 0.4, 0.3

and 0.24, respectively.

Fig. 10. Conductance (G ) and susceptance (B ) of the antenna from Fig. 9,

versus frequency.

Fig. 11. Current intensity along one half of a resistive rod of square cross-

section described in the text — surface-delta generator, volume formulation

(Section 4) X X X equivalent wire dipole (Section 2).

Fig. 12. Conical dielectric antenna of square cross-section.
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the frustum be of side b ¼ 6 cm; and its height be h ¼ 10

cm: Such an antenna turns out to be remarkably broadband

in both impedance and radiation pattern. The operating

range of the antenna is between 650 MHz and 1 GHz. Fig. 13

shows the resistance and reactance of the antenna versus

frequency. Note that with a compensating network for the

antenna reactance, a VSWR can be obtained of less than 2

with respect to 50V in that frequency range.

6. Conclusions

This paper has summarized the models for excitations

and loads commonly used in the analysis of 3D

electromagnetic structures based on BEM (MoM), and

has proposed simple new line-delta generators and loads

and surface-delta generators and loads. The first type of

generators and loads is extremely useful in the analysis of

structures (antennas, circuits, and devices) consisting

of conducting surfaces, and the other one in the analysis

of structures containing dielectric bodies. Although simple

physically, the models require considerable analytical

preparations in order to be implemented in an actual

algorithm. The paper has provided the complete deri-

vations and expressions for the Galerkin generalized

voltages and impedances corresponding to the new

generators and loadings.

The usefulness of the proposed generator and load

models is illustrated on a number of examples. On one

side, the examples illustrate significant reduction in the

complexity of the electromagnetic models with these new

generators and loads, as compared with any generators

and loads used so far. On the other side, the results

obtained are stable and agree very favourably with

available experimental and theoretical results.

It is believed that the novel simple models of generators

and loads can be incorporated in other methods for the

analysis of 3D electromagnetic systems, with comparable

advantages as in the large-domain (higher-order) Galerkin

BEM outlined in this paper.
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[9] Popović BD. Electromagnetic field theorems. IEE Proc Part A 1981;

128(1):47–63.
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Notaroš was the recipient of the 1999 Institution of Electrical Engineers

(IEE) Marconi Premium.
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