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with the Shanks’ transformation. It is known that it works effectively
for slowly convergent series with sign-alternating terms [13]. However,
the Kummer’s method of the 2nd order provides rather fast conver-
gence, and, therefore, additional application of the Shanks’ transforma-
tion, that itself requires performing additional operations, would only
complicate the algorithm and give weak effect. If we neglect that effect
and suppose that the computation times for the Kummer’s method of
the 2nd order in [9] and here are identical at the point � � � � �, then
the curves corresponding to the Ewald’s method taken from [9] will
occupy the positions as shown in Figs. 3 and 4. The supposition made
above does not allow drawing an unambiguous conclusion here on the
effectiveness of the Kummer’s method of the 2nd order with respect
to the Ewald method. That point still require a more careful additional
study. However we can conclude now that the Kummer’s method of
the 4th order already explicitly excels the Ewald method for the in-
dicated values of the relative error. For this reason, we did not carry
out calculations with using the Kummer’s method of the 6th order pro-
viding even higher effectiveness. The values of the maximum relative
error considered here are already quite acceptable for practical calcu-
lations of the Green’s function. With decreasing the specified values
for the error, the Ewald method, providing Gaussian convergence rate,
can turn out to be more effective than the 4th order Kummer’s method.
In that case, it would be appropriate to compare it with the Kummer’s
method of the 6th order.
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Continuously Inhomogeneous Higher Order Finite
Elements for 3-D Electromagnetic Analysis

Milan M. Ilić, Andjelija Ž. Ilić, and Branislav M. Notaroš

Abstract—A novel higher order entire-domain finite element technique is
presented for accurate and efficient full-wave three-dimensional (3-D) anal-
ysis of electromagnetic structures with continuously inhomogeneous mate-
rial regions, using large generalized curved hierarchical curl-conforming
hexahedral vector finite elements that allow continuous change of medium
parameters throughout their volumes. This is the first general 3-D imple-
mentation and numerical demonstration of the inherent theoretical ability
of the finite element method (FEM) to directly treat arbitrarily (continu-
ously) inhomogeneous materials. The results demonstrate considerable re-
ductions in both number of unknowns and computation time of the en-
tire-domain FEM modeling of continuously inhomogeneous materials over
piecewise homogeneous models. They indicate that, in addition to theoret-
ical relevance and interest, large curved higher order continuous-FEM ele-
ments also have great potential for practical applications that include struc-
tures with pronounced material inhomogeneities and complexities.

Index Terms—Computer-aided analysis, electromagnetic analysis, elec-
tromagnetic scattering, finite element method, higher order elements, in-
homogeneous media, method of moments.

I. INTRODUCTION

The finite element method (FEM) [1]–[3] in its various forms and im-
plementations has been effectively used in full-wave three-dimensional
(3-D) computations based on discretizing partial differential equations
in electromagnetics for about four decades. FEM methodologies and
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Fig. 1. Electromagnetic structure with continuously inhomogeneous materials
in the FEM computational domain.

techniques are especially efficient in modeling and analysis of struc-
tures that contain inhomogeneous and complex electromagnetic ma-
terials, and the FEM is well established as a method of choice for
such applications. Practically every FEM technique, within a really
abundant and impressive body of work in the field, derives the theory
and develops the FEM equations taking the advantage of the inherent
ability of the FEM to directly treat continuously inhomogeneous ma-
terials. This property would allow that the material parameters, com-
plex permittivity and permeability, of an electromagnetic structure can
be arbitrary functions of spatial coordinates in the FEM computational
domain, e.g., ���� and ����, with � standing for the position vector
of a point in the adopted coordinate system, as illustrated in Fig. 1.
However, it appears that there is not a single 3-D FEM technique or
code that actually implements ���� and ���� as such, and enables di-
rect computation on 3-D vector finite elements that include arbitrarily
(continuously) inhomogeneous materials. Also, there seems to be no re-
ported results of direct FEM analysis of continuously inhomogeneous
3-D closed- or open-region problems. Instead, FEM computations are
carried out on piecewise homogeneous approximate models of the in-
homogeneous structures, with ���� and ���� replaced by appropriate
piecewise constant approximations. Notable exceptions are a continu-
ously inhomogeneous model with 2-D curvilinear scalar elements for
magnetostatic analysis [4] and 1-D continuously inhomogeneous ele-
ments for uniform plane wave propagation problems [5]–[7].

In addition to considerable theoretical importance and interest,
numerical modeling employing continuously inhomogeneous finite
elements may find practical application in analysis of a broad range
of devices, systems, and phenomena in electromagnetics. In antennas
and propagation, the applications include antennas with continuously
inhomogeneous substrates [8], scattering and diffraction from inho-
mogeneous dielectric lenses used in lens antennas (e.g., Luneburg and
Maxwell lenses whose design is ultimately based on continuously
changing permittivity profiles [9]), propagation in the ionosphere
[10] and inhomogeneous plasmas [11], and absorbing coatings for
reduction of radar cross sections of targets. In electronics and optics,
examples may be processes in semiconductors with variety of doping
profiles used for fabrication of solid-state microelectronic devices,
optical integrated circuits that include devices with continuously
changing refractive indices, such as inhomogeneous diffused optical
waveguides [12], and radially inhomogeneous optical fibers [13].
Another group of applications includes inverse scattering problems,
non-destructive testing applications, microwave imaging, and electro-
magnetic interaction with continuously changing biological tissues
and materials (e.g., tomography [14]). In addition, with increasing in-
terest in electromagnetic metamaterials, FEM techniques for efficient
simulation of structures with arbitrary permittivity and permeability
profiles could effectively be applied in designs and engineering of
new artificial materials with desired properties beyond “standard” or
natural media. Finally, purely mathematical materials widely used
as artificial absorbers or perfectly matched layers (PMLs) for finite
difference or finite element mesh truncation may also be added to
the class of continuously inhomogeneous electromagnetic media, as

they typically have linearly or quadratically (or otherwise optimized)
changing parameters [15], [16].

From the numerical discretization point of view, modeling flexibility
of continuously inhomogeneous finite elements can be fully exploited
only if they can be made electrically large, which implies the use of
higher order field expansions within the elements. Namely, if a low-
order FEM technique is used, the elements must be electrically very
small (on the order of a tenth of the wavelength in each dimension),
because the fields are approximated by low-order basis functions. Sub-
division of the structure using such elements results in a discretization
of the permittivity and permeability profiles as well, so elements can be
treated as homogeneous (i.e., their treatment as inhomogeneous would
practically have no effect on the results). On the other side, higher order
FEM techniques [17]–[25] (note that a much more comprehensive list
of techniques is provided in [26]) enable � -refinement of the solution.
This, in general, may greatly reduce the number of unknowns and en-
hance the accuracy and efficiency of the analysis, and, in particular, lets
us use large geometrical elements (e.g., on the order of a wavelength in
each dimension), so that a possible development and implementation
of large continuously inhomogeneous finite elements seem to be both
straightforward and efficient. We refer to the direct FEM computation
on such elements as the entire-domain or large-domain analysis.

This paper presents a novel higher order entire-domain FEM tech-
nique for efficient 3-D analysis in the frequency domain of electromag-
netic structures with continuously inhomogeneous material regions,
based on Lagrange-type generalized curved parametric hexahedral el-
ements of arbitrary geometrical orders for the approximation of ge-
ometry in conjunction with higher order curl-conforming hierarchical
polynomial vector basis functions of arbitrary orders for the approxi-
mation of fields within the elements. Variations of medium parameters
are incorporated by means of the same Lagrange interpolating scheme
used for defining element spatial coordinates. The technique enables
using as large as about two wavelengths on a side curved FEM hex-
ahedra with arbitrary material inhomogeneities as building blocks for
modeling of the structure. It represents an extension of our higher order
FEM method in [20], and, to the best of our knowledge, this is the first
direct 3-D FEM analysis of continuously inhomogeneous materials. In
analysis of open-region problems, the FEM domain is truncated by hy-
bridization with the method of moments (MoM) [27], [28]. Although
the primary goal of this work is to numerically demonstrate that the
FEM can indeed directly treat arbitrarily inhomogeneous regions, ac-
curately, and as the first 3-D implementation of continuous-FEM mod-
eling and analysis in high-frequency applications, the results in fact in-
dicate that large curved higher order continuous-FEM elements, being
computationally efficient, also have great potential for practical ap-
plications that include structures with pronounced material inhomo-
geneities and complexities.

II. NUMERICAL METHOD

In our analysis method, the computational domain in Fig. 1 is first
tessellated using geometrical elements in the form of Lagrange-type
generalized curved parametric hexahedra of arbitrary geometrical or-
ders ��� �� , and �������� � �� � ��, analytically described as
[20]
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where ���� � ����� �� � ��� are position vectors of interpolation nodes
and 	�

� represent Lagrange interpolation polynomials in the � coor-
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Fig. 2. Generalized curved parametric hexahedron defined by (1), with contin-
uous variations of medium parameters given by (2); Cubical parent domain is
also shown.

dinate, with �� being the uniformly spaced interpolating nodes defined
as �� � ��� �������� � � �� �� � � � � ��, and similarly for ��

� ���

and ��
� ���. Equation (1) defines a mapping from a cubical parent

domain to the generalized hexahedron, as illustrated in Fig. 2. The
electric field in the element, ���� �� ��, is approximated by means of
curl-conforming hierarchical polynomial vector basis functions given
in [20]; let us denote the functions by ���� �� ��, and the respective ar-
bitrary field-approximation orders of the polynomial by 	�� 	� , and
	��	�� 	�� 	� � ��.

Continuous variations of medium parameters in the computational
model can be implemented in different ways. In our technique, how-
ever, we opt to take full advantage of the already developed Lagrange
interpolating scheme for defining element spatial coordinates in (1),
which can be conveniently reused to govern the change of both the
complex relative permittivity and permeability, 
� and ��, within the
element in Fig. 2, as follows:
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where 
�	��� � 
����� �� � ��� are the relative permittivity values at
the points defined by ��� � ����� � ����� � �� position vectors
of spatial interpolation nodes, ���� , and similarly for ��. In the case of
�� � �� � �� � �, for example, 
� and ��, are trilinear functions
throughout the element volume, governed by the given fixed values at 8
points—hexahedron vertices. For �� � �� � �� � �, the input are
values for 
� and �� at 27 interpolation nodes, and the corresponding
profiles are triquadratic functions, and so on. This technique allows
simple definitions of inhomogeneity profiles, as it utilizes the nodes
already defined by the generalized hexahedral finite element mesh. Of
course, the material profile is in general represented by many (large)
elements in the FEM model. With such representation of materials,
we then solve for the unknown field coefficients by substituting the
field expansion ���� �� �� in the Galerkin weak form of the curl-curl
electric-field vector wave equation [20]
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where 
� � �
�

��� is the free-space wave number, � is the volume

of the element in Fig. 2, bounded by the surface �, and � is the outward

unit normal on �. Once the field coefficients are found, all quantities
of interest for the analysis are obtained in a straightforward manner.

III. RESULTS AND DISCUSSION

Next, we validate the new technique for entire-domain FEM anal-
ysis of problems with continuously inhomogeneous materials and eval-
uate and discuss its accuracy and efficiency in two characteristic exam-
ples, that combined include both closed- and open-region structures,
with both flat and curved surfaces. The general applicability, conver-
gence of solutions, and limitations of 3-D higher order large finite ele-
ments have been discussed thoroughly in our previous work, [20], [23],
[25], [28], including examples of nonuniform waveguides and cavi-
ties with arbitrary discontinuities, and structures (waveguide discon-
tinuities and scatterers) with reentrant corners, sharp edges, and sin-
gular fields. Overall, higher order solutions are truly beneficial only for
smooth regions, where large elements are possible. However, because
the implemented basis functions are hierarchical, element orders in the
model can also be low, so that the low-order modeling approach is ac-
tually included in the higher order modeling and both large and small
elements can be combined together in the same model, but clearly our
method is most suitable for problems where the most of the structure
(homogeneous or inhomogeneous) can be tessellated using large higher
order curved elements. All numerical results are obtained using an IBM
ThinkPad T60p notebook computer with Intel T7200 Core2 CPU run-
ning at 2.0 GHz and with 2 GB of RAM under Microsoft Windows XP
operating system. In all examples, polynomial orders of field approx-
imations are chosen optimally—by performing �-refinement system-
atically, until negligible difference in the two consecutive solutions is
observed.

The first example is a closed-region problem—a rectangular wave-
guide, of cross-sectional dimensions � and �, with a load in the form
of a tightly fit continuously inhomogeneous dielectric slab, as shown in
Fig. 3. The length of the slab and the lengths of air-filled waveguide por-
tions on both sides of the slab, between the ports, are the same ���. The
slab is lossy, with the real and imaginary parts of the relative permit-
tivity �
� � 
��� �
��� � of the dielectric linearly changing from 
�� � ���
to 
�� � 
 and from 
��� � ��� to 
��� � �, respectively, along the slab
(�� � � everywhere), and this change is depicted in Fig. 3. Note that the
loss-tangent in the material is rather large, ranging from ��� � � ���
�
to ��� � � �����. Waveguide walls, on the other side, are considered
to be lossless. In the entire-domain FEM model of the structure, the
complete loaded waveguide is modeled by three hexahedral elements
of the first geometrical order [�� � �� � �� � � in (1)] that coin-
cide with the three waveguide sections, and the permittivity profile in
Fig. 3 is incorporated in (2) for the central element. The optimal poly-
nomial orders of the field approximation are 	� � �� 	� � �, and
	� � � in the central element, and 	� � �� 	� � �, and 	� � � in
other two elements, with directions of local coordinates �� �, and � in
elements corresponding, respectively, to element dimensions �� �, and
�. This arrangement results in a total of as few as 205 FEM unknowns,
and a total of only 3 seconds of computation time for the entire fre-
quency range considered (36 frequency points).

To both validate the continuously inhomogeneous FEM model of
the loaded waveguide and evaluate its efficiency against piecewise ho-
mogeneous approximate models, the results obtained by the presented
technique are compared with the results of the FEM analysis of models
with the slab replaced, respectively, by 	� � �� �� �, and � equally
thick homogeneous plate-like layers, approximating the continuously
inhomogeneous profile, which is illustrated in Fig. 3 for the case of
	� � �. Fig. 4 shows the magnitude of the computed modal��� param-
eter of the waveguide, versus frequency, where we observe a monotonic
convergence of the results using the layered-FEM technique toward
the results of the continuous-FEM analysis as the number of layers
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Fig. 3. Three-element higher order FEM model of a WR-15 waveguide (� �
���� mm, � � ���� mm, and � � ��� mm) with a continuously inhomoge-
neous lossy dielectric load (central element) whose complex permittivity varies
linearly in the longitudinal direction; Five-layer model 	� � �
 of the load
with piecewise constant approximation of real and imaginary permittivity pro-
files is also shown.

in the former approach is increased, with a good agreement between
the 7-layer and continuous FEM solutions (theoretically, only an infi-
nite number of layers would give the exact solution to the problem in
Fig. 3). The total number of unknowns and simulation time for each of
the solutions are given in the legend of Fig. 4. As an additional verifica-
tion of the analysis, the 7-layer model is simulated using a higher order
MoM technique based on the surface integral equation (SIE) approach
(MoM/SIE technique) [27], as a reference solution, and an excellent
agreement of these and the corresponding FEM results is observed.
We conclude that the continuous-FEM analysis is substantially more
efficient than the layered-FEM approach, which requires about 2.78
times more unknowns and 2.67 times longer computation for a lower
accuracy (even more layers and unknowns are needed for a more ac-
curate solution). Note that all results in Fig. 4 are obtained by higher
order techniques, and that the advantage in the efficiency of the contin-
uous-FEM model would be even more pronounced if compared with
low-order FEM solutions on layered models. Note also that the higher
order FEM simulation of the 7-layer model requires about 6 times fewer
unknowns and 30 times shorter computation time than the presented
higher order MoM/SIE solution. Note finally that the difference in the
number of unknowns and simulation time is even larger in favor of the
entire-domain FEM modeling of continuously inhomogeneous mate-
rials over piecewise homogeneous models in cases of 2-D and 3-D in-
homogeneities, where the medium parameters vary in two and three
dimensions, respectively.

The second example, illustrating entire-domain FEM modeling of
open-region continuously inhomogeneous structures, that also possess
curvature, is a lossless spherical dielectric ��� � �� scatterer, of radius
�, and a linear radial variation of relative permittivity ��� � ��

�� from
�� � � at the surface to �� � � at the center of the sphere, as depicted
in Fig. 5(a). The scatterer is situated in free space and illuminated by
a uniform plane wave. To represent the permittivity variation using ex-
pansions in (2), the sphere is modeled by 7 curvilinear hexahedral FEM
elements of the second geometrical order ��� � �� � �� � ��, that
is, by one small sphere-like hexahedron, ���� in radius, at the center
and 6 “cushion”-like hexahedra between the central sphere and the scat-
terer surface, onto which 6 curvilinear quadrilateral MoM patches are

Fig. 4. Magnitude of the modal � parameter of the loaded waveguide in
Fig. 3: continuous-FEM solution, layered-FEM solutions on four different
piecewise homogeneous models, and reference MoM/SIE solution.

Fig. 5. FEM-MoM analysis of a continuously inhomogeneous spherical dielec-
tric scatterer: (a) radial permittivity variation and (b) four-layer approximate
model.

attached. Namely, the FEM domain is truncated at the sphere surface
by means of unknown electric and magnetic surface currents, of den-
sities �� and ���, that are evaluated by the MoM/SIE, giving rise to
a hybrid higher order FEM-MoM solution [28]. The field/current ap-
proximation orders are �� � �� � �� � � for all FEM “cushions”
and 4 for the central FEM element and all MoM patches (in both direc-
tions), resulting in 2560 FEM and 384 MoM unknowns in the hybrid
model, and a total of 976 s of simulation time for 35 frequencies.

Validation and efficiency evaluation of the continuously inhomoge-
neous FEM-MoM model, using large curved FEM elements with con-
tinuously changing ��, is carried out in comparison with solutions ob-
tained by higher order FEM-MoM simulations of piecewise homoge-
neous approximate models of the structure in Fig. 5(a), where each of
the six “cushions” of the continuous model are replaced, respectively,
by�� � �� 	� 
, and � homogeneous thin “cushions” (curved plate-like
layers), which approximate the continuously inhomogeneous profile,
with Fig. 5(b) showing the model for �� � 
. So, each spherical layer
in layered models is represented by 6 FEM elements of the second ge-
ometrical order. Field-approximation orders in these elements are 2 in
the radial direction and 5 in transversal directions. Shown in Fig. 6
is the monostatic radar cross section (RCS) of the sphere, normal-
ized to ���, as a function of ����� �� being the free-space wavelength.
It can be observed that, with increasing ��, the solution obtained by
means of the layered-FEM-MoM technique monotonically converges
to the results of the continuous-FEM-MoM analysis, as well as that
the FEM-MoM solution for the 7-layer model accurately matches a
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Fig. 6. Normalized monostatic radar cross section (� is the free-space
wavelength) of the spherical scatterer in Fig. 5(a): results using the contin-
uous-FEM-MoM, four different layered-FEM-MoM models, and reference
MoM/SIE model.

reference pure MoM/SIE solution [27] for the same model. From the
data on the numbers of unknowns (first number FEM—second number
MoM) and simulation times for individual solutions given in the figure
legend, we realize that the continuous material model is again substan-
tially more efficient than the layered analysis, namely, it is about 2.39
times faster than the most accurate layered solution (for �� � �), and
the reduction in the total number of unknowns is by approximately the
same factor.

IV. CONCLUSION

This paper has presented a novel higher order entire-domain FEM
technique for accurate and efficient analysis of electromagnetic struc-
tures with continuously inhomogeneous material regions, using large
finite elements that allow continuous change of medium parameters
throughout their volumes. The elements are Lagrange-type general-
ized curved parametric hexahedra of arbitrary geometrical orders with
curl-conforming hierarchical polynomial vector basis functions of ar-
bitrary field-approximation orders and Lagrange interpolating scheme
for variations of medium parameters. This is the first 3-D implemen-
tation of the inherent theoretical ability of the FEM to directly treat
continuously inhomogeneous materials, which allows that the material
parameters can be arbitrary functions of spatial coordinates, ���� and
����, in the FEM computational domain.

The examples have shown that effective higher order FEM hexa-
hedral meshes, constructed from a very small number of large finite
elements with �-refined field distributions of high approximation or-
ders, which is one of the strongest points of the higher order mod-
eling paradigm, can be applied even in the presence of material in-
homogeneities. They have demonstrated higher efficiency, and con-
siderable reductions in both number of unknowns and computation
time, of the entire-domain FEM modeling of continuously inhomoge-
neous materials over piecewise homogeneous (layered) models, when
higher order geometrical and field approximations are used. The advan-
tage in the efficiency of the continuous-FEM analysis should be even
more pronounced if compared with low-order FEM solutions on lay-
ered models. So, in addition to numerically demonstrating that the FEM

can indeed directly treat continuously inhomogeneous materials accu-
rately, the results have in fact indicated that large curved higher order
continuous-FEM elements, being computationally efficient, also have
great potential for practical applications in analysis of devices, systems,
and phenomena that include material regions with pronounced inhomo-
geneities and complexities.
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Extended Analysis of Retrodirective Cross-Eye Jamming

W. P. du Plessis, J. W. Odendaal, and J. Joubert

Abstract—An extended and rigorous analysis of retrodirective cross-eye
jamming in a radar system scenario is presented. This analysis removes
the approximations that limit the validity of other analyses of cross-eye
jamming. These results imply that under certain conditions, a monopulse
radar system can be more easily deceived than suggested by conventional
cross-eye analyses. Furthermore, the cross-eye jammer antenna patterns
do not affect the induced monopulse error.

Index Terms—Electronic warfare, radar countermeasures, radar
tracking.

I. INTRODUCTION

Cross-eye jamming is an electronic warfare (EW) technique that in-
duces an angular deception in a radar system by recreating the worst-
case glint angular error [1]–[6]. The target angular error is created by
transmitting out of phase signals from two or more onboard antennas,
thereby deceiving the radar into believing that the target is spatially re-
moved from its true position.

In analyzing the performance of cross-eye jamming on a radar
system, the effect of cross-eye jamming is generally considered as a
distortion of the phase front incident on the antenna(s) of the radar
system [2]–[5] or a change in the direction of the incident Poynting
vector [7]. In [8], Kajenski has shown that the phase-front and Poynting
vector approaches to analyzing cross-eye jamming are equivalent.
Cross-eye jamming has also been analyzed using first-order Taylor
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Fig. 1. The geometry used for the cross-eye jammer derivation.

approximations to either the sum- and difference-channel antenna
patterns [9], [10] or the lobes of an amplitude-comparison tracking
radar system [11]. Recently, a graphical vector representation of the
fields incident on a radar antenna due to cross-eye jamming was used
to analyze cross-eye jamming performance [6], [12].

These analyses assume (either directly or indirectly through the way
the antenna patterns are determined) that amplitude variations over the
radar antenna aperture are negligible. Another significant limitation
of conventional cross-eye analyses is that they ignore the retrodirec-
tive implementation of most cross-eye systems [2], [3], [5], [6]. While
retrodirective (Van Atta) arrays have been extensively considered in the
literature (e.g., [13]–[19]), the work has concentrated on the issues like
mutual coupling and mismatches in the array itself rather than its ef-
fects on a radar.

This communication presents the summarized results of an extended
and rigorous analysis of cross-eye jamming in a monopulse radar
system scenario that has recently been performed [20]. The extended
analysis takes into consideration the physical separation between
the antennas of a monopulse radar system and derives an expression
for the induced angular error due to the cross-eye jammer. Induced
angular error results that demonstrate the differences between the
conventional and extended cross-eye jamming analyses are presented.

Section II outlines the derivation of the extended analysis. Section III
presents a comparison between induced angular errors obtained with
the classical and extended analyses, and also considers some of
the more significant implications of the extended analysis. Finally,
Section IV provides a brief conclusion.

II. THEORY

The purpose of cross-eye jamming is to produce an angular error in
a radar system, thus causing the radar to believe that the target is spa-
tially removed from its true position. Consider the cross-eye jamming
scenario shown in Fig. 1. Assume the phase-comparison monopulse
radar consists of two identical antennas separated by a distance of ��
(denoted by the circles in Fig. 1). The cross-eye elements have a linear
separation of �� at a range of � giving an angular separation of ���
from the radar’s perspective (denoted by the crosses in Fig. 1). The
directions to the top and bottom cross-eye antennas are thus �� � ��

respectively.
While amplitude-comparison monopulse systems are not explicitly

considered in this correspondence, Sherman [10] shows that amplitude-
and phase-comparison monopulse systems are equivalent.

The underlying principle of cross-eye jamming is that the radar is not
able to resolve the individual jammer antennas and therefore responds
to their combined effect. This implies that the cross-eye jammer system
is in the far field of the radar antenna �� � ���. However, it is as-
sumed that although the radar is in the far field of the individual jammer
antenna elements, it is not in the far field of the complete cross-eye
jammer system [6], [12].
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