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Comparison of Higher Order FEM and MoM/SIE
Approaches in Analyses of Closed- and Open-Region
Electromagnetic Problems

Milan M. lli &, Andjelija Z. Ili &, and Branislav M. Notaro$

Abstract: We investigate the efficiency of the two most popular freaquyedomain ap-
proaches in computational electromagnetics (CEM); thefeliement method (FEM)
and the method of moments based on the surface integralieqstoM/SIE), both
in the context of the higher order modeling. We compare thfopmances of the
two approaches in two simple three-dimensional (3-D) potd with similar meshes,
chosen as benchmark examples. The chosen examples demmhdtrwave analysis
of a wave-guiding structure (a closed-region problem) ascadterer in free space (an
open-region problem).

Keywords: Computer-aided analysis, electromagnetic analysisefai@dment method,
higher order elements, inhomogeneous media, method of misme

1 Introduction

IGHER ORDERfull-wave three-dimensional (3-D) large-domain techmgjin
H computational electromagnetics (CEM) have proven thevasedbo be flexi-
ble and efficient in modeling of complex structures [1-6].eTeduction in com-
putation costs is by up to one to two orders of magnitude whenpared to low
order (small-domain) techniques, for the same or bettewracy. Choice of a par-
ticular numerical method such as the finite element meth&MFor the method
of moments based on the surface integral equation (MoM/&lEuided by the
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nature of the problem at hand. FEM, where system matricelsaarded and highly
sparse, is often computationally more efficient. Additibnat is considered to

be the method of choice for modeling inhomogeneous mediss{ply nonlinear

and/or anisotropic) and geometrically versatile struesurMoM/SIE, on the other
hand, is considered to be superior in dealing with openeregiroblems. As an
answer to dealing with the complexities in modeling real l@tructures, where
various aspects mentioned above appear all at once, hyBNtt oM approaches
emerge; the fields within the chosen inhomogeneous or otbemomplex domain
are modeled by FEM and the domain itself is truncated by mefineknown sur-

face currents (electric and magnetic) which are evaluayeddM [7, 8].

Our goal in this paper is to compare the efficiency of higheleo-EM and
MoM/SIE techniques in the analyses of structures with inbgemeous domains.
Some practical applications where such domains are inddlvelude electromag-
netic (EM) scattering from human tissues or radar absorboagings, as well as
scattering and diffraction from inhomogeneous dieleckeicses used in lens an-
tennas. To the best of our knowledge, this kind of comparfsas not been done
before, probably because practically all of the commelscelailable professional
software packages are based on the low order, small-dorppnoaches. A notable
exception is WIPL-D [9].

In section 2 we briefly describe the theoretical backgrountthe higher order
FEM and MoM software implementations. In section 3 we aralizo simple
problems involving inhomogeneous dielectric domains, eschmark examples.
For the comparison of approaches to be fair, we choose thmpga that have
the same or similar meshes in both approaches. Additignally choice of the
two examples is such that the first example is a closed-rggioblem, generally
more conveniently analyzed by FEM, and the second is an mgggan problem,
generally more conveniently analyzed by MoM. Hence, we sbdbe first example
to feature a discontinuity in rectangular waveguide, whsrthe second example
analyzes a scatterer in free space.

2 Theory and Implementation

Our higher order FEM approach is based on the discretizafitime curl-curl vector
wave equation

Ox y 0xE—ksgE =0, (1)

whereg, andy; are complex relative permittivity and permeability of thdomo-
geneous (possibly lossy) medium, respectively, land w, /g is the free-space
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wave number. Galerkin-type weak form discretization ofy(i&)ds
/Vur‘l(Dxq)-(DxE)dV—ké/Vera(-Ed\/ _

&)
KoZo &N H dS, k=1, Neew.

whereV is the volume of the FEM regiorgis the boundary surface of the region,

nis the outward unit normdldS = ndS), Z; is the free space impedance, awgy

is the total number of the expansion functions. Formal festdansion used for the

approximation of electric-field in (2) is

Nrem

E= I; ye 3)

whereg are the curl-conforming hierarchical polynomial basisdiions [3,4], and
y are unknown field-distribution coefficients. The matrixrfoof (2) is

[FEM]{v}:jkozoﬁeK-<an>ds 4)

Elements of the FEM matrix are the inner products of the eygadield-expansion
basis functions explicitly derived in [3] and [4]. The eleméype used for volume
geometrical modeling in the FEM approach is the general@zgatilinear hexahe-
dron, shown in Fig. 1. Lagrange interpolating polynomid@kdre used to define

Fig. 1. Generalized curvilinear hexahedron, with looal v— w coordinates, used for
volume geometric discretization in the FEM approach.

the mapping from the cubical parent domain to the Lagragge-turved para-
metric hexahedron. In our examples given in Section 3, gdized hexahedral
elements in FEM meshes reduce to simple bricks. The coupetrie-field inte-

gral equation/magnetic-field integral equation (EFIE/EJ$ystem of equations to



212 M. M. llic, A. Z llié, and B. M. Notaros:

be solved for electrids and magnetidMs surface currents on each of the MoM sur-
faces, generally residing in between the two homogenegisime with parameters
€1, U1 andé&y, Lo, in the higher order large-domain MoM/SIE approach is

[E(Js,Ms, &1, 11)]iang+ (Ei)tang = [E(—Js, —Ms, €2, l2) ang; (5)

[H(Is,Ms, &1, H1)]iang+ (HiJtang = [H(—Js, —Ms, &2, i2) ang: (6)
where scattered electric fieklis represented by
E =E;\Js) +Em(Ms),
. 1 (7)
EJ(JS) = —j&)A— DCD, EM(MS) = _ED X F,

and scattered magnetic fiditlis represented by
H =Hwn(Ms) +H,(Js),

8
HM(Ms):—ij—DU, HJ(JS):%DXA. ( )

The system (5)-(6) is discretized by the substitution offtimenal electric and mag-
netic current expansions

Nmom Nmom

Js= > ajis, Ms= % Biis, (©)
; 13S; jZl 138;

where j5, are the divergence-conforming hierarchical polynomiai®dunctions
[6], into the potential equations

_ _J (o
A_u/SJSgdS ®= ws/sDS Jsgds

: (10)
F:s/M dS Os-Msgd UZJ_/D.M d
SSQSS sgds o Jso sgds
and solved for the values of unknown current distributioefticientsa; and ;,
i =1,...,Nvom, WhereNwowm is the total number of expansion functions. In the
above potential equationg,is the Green’s function to be evaluated separately for
each of the homogeneous regions. It is defined by
e R . (11)
g_ﬁa y=]wEU,

wheree and 4 are permittivity and permeability of the medium, respeadijyy and
w is the angular frequency of the implied time-harmonic iEoia
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The element type used for surface geometrical modelingerMbM/SIE ap-
proach is the generalized curvilinear quadrilateral, siow Fig. 2. Lagrange
interpolating polynomials [6] are used to define mappingrfrthe square parent
domain to the Lagrange-type curved parametric quadrdatein our examples
given in Section 3, generalized quadrilateral elements aivMneshes reduce to
simple rectangles, which also belong to the subset of lifimpiadrilaterals used
for the higher order MoM/SIE modeling in WIPL-D [9].

1%

Fig. 2. Generalized curvilinear quadrilateral, with locat v coordinates, used for surface
geometric discretization in the MoM/SIE approach.

3 Results and Discussion

Our extensive previous work [3, 4, 6], and [8], demonstrate=ellent agreement of
the simulation results with analytical results and/or nbeasments. This fact gave
us confidence to base the analysis in this paper only on noaheriodels. All
numerical results reported here are obtained using an IBMKplad T60p note-
book computer with Intel T7200 Core2 CPU running at 2.0 GHdearrMicrosoft
Windows XP operating system.

As the first example, consider a dielectrically loaded WReldangular waveg-
uide, shown in Fig. 3. The load is tightly fit inhomogeneouslettric slab. The
length of the slab and the lengths of the empty waveguideégmton both sides
of the slab are the same. The slab is inhomogeneous and létssgnsists of
three equally thick layers whose real and imaginary partthefrelative permit-
tivity (& = &/ —jg/') approximate a linear change frogh= 2 to ¢/ = 4 and from
g’ =0.2 to g = 2, respectively, along the slab. The corresponding redgtier-
mittivities are depicted in the inset of Fig. 3. The lossgiant in this example is
rather large and ranges from tan= 0.1 to tand = 0.5 along the slab. The slab
is non-magnetic. This example demonstrates analysis aisedtregion problem.
For the higher order FEM approach [4], the complete loadedegaide structure
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is modeled by 5 trilinear hexahedra (bricks) which coincidéh 5 waveguide sec-
tions shown in Fig. 3. Waveguide walls are considered to bgléss. The optimal
polynomial orders of the field approximations, for which gwution for the modal
Sparameters across the ports has converged, in the hexhbéinents range from
2 to 4 in different elements in different directions. Thissaigement results in 231
FEM unknowns. The higher order FEM result will be comparethwhe solu-
tion obtained by the higher order MoM/SIE approach. MoM/$t&del is not
excited by single propagating modes, but by using 2-podifegnetworks. Hence,
the model requires appropriate feeds as the extensions thrmi@veguide ports.
The analyzed waveguide structure with feeds is shown in EigThe feeds con-
sist of short-circuited waveguide sections with wire pbsounted some distance
away from the short-circuited end in the middle of the waveguThe wires have
delta-function generators at the bottom ends connectebetavaveguide. These
generators represent structure ports 1’ and 2’ for whichHparameters are firstly
calculated and later de-embedded [9, 10] to the planes tf fi@nd 2, respectively,
for comparison with FEM results. Polynomial expansionstfa surface currents
in the MoM/SIE model are optimally chosen and they range flioto 6 on differ-
ent surfaces in different directions. The MoM/SIE analydithe given example is
carried out using WIPL D [9].

Fig. 3. Loaded WR-15 waveguida £ 3.76 mm,b= 1.88 mm, anct = 2.5 mm). The load
is an inhomogeneous lossy dielectric slab modeled by thyeelly thick homogeneous
layers optimally approximating linear change of real andg@inary parts o;. This is also
a complete waveguide model for the FEM analysis.

In Figs. 5(a) and 5(b), the results for mo@&parameters of the loaded waveg-
uide obtained by the higher order FEM are compared with tluigained by the
higher order MoM/SIE approach. The results are calculate®bifrequency points
in the band of interest. Only magnitudes®f and$; parameters are shown, in
Figs. 5(a) and 5(b), respectively, as it was concluded thatphase characteris-
tics do not show significant differences and thus do not calgvant information
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Fig. 4. Model of the loaded waveguide including short-dited feeds with wire probes.
This model is used in the MOM/SIE analysid & ¢/2 =1.25 mm and = 1 mm).

for comparison. Corresponding number of unknowns and sitianl times for the
solutions are given in the legends. We observe an excelgneement between
the FEM solution and the MoM/SIE solution. However, a siguaifitly large num-
ber of unknowns is employed in the MoM/SIE solution, 1088npared to only
231 unknowns in the FEM solution. This results in signifitaldnger simulation
time required for the MoM/SIE smulation; 67 seconds comgaoeonly 1 second
required for the FEM simulation. Note that the presented NM®IE solution is
optimal in terms of the polynomial expansion orders for euts, it has converged
to the best possible solution for the given model, and it haggn to be invariant
to changes of the de-embedding parameters. Addition&léyptesented number
of unknowns and simulation time do not include the pre-satiohs of the waveg-
uide feeds, necessary for the de-embedding process [10}eddgnize here that
FEM inherently requires less computational resources MaM/SIE for analy-
sis of this kind of closed-region problems as it requirespg@nmodel and yields
modal S-parameters directly. Additionally, FEM matrix is filled lgronce for all
frequencies as medium parameters are frequency indepenNenertheless, we
can conclude that the efficiency of the FEM approach is farensoiperior in this
example; it requires almost 1/5 the number of unknowns aneki@an an order of
magnitude less computational time than the MoM/SIE apgroac

The second example is an inhomogeneous cubical scattefreeispace. The
cube is lossless. It consists of three equally thick layenese relative permit-
tivities (& = &) approximate linear change from = 2 to & = 4 between two
opposite faces. The cube is situated in vacuum and it is iifated by a uniform
plane wave incident along the direction of changeofas shown in Fig. 6. The
cube is non-magnetic. This example demonstrates analyaisapen-region prob-
lem. Analysis by FEM requires the domain of interest to beprty bounded and
truncated from the rest of the (infinite) space, which we don®ans of the hybrid



216 M. M. llic, A. Z llié, and B. M. Notaros:

0.40

h "‘._-.=:Qi§
0.35 \\
0.30 \

0.25 \
0.20 |H{ Method Unknowns Tlme[s]\‘ e

IS,

FEM 231 1
—o— MOM 1088 67
015 1 1 1 1
45 50 55 60 65 70 75
f[GHz]
(@)
0.34
0.33
0.32
0.31
— 0.30
S N
2} ™.
0.29
0.28 - Method Unknowns Time[s]
FEM 231 1
027{ —e— MOM 1088 67
0.26 ; ; ; ;
45 50 55 60 65 70 75
f[GHz]
(b)

Fig. 5. Sparameters of the loaded WR-15 waveguide shown in Fig. r@pesison of FEM
(black curve) and MoM/SIE (red circles) results. Magnitsidé (a)S;1 parameter and (b)
S1 parameter.

higher order FEM-MoM; the fields within the cube are modelgdH&EM and the
domain is truncated at the cube faces by means of unknowacsuctirrents which
are evaluated by MoM [7,8]. The three layers of the cube ardeleadl by the three
trilinear hexahedra in the FEM domain, visible in Fig. 6. oM domain, they
are modeled by 14 bilinear quadrilaterals coinciding wiita outer faces of the lay-
ers. The polynomial orders of the field approximations in FEMnain are 5 and
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3 along the longer and shorter edges of the layers, respéctiVhe corresponding
polynomial orders of the current expansion in MoM domain4end 3 along the
longer and shorter edges for all quadrilaterals (outerdad¢he layers). The higher
order hybrid FEM-MoM results will be compared with the sabmt obtained by the
higher order MoM/SIE approach [6]. The MoM/SIE model cotssizf 16 bilinear
quadrilaterals; the same 14 bilinear quadrilaterals cisimgy the outer boundary
surface from Fig. 6 and additional two quadrilaterals (sgsjppositioned between
the adjacent layers. Polynomial expansions for the sudaoents in these models
are optimally chosen and they range from 1 to 6 on differerfiases in different
directions.

8r

a3 a3z @
Fig. 6. Inhomogeneous lossless cubical scatterer in fraeespThe cube consists of three

equally thick homogeneous layers optimally approximatingar change o;. The figure
describes models for both FEM-MoM and MOM/SIE analyses.

Fig. 7 shows the normalized radar cross section (RCS) ofube against the
normalized length of the cube sida/A, A being the wavelength in the dielec-
tric whereg = 4. It can be observed that the solution obtained by meanseof th
higher order MOM/SIE is practically identical to the higleder FEM-MoM solu-
tion. The numbers of unknowns used in each of the analysesjnsim the figure
legend, are as follows: hybrid FEM-MoM analysis employed 92knowns in the
FEM region and 704 unknowns in the MoM region, MoM/SIE anialysnployed
776 unknowns. Thus, in this example, the FEM-MoM solutiorpkays approxi-
mately twice as many unknowns as the MoM/SIE solution (1628kined FEM-
MoM unknowns in the hybrid solution are needed compared ® ufiknowns in
the MoM/SIE solution). The simulation times are also in fagbthe MoM/SIE
approach in this case. The MoM/SIE simulation lasted 85 & HEM-MoM sim-
ulation required 2.4 times more time, namely 209 s. This iarily due to high
FEM polynomial orders used for modeling of the fields in theeinterior and due
to the complex nature of the hybrid FEM-MoM approach whiamwianeously
yields high-accuracy solution of the fields in the FEM domaéievertheless, we
can conclude that the MoM/SIE approach is indeed superitreéd-EM approach
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in this example; it requires one half the number of unknowmd i&is more than
twice as fast as the FEM approach.

2.5

Method Unknowns Time [s]
20 — FEM-MOM 924-704 209
° MOM 776 85

0.0

Fig. 7. Normalized RCS of the layered cubical scatterer shiviFig. 6 against the normal-
ized length of the cube side; comparison of hybrid FEM-MoN&a¢k curve) and MoM/SIE
(red circles) results.

4 Conclusions

We have investigated the efficiency of the higher order FEMMOM/SIE model-
ing approaches in CEM by comparing their performances indiwple 3-D bench-
mark problems with similar meshes. The chosen examples n&mate full-wave
analysis of a wave-guiding structure (a closed-region lerolp and a scatterer in
free space (an open-region problem). Such a comparisondideen found in the
open literature, probably because all of the commercialgilable FEM and MoM
software packages (apart from WIPL-D) are essentially logdeptechniques.

We have evaluated the efficiency of the presented modelipgpaphes in two
simple examples of closed-region and open-region EM proslavolving inho-
mogeneous (and possibly lossy) dielectric bodies. Thelteesbtained by the
higher order large-domain FEM (hybridized with MoM for aysis of the open-
region problem) have been compared with numerical resblisimed by the higher
order MOM/SIE approach. The examples have demonstratectffeative higher
order FEM hexahedral meshes and MoM quadrilateral mesloestracted from
a very small number of large finite elements, could be apptieeh in the pres-
ence of the inhomogeneities. This has always been one oftritiegest points
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of the higher order modeling paradigm. It has been observat for the same
accuracy, the presented FEM modeling approach requiredsaltd5 the number
of unknowns and more than an order of magnitude less coniguoghttime than
MoM/SIE in the closed-region (loaded waveguide) examplethke open-region
(scatterer in free space) example, it has been observeththatimber of unknowns
used by the presented hybrid FEM-MoM modeling approach watas high as
that of the MOM/SIE and its computational time was 2.4 timrasgyker than that of
the MoM/SIE. Note, however, that significantly longer cortgtional time of the
hybrid FEM-MoM simulation in this example can partially bentributed to the
complex nature of the hybrid method (which simultaneousildg high accuracy
solution of the fields inside the FEM domain), but primarityltigh FEM polyno-
mial orders used for modeling of the fields in the scatter&sriar. Based on the
presented analysis, we can conclude that higher order FEWbaph represents
a method of choice in modeling of closed-region problemsnbifective large-
domain volumetric meshing is available. At the same timghér order MOM/SIE
approach is the method of choice in modeling of open-regroblpms. Our future
work will include a comparison of the two higher order apmioas in analysis of
partially closed and partially opened EM structures, sugcbeaity backed antennas
and similar structures with radiating apertures, wherepbiential benefits of the
hybrid method could be more pronounced.
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