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Comparison of Higher Order FEM and MoM/SIE
Approaches in Analyses of Closed- and Open-Region

Electromagnetic Problems

Milan M. Ili ć, Andjelija Ž. Ili ć, and Branislav M. Notaroš

Abstract: We investigate the efficiency of the two most popular frequency-domain ap-
proaches in computational electromagnetics (CEM); the finite element method (FEM)
and the method of moments based on the surface integral equation (MoM/SIE), both
in the context of the higher order modeling. We compare the performances of the
two approaches in two simple three-dimensional (3-D) problems with similar meshes,
chosen as benchmark examples. The chosen examples demonstrate full-wave analysis
of a wave-guiding structure (a closed-region problem) and ascatterer in free space (an
open-region problem).

Keywords: Computer-aided analysis, electromagnetic analysis, finite element method,
higher order elements, inhomogeneous media, method of moments.

1 Introduction

HIGHER ORDERfull-wave three-dimensional (3-D) large-domain techniques in
computational electromagnetics (CEM) have proven themselves to be flexi-

ble and efficient in modeling of complex structures [1–6]. The reduction in com-
putation costs is by up to one to two orders of magnitude when compared to low
order (small-domain) techniques, for the same or better accuracy. Choice of a par-
ticular numerical method such as the finite element method (FEM) or the method
of moments based on the surface integral equation (MoM/SIE)is guided by the
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nature of the problem at hand. FEM, where system matrices arebanded and highly
sparse, is often computationally more efficient. Additionally, it is considered to
be the method of choice for modeling inhomogeneous media (possibly nonlinear
and/or anisotropic) and geometrically versatile structures. MoM/SIE, on the other
hand, is considered to be superior in dealing with open-region problems. As an
answer to dealing with the complexities in modeling real world structures, where
various aspects mentioned above appear all at once, hybrid FEM-MoM approaches
emerge; the fields within the chosen inhomogeneous or otherwise complex domain
are modeled by FEM and the domain itself is truncated by meansof unknown sur-
face currents (electric and magnetic) which are evaluated by MoM [7,8].

Our goal in this paper is to compare the efficiency of higher order FEM and
MoM/SIE techniques in the analyses of structures with inhomogeneous domains.
Some practical applications where such domains are involved include electromag-
netic (EM) scattering from human tissues or radar absorbingcoatings, as well as
scattering and diffraction from inhomogeneous dielectriclenses used in lens an-
tennas. To the best of our knowledge, this kind of comparisonhas not been done
before, probably because practically all of the commercially available professional
software packages are based on the low order, small-domain approaches. A notable
exception is WIPL-D [9].

In section 2 we briefly describe the theoretical background of the higher order
FEM and MoM software implementations. In section 3 we analyze two simple
problems involving inhomogeneous dielectric domains, as benchmark examples.
For the comparison of approaches to be fair, we choose the examples that have
the same or similar meshes in both approaches. Additionally, our choice of the
two examples is such that the first example is a closed-regionproblem, generally
more conveniently analyzed by FEM, and the second is an open-region problem,
generally more conveniently analyzed by MoM. Hence, we choose the first example
to feature a discontinuity in rectangular waveguide, whereas the second example
analyzes a scatterer in free space.

2 Theory and Implementation

Our higher order FEM approach is based on the discretizationof the curl-curl vector
wave equation

∇×µ−1
r ∇×EEE − k2

0εrEEE = 0, (1)

whereεr andµr are complex relative permittivity and permeability of the inhomo-
geneous (possibly lossy) medium, respectively, andk0 = ω√ε0µ0 is the free-space
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wave number. Galerkin-type weak form discretization of (1)yields
∫

V
µ−1

r (∇×eeek) · (∇×EEE)dV − k2
0

∫
V

εreeek ·EEE dV =

jk0Z0

∮
S
eeek ·nnn×HHH dS, k = 1, ...,NFEM,

(2)

whereV is the volume of the FEM region,S is the boundary surface of the region,
nnn is the outward unit normal(dSSS = nnndS), Z0 is the free space impedance, andNFEM

is the total number of the expansion functions. Formal field-expansion used for the
approximation of electric-field in (2) is

EEE =
NFEM

∑
l=1

γleeel (3)

whereeeel are the curl-conforming hierarchical polynomial basis functions [3,4], and
γl are unknown field-distribution coefficients. The matrix form of (2) is

[FEM]{γ} = jk0Z0

∮
S
eeek · (nnn×HHH)dS. (4)

Elements of the FEM matrix are the inner products of the employed field-expansion
basis functions explicitly derived in [3] and [4]. The element type used for volume
geometrical modeling in the FEM approach is the generalizedcurvilinear hexahe-
dron, shown in Fig. 1. Lagrange interpolating polynomials [3] are used to define

v

u

w

Fig. 1. Generalized curvilinear hexahedron, with localu − v−w coordinates, used for
volume geometric discretization in the FEM approach.

the mapping from the cubical parent domain to the Lagrange-type curved para-
metric hexahedron. In our examples given in Section 3, generalized hexahedral
elements in FEM meshes reduce to simple bricks. The coupled electric-field inte-
gral equation/magnetic-field integral equation (EFIE/MFIE) system of equations to
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be solved for electricJJJS and magneticMMMS surface currents on each of the MoM sur-
faces, generally residing in between the two homogeneous regions with parameters
ε1, µ1 andε2, µ2, in the higher order large-domain MoM/SIE approach is

[EEE(JJJS,MMMS,ε1,µ1)]tang+(EEE i)tang= [EEE(−JJJS,−MMMS,ε2,µ2)]tang, (5)

[HHH(JJJS,MMMS,ε1,µ1)]tang+(HHH i)tang= [HHH(−JJJS,−MMMS,ε2,µ2)]tang, (6)

where scattered electric fieldEEE is represented by

EEE = EEEJ(JJJS)+EEEM(MMMS),

EEEJ(JJJS) = −jωAAA−∇Φ, EEEM(MMMS) = −1
ε

∇×FFF,
(7)

and scattered magnetic fieldHHH is represented by

HHH = HHHM(MMMS)+HHHJ(JJJS),

HHHM(MMMS) = −jωFFF −∇U, HHHJ(JJJS) =
1
µ

∇×AAA.
(8)

The system (5)-(6) is discretized by the substitution of theformal electric and mag-
netic current expansions

JJJS =
NMoM

∑
j=1

α j jjjsj , MMMS =
NMoM

∑
j=1

β j jjjsj , (9)

where jjjsj are the divergence-conforming hierarchical polynomial basis functions
[6], into the potential equations

AAA = µ
∫

S
JJJSg dS,

FFF = ε
∫

S
MMMSg dS,∇S ·MMMSg dS,

Φ =
j

ωε

∫
S

∇S ·JJJSg dS,

U =
j

ωµ

∫
S

∇S ·MMMSg dS,
(10)

and solved for the values of unknown current distribution coefficientsα j andβ j,
j = 1, ...,NMoM , whereNMoM is the total number of expansion functions. In the
above potential equations,g is the Green’s function to be evaluated separately for
each of the homogeneous regions. It is defined by

g =
e−γR

4πR
, γ = jω

√
εµ , (11)

whereε andµ are permittivity and permeability of the medium, respectively, and
ω is the angular frequency of the implied time-harmonic variation.
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The element type used for surface geometrical modeling in the MoM/SIE ap-
proach is the generalized curvilinear quadrilateral, shown in Fig. 2. Lagrange
interpolating polynomials [6] are used to define mapping from the square parent
domain to the Lagrange-type curved parametric quadrilateral. In our examples
given in Section 3, generalized quadrilateral elements in MoM meshes reduce to
simple rectangles, which also belong to the subset of bilinear quadrilaterals used
for the higher order MoM/SIE modeling in WIPL-D [9].

v

u

Fig. 2. Generalized curvilinear quadrilateral, with localu− v coordinates, used for surface
geometric discretization in the MoM/SIE approach.

3 Results and Discussion

Our extensive previous work [3,4,6], and [8], demonstratesexcellent agreement of
the simulation results with analytical results and/or measurements. This fact gave
us confidence to base the analysis in this paper only on numerical models. All
numerical results reported here are obtained using an IBM Thinkpad T60p note-
book computer with Intel T7200 Core2 CPU running at 2.0 GHz under Microsoft
Windows XP operating system.

As the first example, consider a dielectrically loaded WR-15rectangular waveg-
uide, shown in Fig. 3. The load is tightly fit inhomogeneous dielectric slab. The
length of the slab and the lengths of the empty waveguide portions on both sides
of the slab are the same. The slab is inhomogeneous and lossy.It consists of
three equally thick layers whose real and imaginary parts ofthe relative permit-
tivity (εr = ε ′

r − jε ′′
r ) approximate a linear change fromε ′

r = 2 to ε ′
r = 4 and from

ε ′′
r = 0.2 to ε ′′

r = 2, respectively, along the slab. The corresponding relative per-
mittivities are depicted in the inset of Fig. 3. The loss-tangent in this example is
rather large and ranges from tanδ = 0.1 to tanδ = 0.5 along the slab. The slab
is non-magnetic. This example demonstrates analysis of a closed-region problem.
For the higher order FEM approach [4], the complete loaded waveguide structure
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is modeled by 5 trilinear hexahedra (bricks) which coincidewith 5 waveguide sec-
tions shown in Fig. 3. Waveguide walls are considered to be lossless. The optimal
polynomial orders of the field approximations, for which thesolution for the modal
S-parameters across the ports has converged, in the hexahedral elements range from
2 to 4 in different elements in different directions. This arrangement results in 231
FEM unknowns. The higher order FEM result will be compared with the solu-
tion obtained by the higher order MoM/SIE approach. MoM/SIEmodel is not
excited by single propagating modes, but by using 2-port feeding networks. Hence,
the model requires appropriate feeds as the extensions on both waveguide ports.
The analyzed waveguide structure with feeds is shown in Fig.4. The feeds con-
sist of short-circuited waveguide sections with wire probes mounted some distance
away from the short-circuited end in the middle of the waveguide. The wires have
delta-function generators at the bottom ends connected to the waveguide. These
generators represent structure ports 1’ and 2’ for which theS-parameters are firstly
calculated and later de-embedded [9,10] to the planes of ports 1 and 2, respectively,
for comparison with FEM results. Polynomial expansions forthe surface currents
in the MoM/SIE model are optimally chosen and they range from1 to 6 on differ-
ent surfaces in different directions. The MoM/SIE analysisof the given example is
carried out using WIPL D [9].
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Fig. 3. Loaded WR-15 waveguide (a = 3.76 mm,b = 1.88 mm, andc = 2.5 mm). The load
is an inhomogeneous lossy dielectric slab modeled by three equally thick homogeneous
layers optimally approximating linear change of real and imaginary parts ofεr. This is also
a complete waveguide model for the FEM analysis.

In Figs. 5(a) and 5(b), the results for modalS-parameters of the loaded waveg-
uide obtained by the higher order FEM are compared with thoseobtained by the
higher order MoM/SIE approach. The results are calculated in 36 frequency points
in the band of interest. Only magnitudes ofS11 andS21 parameters are shown, in
Figs. 5(a) and 5(b), respectively, as it was concluded that the phase characteris-
tics do not show significant differences and thus do not carryrelevant information



Comparison of Higher Order FEM and MoM/SIE Approaches ... 215

a

Port 1

Port 1'

Port 2

Port 2'

c

c

l

c

Waveguide feed 1

Waveguide feed 2

c
c

c
c

l

d

b

Fig. 4. Model of the loaded waveguide including short-circuited feeds with wire probes.
This model is used in the MoM/SIE analysis (d = c/2 = 1.25 mm andl = 1 mm).

for comparison. Corresponding number of unknowns and simulation times for the
solutions are given in the legends. We observe an excellent agreement between
the FEM solution and the MoM/SIE solution. However, a significantly large num-
ber of unknowns is employed in the MoM/SIE solution, 1088, compared to only
231 unknowns in the FEM solution. This results in significantly longer simulation
time required for the MoM/SIE smulation; 67 seconds compared to only 1 second
required for the FEM simulation. Note that the presented MoM/SIE solution is
optimal in terms of the polynomial expansion orders for currents, it has converged
to the best possible solution for the given model, and it has proven to be invariant
to changes of the de-embedding parameters. Additionally, the presented number
of unknowns and simulation time do not include the pre-simulations of the waveg-
uide feeds, necessary for the de-embedding process [10]. Werecognize here that
FEM inherently requires less computational resources thanMoM/SIE for analy-
sis of this kind of closed-region problems as it requires simpler model and yields
modalS-parameters directly. Additionally, FEM matrix is filled only once for all
frequencies as medium parameters are frequency independent. Nevertheless, we
can conclude that the efficiency of the FEM approach is far more superior in this
example; it requires almost 1/5 the number of unknowns and more than an order of
magnitude less computational time than the MoM/SIE approach.

The second example is an inhomogeneous cubical scatterer infree space. The
cube is lossless. It consists of three equally thick layers whose relative permit-
tivities (εr = ε ′

r) approximate linear change fromεr = 2 to εr = 4 between two
opposite faces. The cube is situated in vacuum and it is illuminated by a uniform
plane wave incident along the direction of change ofεr, as shown in Fig. 6. The
cube is non-magnetic. This example demonstrates analysis of an open-region prob-
lem. Analysis by FEM requires the domain of interest to be properly bounded and
truncated from the rest of the (infinite) space, which we do bymeans of the hybrid
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Fig. 5.S-parameters of the loaded WR-15 waveguide shown in Fig. 3; comparison of FEM
(black curve) and MoM/SIE (red circles) results. Magnitudes of (a)S11 parameter and (b)
S21 parameter.

higher order FEM-MoM; the fields within the cube are modeled by FEM and the
domain is truncated at the cube faces by means of unknown surface currents which
are evaluated by MoM [7,8]. The three layers of the cube are modeled by the three
trilinear hexahedra in the FEM domain, visible in Fig. 6. In MoM domain, they
are modeled by 14 bilinear quadrilaterals coinciding with the outer faces of the lay-
ers. The polynomial orders of the field approximations in FEMdomain are 5 and
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3 along the longer and shorter edges of the layers, respectively. The corresponding
polynomial orders of the current expansion in MoM domain are4 and 3 along the
longer and shorter edges for all quadrilaterals (outer faces of the layers). The higher
order hybrid FEM-MoM results will be compared with the solution obtained by the
higher order MoM/SIE approach [6]. The MoM/SIE model consists of 16 bilinear
quadrilaterals; the same 14 bilinear quadrilaterals comprising the outer boundary
surface from Fig. 6 and additional two quadrilaterals (squares) positioned between
the adjacent layers. Polynomial expansions for the surfacecurrents in these models
are optimally chosen and they range from 1 to 6 on different surfaces in different
directions.
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Fig. 6. Inhomogeneous lossless cubical scatterer in free space. The cube consists of three
equally thick homogeneous layers optimally approximatinglinear change ofεr. The figure
describes models for both FEM-MoM and MOM/SIE analyses.

Fig. 7 shows the normalized radar cross section (RCS) of the cube against the
normalized length of the cube side 4a/λ , λ being the wavelength in the dielec-
tric whereεr = 4. It can be observed that the solution obtained by means of the
higher order MoM/SIE is practically identical to the higherorder FEM-MoM solu-
tion. The numbers of unknowns used in each of the analyses, shown in the figure
legend, are as follows: hybrid FEM-MoM analysis employed 924 unknowns in the
FEM region and 704 unknowns in the MoM region, MoM/SIE analysis employed
776 unknowns. Thus, in this example, the FEM-MoM solution employs approxi-
mately twice as many unknowns as the MoM/SIE solution (1628 combined FEM-
MoM unknowns in the hybrid solution are needed compared to 776 unknowns in
the MoM/SIE solution). The simulation times are also in favor of the MoM/SIE
approach in this case. The MoM/SIE simulation lasted 85 s. The FEM-MoM sim-
ulation required 2.4 times more time, namely 209 s. This is primarily due to high
FEM polynomial orders used for modeling of the fields in the cube interior and due
to the complex nature of the hybrid FEM-MoM approach which simultaneously
yields high-accuracy solution of the fields in the FEM domain. Nevertheless, we
can conclude that the MoM/SIE approach is indeed superior tothe FEM approach
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in this example; it requires one half the number of unknowns and it is more than
twice as fast as the FEM approach.
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Fig. 7. Normalized RCS of the layered cubical scatterer shown in Fig. 6 against the normal-
ized length of the cube side; comparison of hybrid FEM-MoM (black curve) and MoM/SIE
(red circles) results.

4 Conclusions

We have investigated the efficiency of the higher order FEM and MoM/SIE model-
ing approaches in CEM by comparing their performances in twosimple 3-D bench-
mark problems with similar meshes. The chosen examples demonstrate full-wave
analysis of a wave-guiding structure (a closed-region problem) and a scatterer in
free space (an open-region problem). Such a comparison has not been found in the
open literature, probably because all of the commercially available FEM and MoM
software packages (apart from WIPL-D) are essentially low order techniques.

We have evaluated the efficiency of the presented modeling approaches in two
simple examples of closed-region and open-region EM problems involving inho-
mogeneous (and possibly lossy) dielectric bodies. The results obtained by the
higher order large-domain FEM (hybridized with MoM for analysis of the open-
region problem) have been compared with numerical results obtained by the higher
order MoM/SIE approach. The examples have demonstrated that effective higher
order FEM hexahedral meshes and MoM quadrilateral meshes, constructed from
a very small number of large finite elements, could be appliedeven in the pres-
ence of the inhomogeneities. This has always been one of the strongest points
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of the higher order modeling paradigm. It has been observed that, for the same
accuracy, the presented FEM modeling approach required almost 1/5 the number
of unknowns and more than an order of magnitude less computational time than
MoM/SIE in the closed-region (loaded waveguide) example. In the open-region
(scatterer in free space) example, it has been observed thatthe number of unknowns
used by the presented hybrid FEM-MoM modeling approach was twice as high as
that of the MoM/SIE and its computational time was 2.4 times longer than that of
the MoM/SIE. Note, however, that significantly longer computational time of the
hybrid FEM-MoM simulation in this example can partially be contributed to the
complex nature of the hybrid method (which simultaneously yields high accuracy
solution of the fields inside the FEM domain), but primarily to high FEM polyno-
mial orders used for modeling of the fields in the scatterer interior. Based on the
presented analysis, we can conclude that higher order FEM approach represents
a method of choice in modeling of closed-region problems when effective large-
domain volumetric meshing is available. At the same time, higher order MoM/SIE
approach is the method of choice in modeling of open-region problems. Our future
work will include a comparison of the two higher order approaches in analysis of
partially closed and partially opened EM structures, such as cavity backed antennas
and similar structures with radiating apertures, where thepotential benefits of the
hybrid method could be more pronounced.
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