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 

Abstract—In this letter, we propose and demonstrate a data-

driven machine learning-based approach to accelerate the finite 

element method, method of moments, finite difference method, 

and related variational methods while maintaining the attractive 

properties that have allowed such methods to dominate 

computational science and engineering fields like computational 

electromagnetics. We use a neural network to predict a set of 

macro basis functions for a given problem, using only the 

solution to an extremely coarse description of the problem as 

input. We then solve the problem using the predicted macro 

basis. Unlike some existing methods, ours does not rely on direct 

prediction of the solution. We show that our macro basis function 

approach corrects errors in the raw prediction of the network, 

achieving a far more accurate solution. Results are presented for 

a class of finite element scattering problems, with error statistics 

presented from 1000 validation examples and compared to 

standard and naïve approaches. These results suggest the 

described macro basis function approach is superior to machine 

learning approaches that directly predict the solution. Meanwhile 

our method achieves comparable accuracy to the full solution 

while requiring only a fraction of the degrees of freedom. 

 
Index Terms—finite element method, method of moments, 

machine learning, neural networks, macro basis functions, 

variational methods, computational electromagnetics. 

I. INTRODUCTION 

ARIATIONAL techniques like finite element method 

(FEM), method of moments (MoM), and finite difference 

(FD) method are dominant for solving numerical physics 

problems in computational electromagnetics (CEM) and 

computational science/engineering (CSE) due to their 

flexibility, robustness, and rigorous mathematical 

underpinnings. The principal shortcoming of these methods is 

their poor scaling and high computational cost. We introduce a 

broadly applicable method by which neural networks can be 

applied to speed up variational methods without sacrificing 

their desirable characteristics. Rather than predicting solutions 

to these problems directly, we use neural networks to guess a 
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highly simplified basis on which to solve the problem 

rigorously using existing techniques. 

Previous work seeking to use neural networks to make 

predictions about the solutions to computational physics or 

CSE problems has capitalized on the strong predictive power 

of well-trained neural networks but has not addressed the 

shortcomings of using such an inherently empirical approach 

for real-world engineering problems. This has limited the real-

world usefulness of such results. Most previous work has 

focused on predicting quantities derived from a numerical 

solution given a description of the physical problem, typically 

material parameters in the computational domain and 

excitations for the problem [1]–[5]. There has been occasional 

work that uses a neural network to predict the solution itself, 

rather than a derived quantity [6]–[7]. In this way, such 

research has sought to effectively replace variational methods 

with neural networks as the numerical tool used to solve 

computational physics problems.  

In contrast, some of the biggest breakthroughs and 

substantial applications of neural networks to perform 

challenging tasks with the accuracy needed for industry use 

have used existing, mathematically formal methods guided by 

the intuitive predictive capability of neural networks to 

achieve speedup and even improve accuracy [8]–[9]. We 

believe this is critical to the application of machine learning in 

most engineering contexts. We have found no existing 

research that has coupled neural networks with variational 

methods in a broadly-applicable, robust way. The closest we 

have found is the use of neural networks to predict bulk 

material parameters for faster multi-scale FEM simulations in 

structural mechanics [10]–[15]. We consider this excellent 

work and in line with the philosophy of using neural networks 

to guide more-rigorous methods, but unfortunately the method 

described is specific to structural mechanics problems.  

Predicting basis functions directly, rather than trying to 

predict solutions or derived quantities, we exploit the crucial 

strength of neural networks: the ability to efficiently and 

accurately learn low-dimensional representations of 

complicated, high-dimensional datasets to understand 

underlying correlations. In the context of variational methods 

for CSE, this means learning not only the fundamental 

physical behavior of problems, but also larger emergent trends 

that define the aggregate behavior of a physical structure 

under simulation. By using predicted bases to rigorously solve 

a given problem, we maintain the key strengths of variational 
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methods: rigorous bounding of solution error, accurate error 

estimation, and well-substantiated methods to improve 

solution accuracy when solution error is found to be excessive 

for the given application. These benefits are crucial for any 

numerical method applied in an engineering context. 

Meanwhile, the proposed method avoids the downsides 

traditionally associated with empirical, data-driven predictors 

like neural networks, namely their black box nature and 

unpredictability when subject to inputs dissimilar to those 

used for training.  

II. THEORY 

We consider in general a discretized linear (or linearized) 

differential or integral equation-based problem with solution 

𝑆, set of basis functions 𝐹, and linear system of form [𝐴]𝑥 =
𝑏, where 𝑓𝑖 ∈ 𝐹 and 𝑥𝑖 denote the i

th
 basis function and 

associated solution weight, respectively. This system may be 

Galerkin-weighted but we do not impose this. The weak 

solution to the problem with 𝑁 basis functions in this notation 

is given by 
 

𝑆̃ = ∑ 𝑥𝑖𝑓𝑖

𝑖∈[1..𝑁]

≈ 𝑆 

 

 

 
(1) 

 

Construction and solution of the linear system for large 

problems is computationally time consuming and memory-

intensive. With 𝑁 basis functions, solution of the system has 

time complexity 𝑂(𝑁2) for iterative methods or 𝑂(𝑁3) for 

direct methods [16]. Meanwhile, construction of the system, 

typically dominated by performing the necessary integrations, 

has complexity 𝑂(𝑁2) for boundary integral methods due to 

global coupling of the basis functions and 𝑂(𝑁) for finite 

element and finite difference methods due to local coupling.  

Convolutional neural networks (CNNs) have seen an 

explosion in popularity in recent years due to advances in 

parallel computing power and network architecture that have, 

together, enabled applicability of CNNs to a broad range of 

complicated tasks from playing board games [8] to classifying 

images with record accuracy [17]. For an excellent overview 

of the theory and concept of modern CNN architectures, see 

[18]. CNNs take advantage of spatial correlation in data to 

efficiently learn complicated underlying trends more 

effectively than classical fully-connected neural networks. If 

our data have 𝑑 discrete spatial dimensions, input to a CNN is 

an array with 𝑑 + 1 dimensions; the extra dimension of the 

array corresponding to the number of input channels, 𝑐. We 

denote by 𝑛𝑖 , 𝑖 ∈  [1. . 𝑑] the size of the input array in the i
th

 

spatial dimension. The total number of scalar inputs to a CNN 

is then 
 

𝑁𝑖𝑛𝑝𝑢𝑡𝑠 = 𝑐 ∗ ∏ 𝑛𝑖

 𝑖 ∈ [1..𝑑] 

 

 

 
(2) 

 

The time complexity of evaluating a CNN is 𝑂(𝑁𝑖𝑛𝑝𝑢𝑡𝑠
 ), a 

substantial improvement over the 𝑂(𝑁𝑖𝑛𝑝𝑢𝑡𝑠
2 ) complexity of 

evaluating a fully connected neural network, assuming a 

typical case where the fully connected network has a similar 

number of neurons in a hidden layer as the number of inputs 

[19].  

Table I. Asymptotic speedup using CNNs for various cases.  

Solver MoM FEM 

Direct Solver 
𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ∝

𝑁

𝛾2
 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ∝

𝑁2

𝛾
 

Iterative Solver 
𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ∝

1

𝛾2
 𝑠𝑝𝑒𝑒𝑑𝑢𝑝 ∝

𝑁

𝛾
 

 

We propose to use a deep convolutional neural network to 

predict the solution weights, 𝑥, to complicated FEM, MoM, 

and FD problems given only the solution to a computationally-

inexpensive analogue of the problem solved on a reduced 

basis. Most simply, the reduced basis, 𝐹̌, would constitute a 

small subset of the complete basis, 𝐹.  A reduced basis is easy 

to conceive of for FEM and MoM, especially using higher-

order bases. We can simply reduce the number of polynomial 

basis functions allocated to each element. A reduced basis is 

less obvious at first for FD, since we typically do not consider 

the concept of basis functions when working with finite 

difference techniques, but rather sample points. However, we 

can consider the sample points used in FD as a weighting of 

Dirac-delta basis functions centered on the spatial locations of 

the sample points. In this sense, FD is a special case of FEM 

given a particular choice of basis and a particular quadrature 

rule. From this perspective, a reduced basis is easy to conceive 

of: a coarser grid, the sample points of which are a subset of 

the original grid. 

If a CNN can predict 𝑥 from 𝑥̌, the solution to the problem 

discretized using basis 𝐹̌ containing 𝑁̌ = 𝛾𝑁, 𝛾 ∈ (0,1] basis 

functions, then the achieved speedup of solving for 𝑥 is 

asymptotically proportional to expressions given in Table I. 

A difficulty with CNNs and applicability of their results for 

certain tasks is their black box nature. A trained CNN is a 

purely empirical model, typically with little theoretical 

underpinning nor theoretical guarantee on the accuracy of its 

output. To counteract this to quickly obtain accurate FEM, 

FD, and MoM solutions, we propose to use 𝑥 predicted by the 

network not as the final solution, but rather to generate a set of 

macro basis functions that can be used to re-solve the problem 

at comparable accuracy to the approximation using 𝐹, but 

instead using a substantially smaller number of basis 

functions. We define a macro basis function in general as a 

linear combination of basis functions from 𝐹 

 

𝑓𝑚𝑎𝑐𝑟𝑜 =  ∑ 𝛼𝑖𝑓𝑖

𝑖∈[1..𝑁]

 

 

 

 
(3) 

 

where 𝛼 coefficients are specific to a particular macro basis 

function. We denote the set of macro basis functions 𝐹𝑚𝑎𝑐𝑟𝑜. 

 By this approach, we can guarantee that the solution 

obtained using the CNN’s prediction exactly and rigorously 

solves a weak formulation of the problem. We also guarantee 

that the solution satisfies the boundary conditions of the 

problem by careful choice of the original basis function in 𝐹 

and careful definition of the macro basis functions. We denote 

by 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  ⊂ 𝐹 the set of basis functions in the original 

basis that are nonzero wherever a boundary condition is 

imposed in the original problem. We also denote by 

𝐹𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 = 𝐹 − 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 the remaining basis functions in 
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the original basis. We then place the additional constraint on 

any macro basis function that it contains no contribution from 

basis functions in 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

 

𝑓𝑚𝑎𝑐𝑟𝑜 =  ∑ 𝛼𝑖𝑓𝑖

𝐼𝑚𝑎𝑐𝑟𝑜

, 

 𝐼𝑚𝑎𝑐𝑟𝑜 = {𝑖 ∈ [1. . 𝑁]| 𝑓𝑖 ∉ 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦} 

 
 

(4) 

 

We then solve the problem with the modified basis 𝐹̅ =
 𝐹𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 ∪ 𝐹𝑚𝑎𝑐𝑟𝑜. The macro basis function approach 

scales as before but with specification that 𝛾 = |𝐹̅| |𝐹|⁄  where 

vertical brackets denote set cardinality.  

III. NUMERICAL RESULTS AND DISCUSSION 

We demonstrate here the usefulness of the proposed macro 

basis function approach for FEM. We randomly generated a 

dataset of 1000 lossy dielectric slab scattering FEM problems 

as in [20]. Both slab location and slab material parameters 

were varied and randomly sampled from a uniform 

distribution, with slab location varied over 3 wavelengths, slab 

real relative permittivity varied between 1 and 10, and slab 

imaginary relative permittivity varied between 0j and -5j. The 

domain was PML-truncated. 𝐹 for this test was a set of 6
th

-

order polynomial basis functions as defined in [16]. 𝐹̌ 

comprised only the linear subset of 𝐹, giving 𝛾 = 0.33. A 

simple feedforward CNN was trained on all 1000 examples to 

predict 𝑥 from 𝑥̌. We used a simple four-layer CNN with 3×1 

filters and 64 filters per layer. Convolution was performed 

only in the spatial dimension of the data, with basis functions 

of different orders encoded as different input or output 

channels.  𝑁𝑖𝑛𝑝𝑢𝑡𝑠
  for this network was 27, and the network 

had 162 outputs. For each element, a single macro basis 

function was constructed as a linear combination of higher-

order basis functions with 𝛼 coefficients equal to predicted 

complex solution weights in 𝑥. To validate, 1000 new 

problems were generated from the same distribution. For each, 

the problem was solved using 𝐹̅ predicted by the network. Fig. 

1 compares the solution obtained using 𝐹̅ to the solution using 

𝐹 and to a 2
nd

-order solution for a typical example. Note that 

the 2
nd

-order basis and 𝐹̅ have the same number of basis 

functions. 

We see poor agreement between the 2
nd

-order solution and 

the 6
th

-order solution. Meanwhile, despite yielding the same 

linear system size and structure as the 2
nd

-order solution, the 

solution using 𝐹̅ agrees well with the full 6
th

-order solution. 

To further demonstrate the strength of the proposed macro 

basis function approach, we used the raw output of the neural 

network (a prediction of the solution weights) to plot a “naïve” 

predicted solution without re-solving the system. This serves 

as a benchmark for the somewhat common approach in 

existing literature to predict a solution directly. Fig. 2 

compares this solution with the actual solution and the 

predicted solution using the proposed method.  

Although the naïve predicted solution agrees with the actual 

solution somewhat better than the 2
nd

-order solution, we see 

various inaccuracies in the network’s prediction manifest 

themselves directly in the form of amplitude errors (for 
 

 
(a) 

 
(b) 

Fig. 1. Scattered field (z-directed) solution comparison between weak solution 

obtained using predicted macro basis functions, actual solution, and 2nd order 

weak solution: (a) real component and (b) imaginary component. Predicted 
solution using the proposed macro basis function approach agrees almost 

perfectly with the actual solution, despite using only 14% as many basis 

functions. The 2nd-order solution shown uses the same number of basis 
functions as the predicted solution but does not agree with the actual solution. 

 

instance in the imaginary plot around 2.5 meters) and even 

substantial errors in solution behavior (around 1.3 meters in 

the imaginary plot). Because we have taken the solution 

predicted directly by the neural network at face value as the 

naïve predicted solution, these errors go uncorrected. 

Meanwhile, our proposed macro basis function approach 

compensates for inaccuracies and misconceptions of the 

network to produce a substantially more accurate solution with 

the same number of basis functions as the 2
nd

-order solution. 

Fig. 3 shows the root mean square (RMS) error with respect 

to the 6
th

-order solution for all 1000 validation problems. The 

validation problem from Figs. 1 and 2 was chosen to fall at the 

peak of the real predicted RMS error histogram, i.e., an 

example with typical error. The error at the peak of the 

histograms for the solutions obtained using the predicted 

macro basis functions is approximately an order of magnitude 

less than that for the 2
nd

 order solutions. The proposed method 

also dominates the naïve predictive approach. In no case does 
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(a) 

 
(b) 

Fig. 2. Scattered field (z-directed) solution comparison between weak solution 

obtained using predicted macro basis functions, actual solution, and naïve 

predicted solution: (a) real component and (b) imaginary component. Naïve 
predicted solution is obtained by plotting the solution directly predicted by the 

network without the macro-basis function approach. 

 

the naïve approach have error equal to or lower than the peak 

of the distribution for the proposed method. This demonstrates 

the potential of the proposed predicted macro basis function 

approach over both neural network predicted solutions and 

variational method solutions in isolation. 

We also present a direct computation time comparison 

between the 2
nd

-order, 6
th

-order, naïve, and proposed macro 

basis function methods. Table II gives the time taken by our 

implementation of each method to solve 1000 randomly 

generated validation problems. Note that direct time 

comparisons are highly implementation-dependent, so, 

although we believe our implementations are efficient, we 

present Table II with that in mind. 

IV. CONCLUSION 

This letter has introduced a robust data-enabled machine 

learning approach to accelerate CEM and CSE variational 

methods like FEM, MoM, and FD techniques. Predicting 

macro basis functions by which a weak formulation can be 

solved rigorously, the described approach substantially 

  

  

 
(a) 

 
(b) 

Fig. 3. Real (a) and imaginary (b) RMS error histograms for all 1000 

validation problems. Predicted case is for the proposed macro basis function 

approach. Naïve case gives the error of the solutions directly predicted with 
the network using no macro basis function approach (the typical, existing 

approach). 2nd-order case serves as a comparison to the proposed approach. 

The 2nd-order case and predicted case use the same number of basis functions, 
but the proposed method yields error an order of magnitude lower. 

 
Table II. Direct time comparisons for 1000 random problems. 

Method 2
nd

 Order 6
th

 Order Naïve 

Method 

Proposed 

Method 

Time (ms) 41.94 439.7 110.9 152.1 
 

 
reduces the number of unknowns required to solve a given 

problem, offering an asymptotic speedup over pure FEM, 

MoM, or FD solutions while maintaining the rigorousness, 

accuracy, and broad applicability of these methods. The 

described method has been demonstrated on a class of FEM 

problems and rigorously validated on a set of 1000 unseen 

validation problems. Compared to the naïve approach of 

predicting the solution directly, our method obtains 

substantially higher accuracy, its solution typically almost 

indistinguishable from the true solution. Our method also 

obtains far higher accuracy than a typical (no predicted macro 

basis) solution with an equal number of unknowns.  
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