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Abstract—A novel higher order large-domain hybrid compu-
tational electromagnetic technique based on the finite element
method (FEM) and method of moments (MoM) is proposed for
three-dimensional analysis of antennas and scatterers in the fre-
quency domain. The geometry of the structure is modeled using
generalized curved parametric hexahedral and quadrilateral
elements of arbitrary geometrical orders. The fields and currents
on elements are modeled using curl- and divergence-conforming
hierarchical polynomial vector basis functions of arbitrary ap-
proximation orders, and the Galerkin method is used for testing.
The elements can be as large as about two wavelengths in each
dimension. As multiple MoM objects are possible in a global
exterior region, the MoM part provides much greater modeling
versatility and potential for applications, especially in antenna
problems, than just as a boundary-integral closure to the FEM
part. The examples demonstrate excellent accuracy, convergence,
efficiency, and versatility of the new FEM-MoM technique, and
very effective large-domain meshes that consist of a very small
number of large flat and curved FEM and MoM elements, with

-refined field and current distributions of high approximation
orders. The reduction in the number of unknowns is by two orders
of magnitude when compared to available data for low-order
FEM-MoM modeling.

Index Terms—Antennas, curved parametric elements, electro-
magnetic analysis, finite element method (FEM), higher order
modeling, hybrid methods, method of moments (MoM), numerical
techniques, polynomial basis functions, scattering.

I. INTRODUCTION

H YBRID FINITE element-boundary integral (FE-BI)
techniques are extremely powerful and versatile general

numerical tools for electromagnetic simulations in radiation
and scattering applications [1]–[5]. They introduce exact BI
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terminations to numerically truncate and close the computa-
tional domain in modeling of unbounded problems (antennas
and scatterers) based on the finite element method (FEM).
Basically, the techniques divide the problem into an interior
and exterior region. The electromagnetic field in the interior
region, usually containing inhomogeneous materials, is mod-
eled employing an FE differential-equation formulation and the
field in the exterior region, filled with a homogeneous medium
(most frequently, free space), is represented by some sort of
BI equations. The fields are then coupled across the FE-BI
interface by means of the appropriate boundary conditions. The
coupled system of differential and integral equations is solved
using various FE and BI numerical discretizations. Since the
latter computational methodologies correspond to solutions
of surface integral equations (SIEs) based on the method of
moments (MoM), the hybrid methods are also referred to as
FEM-MoM techniques.

A tremendous amount of effort has been invested in the
research of FE-BI techniques in the past two decades. This led
to many improvements of the original ideas and a number of
novel techniques have been developed. A simple and effective
FEM-MoM hybridization concept is given in [6] and [7], fol-
lowed by a review of contemporary hybrid techniques in [8] and
study of a variety of FE-BI formulations for three-dimensional
(3-D) electromagnetic scattering by inhomogeneous objects
and development of a novel technique immune to the problem
of interior resonances, which also employs the multilevel fast
multipole algorithm (MLFMA) to accelerate the BI portion of
the technique [9]. A hybrid symmetric FEM-MoM formulation,
which leads to a symmetric FE-BI matrix, has been derived
in [10], and generalized to an efficient 3-D symmetric hybrid
technique in [11]. Recent works also include a nonstandard
BI approach to FEM domain truncation based on an adaptive
numerical absorbing boundary condition (ABC) [12], efficient
preconditioning using a FE-ABC matrix as a preconditioner for
the FE-BI method [13], evaluation of performances of a variety
of symmetric hybrid formulations [14], further investigation of
problems of interior resonances [14], [15], FE-BI hybridization
in the time domain [16], and FE-BI analysis and design of
complex antennas [5], [17], [18].

However, in terms of the particulars of the numerical
discretizations, most FEM-MoM (or FE-BI) tools are
low-order (also referred to as small-domain or subdomain)
techniques—the radiation or scattering structure under con-
sideration is modeled by volume and surface geometrical
elements that are electrically very small, on the order of
in each dimension, being the wavelength in the medium, and
the fields and currents within the elements are approximated
by low-order (zeroth-order and first-order) basis functions.
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This results in a very large number of unknowns (unknown
field/current distribution coefficients) needed to obtain results
of satisfactory accuracy, with all the associated problems and
enormous requirements in computational resources. In addi-
tion, commonly used geometrical elements are solids with
planar sides and flat patches, and thus they do not provide
enough flexibility and efficiency in modeling of structures with
pronounced curvature. An alternative is the higher order (also
known as the large-domain or entire-domain) computational
approach [19], which utilizes higher order field/current basis
functions defined on large (e.g., on the order of in each
dimension) curvilinear geometrical elements.

Only recently higher order FEM-MoM techniques have been
proposed, developed, and employed in analysis of high-fre-
quency unbounded electromagnetic structures [5], [12]–[14],
[16], [20]–[22], with an objective to significantly reduce the
number of unknowns and computational resources for a given
(high) accuracy when compared to low-order solutions. How-
ever, none of the proposed techniques exploits the full potential
of the higher order FE and BI modeling and all of the actually
reported results are limited to the utilization of basis functions
of the second or third order. In addition, these techniques still
implement small finite and boundary elements for field/current
modeling, and the higher order meshes reported actually rep-
resent small-domain solutions to the electromagnetic problems
considered. Note also that some of the tools are restricted to
2.5-D problems, that is, body of revolution (BOR) geometries
[22], and some to higher order implementations only in the
FEM region of the problem [20]–[22], which is often dictated
by the specific intended application of the tool. Finally, it
appears that all of the existing higher order FE-BI techniques
are presented and applied as scattering codes; all results are for
electromagnetic scatterers, and no antenna examples seem to
be reported.

This paper proposes a novel higher order large-domain
Galerkin-type hybrid FEM-MoM technique for 3-D electro-
magnetic analysis of arbitrary antennas and scatterers in the
frequency domain, based on approximations of arbitrarily
high orders for both geometrical modeling and field/current
modeling, in both FEM and MoM regions. The solution in the
interior region of the problem is obtained by a higher order
FEM for discretizing the curl-curl electric-field vector wave
equation [23], [24]. The solution in the exterior region is based
on a higher order MoM for discretizing the set of coupled
electric/magnetic field integral equations (EFIE/MFIE) with
electric and magnetic surface currents as unknowns [25]. The
two methods are coupled together at the boundary of the interior
(FEM) region via boundary conditions. The FEM-MoM inter-
face can be moved some distance away from the actual objects
within the FEM domain (e.g., when the objects are metallic),
or it can coincide with the object boundary surface (e.g., for
dielectric objects). To the best of our knowledge, this is the
first truly high-order hybrid computational electromagnetic
technique combining the solutions to volume partial differen-
tial equations and surface integral equations. It combines the
features of the previously proposed FEM and MoM techniques
[23]–[25] in a unified numerical framework and with a full
higher order computational effectiveness taking advantage
of curl- and divergence-conforming hierarchical polynomial

vector approximations of volumetric fields and surface currents
within the electrically large Lagrange-type parametric volume
and surface finite and boundary elements (large domains). The
new method enables using as large as about
curved FEM hexahedra and curved MoM quadri-
laterals as building blocks for modeling of the antenna or
scatterer (which is 20 times the traditional low-order modeling
discretization limit). However, higher order solutions should
be applied and will be truly beneficial only for smooth regions,
where large elements are possible. More precisely, because the
implemented basis functions are hierarchical, element orders
in the model can also be low, so that the low-order modeling
approach is actually included in the higher order modeling and
both large and small elements can be combined together in the
same model, but clearly the proposed method is most suitable
for problems where the most of the structure can be tessellated
using large higher order curved elements. In terms of excitation
and operation of the structure, the technique is equally suitable
for antenna and scattering applications. Finally, the proposed
technique can incorporate multiple MoM objects and FEM
sub-regions in a global generally unbounded MoM domain, and
thus is not strictly dependent on the standard FE-BI scheme.
This is quite important, as the MoM part of the technique
provides much greater modeling versatility and potential for
applications than just as a BI closure to the FEM part.

Section II of this paper presents the theoretical background
and numerical components of the new higher order hybrid
FEM-MoM technique. Along with some necessary derivations
and facts pertaining to the FEM representation of the interior re-
gion and MoM treatment of the exterior problem, the emphasis
is placed on the actual hybridization of the two methodologies
and numerical techniques. In Section III, the technique is val-
idated and its accuracy, convergence, and efficiency evaluated
and discussed in several characteristic examples.

II. THEORY AND IMPLEMENTATION

Consider an electromagnetic system consisting of arbitrarily
shaped metallic and dielectric bodies. Let the system be excited
by a time-harmonic electromagnetic field of complex field in-
tensities and , and angular frequency . This field may
be a combination of incident plane waves (for a scattering struc-
ture) or the impressed field of one or more lumped generators
(for an antenna structure). As the first step of the analysis, we
decompose the system into two parts: a MoM (exterior) region
and a FEM (interior) region, and denote them as regions and
, respectively, as shown in Fig. 1. In general, multiple MoM

and multiple FEM objects can exist in an overall MoM environ-
ment. In this arrangement, for example, homogeneous dielec-
tric domains can be modeled as parts of the FEM region or as
MoM objects (via surface equivalence principle). Metallic ob-
jects (e.g., metallic wires or plates) in the external medium (most
frequently, air), on the other hand, can be modeled as MoM ob-
jects (using surface electric currents) or they can be enclosed in a
virtual dielectric (air) domain and treated as a FEM sub-region.

The total electric and magnetic field intensity vectors in re-
gion , and , are expressed in terms of the equivalent
surface electric current, of density , and equivalent surface
magnetic current, of density , that are placed on the outer
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Fig. 1. Decomposition of an electromagnetic structure into a MoM (exterior)
and a FEM (interior) region, denoted as regions � and �, respectively.

boundaries (surface ) of all objects in region , and the inci-
dent or impressed field vectors as follows:

(1)

where and stand for the scattered electric and magnetic
field vectors due to current , while and are the scat-
tered fields due to . These fields are computed as

(2)

with and being the complex permittivity and permeability of
the medium (exterior to ). The electromagnetic potentials are
given by

(3)

where is Green’s function for the unbounded homogeneous
medium of parameters and

(4)

being the propagation coefficient in the medium and the
distance of the field point from the source point.

The fields and are coupled to the corresponding field
vectors in region , and , through boundary conditions for
the tangential field components on the surface

(5)

(6)

where is the outward unit normal on . Combined with (1),
the conditions yield

(7)

(8)

Fig. 2. Lagrange-type curved parametric elements for geometrical modeling in
the higher order FEM-MoM method: (a) generalized hexahedron and (b) gen-
eralized quadrilateral.

thus providing the computational interface between the MoM
and FEM regions, with currents and over and field

throughout region (FEM region) as unknowns. In the
FEM-MoM discretization procedure, these quantities are rep-
resented as

(9)

(10)

where are the adopted MoM basis functions, with unknown
current-distribution coefficients and , whose total number
on the FEM-MoM interface is , while are FEM basis
functions, with a total of unknown field-distribution co-
efficients . In specific, functions are higher order curl-con-
forming hierarchical polynomial vector bases defined on La-
grange-type generalized curved parametric hexahedra of arbi-
trary geometrical orders in Fig. 2(a) [23]. On the other side,
functions are the 2-D and divergence-conforming version
of FEM bases on boundary elements in the form of generalized
quadrilaterals in Fig. 2(b) [25], which are the 2-D version of hex-
ahedral elements. With such exact compatibility of volume and
surface geometrical elements, and field and current approxima-
tions, the hybridization of the two methods is performed in a true
higher order fashion, with respect to both geometrical modeling
and field/current modeling, in both FEM and MoM regions.

For MoM computations in region , the tangential-field
boundary conditions on the boundary surface between any two
adjacent homogeneous dielectric domains (domains 1 and 2)
can be written as [25]

(11)

(12)

where we assume that the incident (impressed) fields are present
only in domain 1. On the perfectly conducting bodies, only con-
dition (11) applies, which, for metallic surfaces in domain 1, re-
duces to

(13)
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The scattered fields, due to currents and , are expressed
as in (2)–(4), using the respective material parameters for do-
main 1 or 2, and the currents are, in turn, approximated by
means of higher order basis functions as in (9), which, of
course, adds to the total count of unknown current-distribution
coefficients ( and ) in the MoM region, for the overall
FEM-MoM computational model.

To solve for the coefficients in the FEM region of the
model, the field expansion (10) is substituted in the curl-curl
electric-field vector wave equation [23]

(14)

with and standing here for the complex relative permit-
tivity and permeability of the inhomogeneous (possibly lossy)
medium of region , and is the free-space wave
number. A standard Galerkin weak-form discretization of (14)
yields

(15)

where is the volume of region (bounded by ), are testing
functions [the same as basis functions in (10)], and is the
free-space impedance. The matrix form of the FEM equation is
obtained by substituting the expansion (10) into (15), on its left-
hand side, and (6) and the first expansion in (9) on the right-hand
side, so we have

(16)

with and being the unknown vectors of FEM field and
MoM electric-current distribution coefficients, in (10) and (9),
respectively. The FEM matrix can be written as

(17)

where the elements of matrices and are

and

(18)

The matrix in (16) is given by

(19)

and the inner product of the FEM and MoM basis functions is

(20)

On the other side, Galerkin discretization of (7) and (8), with
testing and basis functions in (9), yields the SIE matrix equation
over the FEM-MoM interface (surface )

(21)

which can be conveniently represented as

(22)

All the terms in (22) can be readily evaluated except ,
for which we solve from (10) and (16) as follows:

(23)

(24)

where (with a fixed ) stands for the th column of
, and (23) and (24) are computed for all values of from 1

to .
Higher order FEM matrices are much smaller than their low

order counterparts (the reduction of the number of unknowns
is often measured by orders of magnitude, for the same or
better accuracy) [23], [24], and are thus factored efficiently
using sparse storage algorithms and direct sparse factorization
techniques. In addition, in (24) needs to be factored
only once, after which coefficients in (24) and fields in (23)
can be calculated one by one, using a fast back-substitution
procedure. Note also that the FEM matrix elements in (17)
depend on frequency only through , provided that and

are frequency independent (dispersionless media), which
allows for the elements of the matrix to be calculated only
once, for the entire frequency range of interest, and stored
separately as matrices and , from which can be
reconstructed, according to (17), for any given frequency. Note
finally that alternative higher order hierarchical basis functions
with improved orthogonality and conditioning properties con-
structed from Legendre polynomials [26] may be implemented
in the technique as well.

Once all terms are computed, the MoM matrix in
(22) can be completed and the system solved for the unknown
current distribution coefficients and , that is, by way
of expansions (9), for the MoM surface currents and
on . Exterior fields (in the MoM region) can then be obtained
using (2)–(4). Finally, the FEM field coefficients can be
found from (16)

(25)

and the interior electric field (within the FEM region) can be
evaluated by means of the expansion (10).

On the FEM-MoM interface in a model, field expansion or-
ders in a FEM hexahedron and current expansion orders on the
attached MoM quadrilaterals are adopted based on the largest
electrical length of the element in the specific direction, with
the same or close values of the two sets of associated orders,
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Fig. 3. Normalized monostatic radar cross section (RCS) of a dielectric �� �
����� cube (� is the free-space wavelength): comparison of solutions obtained
by two higher order FEM-MoM models (A and B) with the reference pure MoM
solution.

for FEM and MoM computation. Numerical experiments have
shown that optimal numbers of degrees of freedom for the de-
sired accuracy are most often obtained when the difference be-
tween the two corresponding orders is (positive or negative) one.
This can be attributed to the fact that dominant inner products in
(20) are normally those between FEM and MoM basis functions
in the same direction, whose maximal orders are offset by one
in the mixed-order arrangement for curl-conforming functions
[23] with respect to that for divergence-conforming functions
[25].

III. RESULTS AND DISCUSSION

All numerical results by the proposed higher order
FEM-MoM technique are obtained using an IBM Thinkpad
T60p notebook computer with Intel T7200 CPU running at
2.0 GHz under Microsoft Windows XP operating system.

As the first example, consider a lossless cubical dielectric scat-
terer of side length , shown in the top inset of Fig. 3. Relative
permittivity of the dielectric is (polyethylene). Fig. 3
presents the monostatic radar cross section (RCS) of the cube,
normalized to , as a function of , being the free-space
wavelength. The results obtained by two hybrid FEM-MoM
higher order solutions, with (A) one FEM hexahedron and 6
MoM quadrilaterals and (B) 8 FEM hexahedra and 24 MoM
quadrilaterals, are compared with the results obtained by the
MoM [25] alone, as a reference solution. The FEM-MoM in-
terface, , is placed exactly on the cube surface in both hybrid
models. Note that the FEM region in model A is literally an
entire-domain FEM model (an entire computational domain is
represented by a single finite element). Note also that the other
higher order FEM-MoM solution is aimed to illustrate the model
behavior when the number of elements is increased, which corre-
sponds to an -refinement of the model. In both models, sketched
in the bottom insets of the figure, all elements are of the first
geometrical order. In model A, the field expansion orders are 7
(in all directions) for the FEM hexahedron and current expansion
orders are 6 for MoM quadrilaterals, while these orders are 5

Fig. 4. Normalized bistatic radar cross section of a dielectric cube (� � �,
� � ���� ) in ��-plane (a) and ��-plane (b): comparison of an entire-do-
main higher order FEM-MoM solution (model A in Fig. 3) and MoM [9] and
low-order FEM-IE [11] solutions.

and 4, respectively, in model B. These arrangements yield a
total of 1344 FEM and 864 MoM unknowns for model A and
3630 FEM and 1536 MoM unknowns for model B. It can be
observed in the figure that the higher order hybrid solution accu-
rately matches the reference MoM solution, and that it quickly
converges when the structure is -refined and the number of
unknowns increased. Note that the entire-domain mesh (model
A), which is the coarsest model possible, with the minimum
number of elements, performs well up to the frequency at which

.
Next, we consider a dielectric cube with at the

frequency where , and show in Fig. 4 the normalized
bistatic RCS of the cube in two characteristic planes, for the
direction of propagation and polarization of the incident plane
wave indicated in the inset. The results of the higher order
FEM-MoM method with the simplest (entire-domain) model
(single cubical FEM element and 6 square MoM elements)
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Fig. 5. Normalized monostatic radar cross section of a metallic cube: compar-
ison of a higher order FEM-MoM solution using 6 FEM and 6 MoM elements
(model includes an air box of side length � � ����� around the cube) with ex-
perimental results [27].

are compared with the results obtained by the MoM [9] and
low-order symmetric FEM-IE [11]. The orders of the polyno-
mial field and current approximations in the FEM-MoM model
are 4 and 3, respectively, resulting in as few as 300 FEM and
216 MoM unknowns. The required memory is 8.4 MB. The
computation times for filling and solving the matrices are 2.9 s
and 0.4 s, respectively. We observe a very good agreement of
the three sets of results, with the low-order FEM-IE solution
taking as many as 72,732 unknowns [11] (note that [11] also
provides a FEM-IE solution with 12,792 unknowns, whose
agreement with the MoM results is slightly worse than the one
observed in Fig. 4).

As an example of metallic structures, we analyze a cubical
metallic (PEC) scatterer on a side. For the purpose
of the FEM-MoM analysis, the cube is symmetrically encased
in an air cubical box of side length , as depicted
in the left inset of Fig. 5. The results for the normalized mono-
static RCS of the cube in a range of frequencies in Fig. 5 ob-
tained by the FEM-MoM using a model of the first geomet-
rical order, with the air layer around the cube represented by
6 FEM “cushions” in the form of pyramidal frusta, onto which
6 MoM square patches are attached (the mesh is shown in the
right inset of the figure), are compared to experimental results
[27]. The field approximation orders in the FEM elements are
adopted to be 2 in the directions perpendicular to the cube faces,
and 3 in other directions, whereas all current approximation or-
ders on MoM patches are set to be 4, so that the numbers of
unknowns in the hybrid solution are 328 and 384 in the FEM
and MoM regions, respectively. The memory requirements are
9 MB, and computation times for filling and solving the ma-
trices 2.2 s and 240 s, respectively, for 70 frequency points. Note
the simplicity of the higher order mesh in this example, as each
“cushion” between the PEC surface and FEM-MoM boundary
is meshed as a single -refined hexahedral element (entire-do-
main approximation). An excellent agreement of the numerical
RCS results with experiment is observed, with the outer faces
of the FEM hexahedra (which are the same as MoM patches) in

Fig. 6. Input resistance (a) and reactance (b) of a wire dipole antenna in the
vicinity of a dielectric cube (� � � �, � � � ��, � � �): comparison of a
higher order FEM-MoM solution (based on the model B in Fig. 3) and reference
pure MoM results; Impedance of the dipole in free space is also shown.

the model being as large as about on a side (with the poly-
nomial field/current approximation order 3 or 4) at the highest
frequency considered.

As the first antenna example, consider a wire dipole antenna
in the vicinity of a dielectric cube ( , ). The
length of the dipole equals , and wire diameter is .
The dipole is positioned centrally with respect to one of the cube
faces, parallel to it, at a distance , as shown in the inset
of Fig. 6. The antenna is modeled by two MoM wire segments
and a lumped voltage generator, and the FEM-MoM model B
in Fig. 3 is used for the cube (FEM-MoM interface coincides
with the dielectric surface), with the field and current expan-
sion orders of 5 and 4, respectively, in all directions in all el-
ements, which results in a total of 3630 FEM and 1547 MoM
unknowns. The required memory resources amount to 198 MB,
and the matrix fill and solution times are 1530 s and 5269 s,
respectively, for 61 frequency points. In Fig. 6, we observe an
excellent agreement of the higher order FEM-MoM results for
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Fig. 7. Normalized monostatic radar cross section of a dielectric �� � �����
sphere: convergence analysis (taking the Mie’s series solution as a reference)
of the FEM-MoM method on an entire-domain (single FEM element) computa-
tional model (curved version of model A of the cube in Fig. 3) with increasing
polynomial expansion orders of fields and currents (�-refinement).

the antenna input impedance with a reference pure MoM solu-
tion [25].

As an example of modeling of curved structures, Fig. 7 shows
the monostatic RCS of a dielectric sphere with , nor-
malized to the sphere cross-section area, against the normalized
sphere radius . The results obtained by the higher order
FEM-MoM are compared with the analytical solution in the
form of Mie’s series. The new technique is employed with a
geometrical model consisting of one FEM curvilinear hexahe-
dron and 6 MoM curvilinear patches on the surface, all of the
second geometrical orders, as sketched in the figure inset, and
three discretizations with increasing polynomial expansion or-
ders of fields (FEM) and currents (MoM), as specified in the
figure legend, which corresponds to a -refinement of the solu-
tion. Note that this again represents literally an entire-domain
computational model, now even a curved one (a single higher
order element models a sphere), analogous to model A of the
cube in Fig. 3. We observe in Fig. 7 an excellent convergence
of the method with -refinement. Additionally, when compared
to the exact solution, the entire-domain model, with the coarsest
mesh possible for this example, when fully -refined (with very
high orders of polynomial field and current approximations)
yields an accurate RCS prediction up to the frequency at which

and the curved faces of the FEM hexahedron, i.e.,
MoM quadrilateral patches, in the model are as large as about

or across . Note that the cen-
tral dimension of the hexahedron is (sphere diam-
eter) at this frequency.

The last example is a helical dipole antenna near an inhomo-
geneous dielectric sphere, at . The antenna con-
sists of a right-handed helix connected to a left-handed one (its
mirror image) at the feeding point, which resides on the helix
axis. Each helix has 4 full turns, of diameter , and
a short elliptical arc providing smooth transition from the be-
ginning of the first turn to the lumped generator at the feeding
point, as shown in Fig. 8. The pitch (separation between adja-
cent turns) is , axial height of the elliptical arc is

Fig. 8. Helical dipole antenna near an inhomogeneous, three-layer, dielectric
sphere (picture not drawn to scale). The FEM-MoM model of the sphere, as
can be seen in a cross section, consists of 8 cubical and 72 curvilinear hexa-
hedral FEM elements of the second geometrical order, with 24 attached curvi-
linear quadrilateral MoM patches of the second geometrical order on the outer
boundary.

Fig. 9. Current distribution (for 1 V excitation) for the upper half of the antenna
in Fig. 8, along with the antenna input impedance: comparison of a higher order
FEM-MoM solution (based on the model of the sphere shown in Fig. 8) with
reference pure MoM results.

, wire diameter is , and distance of
the helix periphery from the sphere surface is . The
sphere is composed of three concentric dielectric layers defined
by radii , , and , with rela-
tive permittivities , , and , respectively.
The helical dipole is modeled by straight MoM wire segments
(each helical turn is modeled by 8 equal segments and each el-
liptical arc by 4 equal segments), with the second-order polyno-
mial current expansion along each of the segments. The sphere
is modeled by 8 cubical and 72 curvilinear hexahedral elements
of the second geometrical order in the FEM domain, along with
24 attached curvilinear quadrilateral patches of the second ge-
ometrical order in the MoM domain, as can be seen in a cross
section of the model in Fig. 8. The orders of the polynomial field
expansion are varied from 2 to 4 for different FEM elements and
in different directions, and the orders of the polynomial current
approximation for MoM patches equal 3 in all directions for all
elements, with the total count of 6440 FEM and 1007 MoM un-
knowns (including the antenna). The required memory turns out
to be 509 MB, and computation times for filling the matrices and
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Fig. 10. Radiation patterns in the � � �� plane (a) and � � � plane (b) of
the antenna in Fig. 8, obtained using the higher order FEM-MoM model shown
in Fig. 8 and reference pure MoM.

their solution are 518 s and 57 s, respectively. Shown in Fig. 9
is the simulated current distribution along the wire of the upper
helix (for the generator voltage of 1 V), as well as the simulation
result for the antenna impedance, and in Fig. 10 far field (gain)
patterns in two characteristic planes of the antenna, where we
see how the layered dielectric sphere enhances the system radi-
ation toward the side at which it is placed. The results obtained
by the higher order FEM-MoM are compared with the results
obtained by the reference pure MoM technique [25]. We ob-
serve an excellent agreement of the two sets of results, for the
current distribution, input impedance, and radiation patterns of
the antenna.

IV. CONCLUSION

This paper has proposed a novel higher order large-domain
hybrid FEM-MoM technique for modeling of radiating and scat-

tering structures. The geometry of the structure is modeled using
generalized curved parametric hexahedral and quadrilateral ele-
ments of arbitrary geometrical orders. The fields and currents on
elements are modeled using curl- and divergence-conforming
hierarchical polynomial vector basis functions of arbitrary ap-
proximation orders, and the Galerkin method is used for testing.
As multiple MoM objects and FEM sub-regions are possible in
a global generally unbounded MoM domain, the MoM part pro-
vides much greater modeling versatility and potential for appli-
cations than just as a BI closure to the FEM part. The validity,
accuracy, convergence, and efficiency of the new technique have
been demonstrated in several characteristic examples. The flex-
ibility of the technique has allowed for very effective large-do-
main meshes that consist of a very small number of large FEM
and MoM elements (e.g., a dielectric spherical scatterer ana-
lyzed using an entire-domain model with a single curved FEM
element and 6 attached MoM patches on its sides), with field and
current distributions of high approximation orders. All the ex-
amples have shown excellent properties of the hybrid technique
and higher order elements in the context of the -refinement of
solutions, for models with both flat and curved surfaces, made
from both perfectly conducting and penetrable dielectric mate-
rials, and for both scatterers and antennas. The reduction in the
number of unknowns is by two orders of magnitude when com-
pared to available data for low-order FE-BI modeling. The new
hybrid FEM-MoM technique has proved to be a quite unique
and useful 3-D electromagnetic computational tool for antenna
and scattering problems, with an excellent potential for -refine-
ment procedures, especially for smooth regions, where large el-
ements are possible.
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Miroslav Djordjević (S’00–M’04) was born in
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