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Maximizing the Size of Self-Motion Manifolds to
Improve Robot Fault Tolerance

Ahmad A. Almarkhi

Abstract—One measure of a robot’s fault tolerance is the size
of its self-motion manifold. This letter presents a new methodol-
ogy for finding the largest self-motion manifold(s) of kinematically
redundant robots, that consists of two algorithms. Because large
self-motion manifolds occur near singular configurations, the first
algorithm is designed to identify singularities of all ranks, includ-
ing high-rank singularities. One unique feature of this algorithm is
its ability to deal with the ill conditioned nature of singular vectors
when there are multiple nearly equal singular values. The second
algorithm is constructed to compute the self-motion manifolds that
contain these singular configurations by iteratively moving along
the null space of the robot’s Jacobian. An important aspect of this
computation is to deal with singularities along the manifold, where
the null space is high dimensional. These two algorithms are applied
to the well-known Mitsubishi PA-10 to illustrate their effectiveness
at identifying singularities and computing the largest self-motion
manifold(s).

Index Terms—Redundant Robots, Kinematics.

1. INTRODUCTION

AULT tolerance has been a critical factor in the design and
F operation of robotic systems that are meant to operate in
harsh environments. Due to the mission-critical nature of some
robotic applications, failure could result in catastrophic loss of
life and/or property. Robots used in search and rescue operations
launched after disasters are good examples of when reliability is
important [1]. Previous work has shown that the availability of
robots in such harsh environments is as low as 50% [2]. Because
certain failures can put the entire mission in jeopardy [3], work
has been done to redesign rescue robots to make them fault
tolerant [4].

Many different aspects of fault tolerance have been consid-
ered, such as fault detection, identification, and analysis, as sur-
veyed in [5]. Researchers have also looked at fault-tolerant con-
trol of actuators, for example, in automated underwater vehicles
[6], [7]. Fault-tolerant control for multirobot systems with un-
detected failures is discussed in [8]. In all cases, fault tolerance
requires redundancy at some level. Categories of redundancy
include: structural redundancy, e.g., duplicating parts that are
most susceptible to failures [9]; functional redundancy, i.e., a
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human operator intervenes to assess faults and implement a
work-around; analytical redundancy, e.g., when a tachometer
signal is integrated to recover from a failed position sensor [5];
and kinematic redundancy, i.e., arobot is designed to have more
degrees of freedom (DoFs) than the minimum required to com-
plete a task in order to compensate for the lost joint(s). The work
presented here focuses on the study of kinematic redundancy.

To quantify the impact of incorporating kinematic redun-
dancy, researchers have classified the measures of fault toler-
ance into two categories, i.e., local and global. Quantitative lo-
cal fault tolerance measures are typically based on the singular
value decomposition of the robot’s Jacobian matrix. Such mea-
sures include the minimum singular value [10], the condition
number [11], and the robot manipulability [12]. The kinematic
redundancy is used to configure the robot so that it optimizes
the fault tolerance measure. Techniques for doing so frequently
involve the gradient of the minimum singular value [13].

Global fault-tolerance measures, that typically define reach-
able workspaces, are useful for pick-and-place tasks. One such
measure [10] can be used to identify the best fault-tolerant lo-
cation for these types of tasks. It quantifies the size of the
workspace where the robot can operate before a failure and
still return to the desired location after a failure. This can be
guaranteed if the robot is operated within specific joint limits
determined from the range of the robot’s self-motion manifold.
The problem becomes more challenging if the aim is to design
a fault-tolerant workspace that is reachable for any trajectory
both before and after a failure. A technique for computing the
boundaries of such a workspace is presented in [14]. One can
use these global measures to evaluate and select the optimal
kinematic parameters when designing redundant robots with the
same number of DoFs [15].

This work focuses on improving the global fault tolerance
of a robot by maximizing the size of a pre-failure workspace
while guaranteeing the reachability of a critical task location.
This is done by identifying “large” self-motion manifolds, where
the metric for the size depends on the ranges of each of the
joints, i.e., their bounding box. It is shown that such large self-
motion manifolds can be found by searching near high-rank
singular configurations because these configurations represent
connections of two or more previously disjoint manifolds.

The rest of this letter is organized as follows. An overview of
the terminology and background concepts used is presented in
Section II. In Section III, the approach used to analyze a robot
design in order to identify its best fault tolerant location(s) is ex-
plained. This approach is then illustrated on a common existing
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redundant robot design in Section IV. Finally, the conclusions
of this work are presented in Section V.

II. BACKGROUND
A. Self-Motion Manifolds

The forward kinematics of a robot is represented as

x = f(6) (D

where x is an m-dimensional vector representing the end-
effector location (position and orientation) and 6 is an n-
dimensional vector representing the joint angles. For redundant
robots, n > m, where n — m is the degree of redundancy. In
this case, the self-motion manifold(s) is (are) the set of all so-
lutions that result from solving the inverse-kinematic problem
represented by

0=fx). 2)

The upper limit on the number of self-motion manifolds for
redundant spherical, positional, and spatial manipulators is 2, 4,
and 16, respectively [16]. The relationship between the robot’s
joint velocity and its end-effector velocity is represented by

z=Jo 3)

where J is the m x n Jacobian. At the velocity level, self motion
corresponds to:

JO = 0. 4)

For the case where n — m = 1 and the robot is in a non-singular
configuration, the null space is one dimensional. In this case, the
null space will be represented by the unit vector vy, which is
tangent to a self-motion manifold associated with this location.
One can use 727 to map out the self-motion manifold(s) by inte-
grating how it evolves under the constraint of maintaining a fixed
desired end-effector location, x 4. Numerically, this can be done
by identifying an initial configuration 8y where x4 = f(6y),
and repeatedly solving

A0 =iy +JT Az, (5

where A@ is the change in the joint angles, v is a real posi-
tive scalar that represents the step size along the manifold, and
JT Az, is an error correction term where J is the pseudoin-
verse of the Jacobian matrix and Az, is the end-effector error,
i.e., the difference between f (6 + A) and z,.! If there are mul-
tiple self-motion manifolds, this procedure must be performed
on each of them with an appropriate initial 8. The characteris-
tics of the individual manifolds can be significantly different in
terms of their shape and size.

B. Size of Self-Motion Manifolds

To determine the length of a one-dimensional self-motion
manifold, one only needs to sum up the number of times that

The case where 0 results in a singular configuration and null space is multi-
dimensional will be discussed in Section III.
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(5) is solved to traverse the entire manifold. To identify when
one has returned to the initial configuration, one must be careful
to consider the case when one or more of the joints has rotated
by 27. More so than length, the range through which each joint
angle moves is a useful measure of the robot’s fault tolerance
at the location associated with this manifold. These ranges de-
fine a bounding box, the volume of which has been used as one
measure of fault tolerance [10]. Unfortunately, many common
7-DoF robot designs that are like a human arm, have self-motion
manifolds that have a zero range for a particular joint, i.e., the
elbow joint. Therefore, throughout this work we always use the
sum of all joint angle ranges for all self-motion manifolds asso-
ciated with a location as a measure of fault tolerance.

Fortunately, for higher degrees of redundancy (where n —
m > 1) thatresult in higher dimensional self-motion manifolds,
computing an estimate of a bounding box is more tractable than
computing areas, volumes, or hypervolumes of manifolds. For
these cases, a bounding box on the joint angle ranges can be
computed by modifying (5) to

A =yNje; + JT Az, (6)

where IN ; is a projection onto the (n — m)-dimensional null
space of the Jacobian and é; is a unit vector along the ith joint
angle, where 1 < ¢ < n[10]. By repeatedly solving (6), fors = 1
to n, one can find an approximation of joint-angle ranges that
can be used to compute the self-motion manifold size.> The
iteration defined by (6) should be terminated when either joint
angle 7 traverses 27 or the projection of &; onto the null space
becomes zero. In the latter case, this may be a local minimum
so that this measure is a lower bound on the range of joint ¢.

As illustrated in Fig. 1, singularities play a critical role in
the size and shape of self-motion manifolds. At singularities,
two (or more) self-motion manifolds can touch and become one
manifold, or one manifold can tear apart. This means that larger
manifolds tend to include one or more singularities and so it is
natural to search for large manifolds near singularities.

III. IDENTIFYING LARGER SELF-MOTION MANIFOLDS

As discussed above, the larger (thus the more fault-tolerant)
self-motion manifolds exist near singularities, so that one should
employ a technique for identifying singular configurations.
There are many techniques for doing so, e.g., symbolically solv-
ing for when the determinant of J becomes zero [17] or using
reciprocity-based resolution [18]. However, here we employ a
technique based on the gradients of the singular values [13] be-
cause of its ability to identify high-rank singularities. The sin-
gular value decomposition of J can be defined as

J=UDV'T @)

where U is an m x m orthogonal matrix of the output singular
vectors, V' is an n x n orthogonal matrix of the input singular
vectors, and D is an m X n diagonal matrix where its diagonal

2This letter will focus only on the 7-DoF case, but future work will expand
to higher DoF robots.
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Fig. 1. Anillustrative example of commonly occurring self-motion manifolds

for high-dimensional manipulators is shown projected into the two-dimensional
space for joints 6; and 6. The single one-dimensional manifold shown in red
is the connection of two previously disjoint manifolds. At the center of the
figure, the intersection is a singular configuration where the null space is two-
dimensional. Note that this is a true intersection and not simply due to the
projection onto the 6; - §; plane. If one perturbs the end-effector location from
the one associated with the red manifold, the resulting manifolds can be quite
different depending on the direction of the perturbation. In blue, the one red
manifold splits into two open manifolds and in green into two closed manifolds,
where open refers to the fact that 6; can take on any value.

elements are the ordered singular values, i.e., 01 > g9 > -+ >
o, > 0. It can be rewritten as a summation in terms of the
singular vectors

J =Y oiu;b] ®)
i=1

where the vectors u; and v; represent the output and input sin-
gular vectors, respectively. For nonsingular J, the value of o,
represents the distance to a singularity. The rank of J, denoted
r, is less than m if the robot is singular (i.e, o; = 0 for: > r).In
this case, the value of o, is the distance to the next higher-rank
singularity. One can drive the robot towards the nearest singular-
ity by moving the robot along the gradient of o, until it reaches
zero. From (8), it is easy to see that any singular value o; can be
written as

o =, Jv,. )

By differentiating (9) with respect to time, one obtains

Gi =, Jo; +u; Jo; +a; Jv, (10)
that can be simplified to
o = u; Jo,. (11)
The partial derivative of o; with respect to 8, can be written as
80'7; ~T oJ ~
=, —U; 12
96, ~ " 06y, (12
where
oJ 071 03 aj
_ 1931 992 OJn (13)

A T
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The partial derivative of the i column of the Jacobian is given
by [13], [19]

{(zlpvz)zi - (Zgzi)l?k} < i
. Ze X Z; ’
= a4
k [(szk)zk - (Z;Zi)Pk] k>
0 bl -

Utilizing (12), (13), and (14), one can easily compute the
gradient of any singular value of J as

9o; 9oy 0o
90,706,796, |

Moving along this gradient allows one to increase or decrease
any desired singular value.

Finding the largest self-motion manifold(s) of any robot is a
two-step process. The first step is to find all singular configura-
tions, including high-rank singularities. In this step, we employ
the gradient descent technique to minimize a desired singular
value

VO'i = [ (15)

) = o) _ Vo, (16)

where 0¥) is the current joint configuration, 8 *+1) \unboldmath
is the next joint configuration, and « is a positive scalar, often
referred to as the step size. To identify rank-1 singularities, we
start with generating random configurations in the joint space.
Then, starting from each random configuration, we move the
robot along the negative direction of the gradient of o, until
the value of o,,, approaches zero. The set of final configurations
that satisfy the condition of o,,, < € are the rank-1 singularities
of the robot, where ¢ is a user-defined threshold.

To identify the rank-2 singularities, we start from the same
random configurations used to identify rank-1 singularities, but
the robot is first moved along the negative direction of Vo,,_;
until the value of o,,_; approaches zero, i.e, 0, < 0p—1 < €.
In some cases o,,,_1 and o,,, become nearly equal before o,,,_1
approaches zero. This means that the singular vectors ,,,_1 and
U, (as well as v,,,_1 and v,,,) are ill-defined. That is, any vectors
in the subspaces {1, U, } and {©,,_1, 0, } are valid singu-
lar vectors for the gradient computation in (11) and (12). In such
cases, we rotate the { @, 1, U, } and {0, 1, D, } subspaces so
that the angle between Vo, and Vo,,_1 is minimized. (The an-
gle between the gradients of o,, and ¢,,,_1 may vary from O to
m.) We then reduce o,,,—1 by moving along a negative direction
of a linear combination of the gradients of o, and 0,,_1. We
optimize the linear combination by doing two one-dimensional
searches. The first search is along Vo, + (1 — 5)Vo,,1 to
determine the optimal value of 3, where 0 < 8 < 1, that min-
imizes o,,—1. The second, is to determine the optimal value of
the adaptive step size « along the negative direction of the com-
puted combination. Those configurations that converge to where
Om < 0m-1 < earerank-2 singularities. If the process does not
converge, then a rank-2 singularity does not exist near this con-
figuration. An analogous procedure is used to find rank-3 (and
higher-rank) singularities. There are two cases where the singu-
lar vectors are ill-defined, i.e., when o,,,_o and 0,,_; are nearly
equal or if the three singular values o,,,_2, 0,,—1, and o, are all
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Algorithm 1: Identify All-rank Singular Configurations.

1: select N random joint-space configurations?
2: for ¢ = 6to 1 do {for each workspace dimension}
3: for j = 1to N do {for each random configuration}

4 select jt" joint-space configuration @
5 compute o; {robot Jacobian’s i*" singular value}
6 while o; > e do
7: if (i = 6) then {for rank-one singularities}
8: Vo = VO'6
9: else {for high-rank singularities}
10: for all o). where 0; =~ o), do {where k < i}
11 rotate U and V' subspace associated with o;
and o s {to minimize the angles between
VO};, v0'7;+17 ey VO'k}
12: compute Vo {optimal linear combination of
the gradients of the singular values}
13: end for
14: end if
15: compute « {adaptive linear search along Vo }
16: update 8 {8+t = 9(K) — 4 Vo)
17: if (0; did not decrease) then
18: go to 23 {local minimum of o;}
19: end if
20: end while
21: save @ and singularity rank
22: end for
23:  end for

nearly equal. In the first case, the optimization described above
can be performed for o,,,_2 and ,,,_1 to minimize o,,,_o. In the
second case, one needs to search for a suitable rotation for the
{Um—2,Wm—1, U} and {D,,_2, V1, Uy, } subspaces to min-
imize the sum of the angles between the gradients of the three
singular values. Then, one must find a suitable combination of
the gradients and a step size that minimize o,,_. An analo-
gous process is repeated for higher-rank singularities until there
is no possible joint motion that will reduce o, while keeping
om < omo1 < -+ < 011 < 6 le., there are no rank-(m — r)
singularities. The pseudocode for performing this procedure is
given in Algorithm 1.

The second step is to compute all the self-motion manifolds
that include these singular configurations. However, one would
like to reduce the number of these configurations, in order to
reduce the amount of computations that result in very similar
manifolds. Therefore, if two singular configurations are close
to each other, then only one of them will have its self-motion
manifold computed. Finding the self-motion manifolds for each
singularity configuration can be done by starting the robot in
that singular configuration and then repeatedly solving (5) until
an entire self-motion manifold is computed.

Before applying (5), one must first compute the end-effector
location associated with this singular configuration. Then, from

3The value of N should be large enough to sufficiently span the joint space.
An analysis of this user-defined parameter is provided in Subsection IV-C below.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 3, JULY 2019

——
7
7
7 . .
V2 Rank -1 Singular Rank-2 Singular
s Configurations Configurations
Fig. 2.  This sketch illustrates the case where three previously disjointed man-

ifolds (red, green, and blue) touch and become one manifold, i.e., a rank-2
singularity. Also, two of these manifolds (green and blue) touch elsewhere cre-
ating a rank-1 singularity. Many variations of different-rank singularities can
exist on a single manifold.

the singular configuration, the robot is moved in each of the
(n — r) directions of the null space. Mathematically,

AG =y, + JT Az, (17)

for i = r to n, where these v; are the singular vectors that span
the (n — r)-dimensional null space of the Jacobian at the singu-
lar configuration. This guarantees that all of the one-dimensional
self-motion manifolds that touch at this configuration can be
computed (see Fig. 1), because away from the singular configu-
ration the null space becomes one dimensional and well defined.
Therefore one can repeatedly solve (5) until the robot returns to
the initial starting configuration.

However, it is common for self-motion manifolds to include
multiple singular configurations (see Fig. 2). If while solving
(5) the null space becomes multi-dimensional, i.e., another sin-
gularity is encountered, then one should be careful to select a
null-space vector from this higher dimensional subspace that
is as close as possible to the one used to enter the singularity.
For computational efficiency, one should check any new starting
configuration with all previously computed manifolds to pre-
vent redundant computations. The pseudocode for performing
the second step is given in Algorithm 2.

In general, an end-effector location will have multiple dis-
joint self-motion manifolds, i.e., the robot cannot move from one
manifold to another without changing the end-effector location.
To compute the “fault tolerance” of the end-effector location
associated with a singular configuration, one needs to compute
the “bounding box” of all the self-motion manifolds, i.e., the
ranges for each of the joints while staying at this end-effector
location. Because of multiple disjoint self-motion manifolds one
needs to decide if it is important to reconfigure the arm from one
manifold to another without moving the end effector. If it is not,
then one can simply take the union of all the joint-angle ranges
for each manifold. If it is, one can only take the union for those
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Algorithm 2: Compute all Self-motion Manifolds with Sin-
gularities.

I: import N singular configurations and their ranks {from
algorithm} 1
{remove duplicate singularities }

2: Vi,j < N,i#}j
3: if0(i) ~ 6(j) then
4:  delete 6()
5: end if
{compute all self-motion manifolds SMMs }
6: for each singularity rank do
7 for all singular configurations @ do {of each rank}
8: if 8 does not exist on a previously computed
manifold then
9: compute x. {the end-effector location}
10: find the n — r configurations near 6 that satisfy
the n — r singular directions at o,
11: for k =1ton —rdo
12: if k' configuration does not exists on a
computed manifold then
13: start at the k' configuration
14: while not back to starting configuration
do
15: compute the robot Jacobian (J)
16: compute the null vector (72 7)
17: compute A {AO = yn; + JTAx,}
18: update joint angles {6, = 014
+A0)
19: end while
20: end if
21: end for
22: end if
23: end for
24: end for

manifolds that touch. One measure of the size of the bounding
box is simply the summation of all these joint-angle ranges. The
above procedure for identifying the largest self-motion manifold
is illustrated for the well-known 7-DoF Mitsubishi PA-10 robot
in the next section.

IV. PA-10 RoBOT CASE STUDY
A. PA-10 Background

The Mitsubishi PA-10 is used as an illustrative example be-
cause it has a well-known, commonly occurring 7-DoF kine-
matic structure. We first explain the behavior of the self-
motion manifolds of the PA-10 when the end-effector location is
changed. Then, the algorithms described in the previous section
are used to identify the largest self-motion manifolds and how
they relate to fault tolerance. The original DH parameters for the
PA-10 are given in Table I [20], with the end effector positioned
so that the last link’s displacement, d7, is equal to d3.

Because the elbow joint, i.e., 64, is the only one that can
change the distance between the shoulder and the wrist, there
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TABLE I
THE DH PARAMETERS OF THE PA-10 ROBOT

Link; | oyfrad] | a;[m] | di[m] | 6;[rad]
1 —7/2 0 0 01
2 /2 0 0 02
31 /2 0 045 05
4 /2 0 0 04
51 —x/2 0 050 05
6 72 0 0 96
7 0 0 0.45 07
[m==mememeeeeeeeeeeeeeeeeeeeesqeseeeseesssesesesseesssesssesseessy
(a) (b) i
1501
b — 0 |
- —— 100
NG — Sy — A
! ~e—— N B g T 0

_____________________________________________________________________

Fig. 3. This figure shows 3-D projections of the PA-10 self-motion manifolds
generated by changing 64 from —7 to +7, where the value of 64 is indicated
using color. Subfigure (a) is a projection in [f2, 63, 64] and (b) is a projection in
[06,05,04]. Singularities occur at (A) where 02 = 0,03 = +7/2, (B) where
02 = +m,03 = £7/2,(C) where 04 = 0, (D) where g = 0,05 = £7/2, and
(E) where g = +m, 03 = +7/2.

can be no component of 6, during self motion. Therefore, it is
possible to categorize self-motion manifolds based on the value
of 0,. Thisisillustrated in Fig. 3 where a single manifold for each
end-effector location is shown with 64 ranging from — to 7. All
of the singularities shown in this figure are rank-1 singularities.

The self-motion manifolds in Fig. 3 exhibit all of the proper-
ties shown in Fig. 1, i.e., there are both open and closed man-
ifolds with manifolds connecting/separating at singularities. It
is also clear that the largest manifolds are those that include
singularities.

The singularities of the PA-10 have been well studied [18],
[21]. However, it is important to note that Algorithm 1 above can
be applied to any arbitrary robot structure and its computational
complexity does not change for high-rank singularities, which
are important for identifying the largest self-motion manifold.

B. The Largest Self-Motion Manifold

Once all the singularities are identified, Algorithm 2 is able
to compute the size of self-motion manifolds that include these
singularities. It identified the largest self-motion manifold to
be 35.90 rad,* where the ranges of 6;,60-,0s,05, and 07 are

4This is the theoretical maximum size where the actual value would include
any joint limits on 65 and 0g that are due to self collision.
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Fig. 4. The subfigures (a)-(d) show different 3-D projections of the PA-10
self-motion manifolds characterized by 64, where any color corresponds to only
a single manifold. The optimal self-motion manifolds identified by Algorithm
2 are shown in black where 84 = +2.69 rad. The dotted lines are used to better
show parts of the manifold that did not exist on nearby manifolds. The red and
green manifolds where 64 = 3.00 rad and 64 = —3.00 rad, respectively, are
shown to illustrate the behavior at a singularity.

2 rad, the range of 6g is 4.48 rad (£2.24 rad),’ and the range
of 0, is zero, where its value is either +2.69 or —2.69 rad. To
help understand why Algorithm 2 identified this as the optimal
solution, consider Fig. 4 that shows several self-motion mani-
folds and their associated singularities characterized by varying
0, from —7 to , analogous to Fig. 3. The black manifolds,
where 04 = £2.69 rad, are clearly the largest self-motion man-
ifolds. The nearby manifolds shown in green and red, where
04 = —3.00 rad and 64 = 3.00 rad, respectively, are shown
to illustrate the behavior at these singularities. The subfigures
(a)—(d) are all different projections of the same manifolds, i.e.,
any color corresponds to only a single manifold. These projec-
tions have been selected to illustrate which joint angles have an
unrestricted range, i.e., 61, 0, 03, 05, and 07, whereas 6 has a
range of +2.24 rad, which is clearly shown in (c) and (d).

One should note that the two black manifolds correspond to
the same end-effector location, however, the robot cannot move
from one manifold to the other without changing this location.
The rank of the various singularities on the black manifold is
not clear from Fig. 4 because they all appear to be of rank 1
due to the projections used. If one looks at the projection in
03,05, and 6 space, as in Fig. 5(a), then it becomes clear that
the black manifold contains four rank-1 and four rank-2 singu-
larities, shown in blue and red respectively. (The four blue dots,
rank-1 singularities, at the lower part of Fig. 5(a) only represent
two singularities, i.e., the dots at 5 = 7 are the same as those
at 05 = —m).

Fig. 5(b) shows the ranges of the seven joint angles of the PA-
10 while operating on the largest self-motion manifold. There

SIf one wanted to modify the link offsets of the PA-10 to make d3 = ds, then
the size of the largest self-motion manifold could be increased so that 8 would
also have a range of 27r. This would also change the optimal value of 64 to 0.
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=

Fig. 5. In (a) the largest optimal self-motion manifold is shown projected
into the 03,05, and 0 subspace. From this projection one can see that this
manifold contains four rank-1 and four rank-2 singularities, shown in blue and
red respectively. Note that the two blue singularities at the bottom of the figure,
i.e., where fg = —2.24 rad, are shown twice at both 5 = +7m. The rank-2
singularities occur when 8 = [0, 0, iT’T ,04, iQ—" ,0, 0], where in this case 4 =
2.69 rad. The ranges of each of the joints is shown in (b) where 01, 02, 63,65,
and 07 are 27, the range of 0 is 4.48 rad (£2.24), and the value of 04 is 2.69 rad,
where its range is zero.

TABLE 11
EFFICIENCY COMPARISON BETWEEN THE PROPOSED ALGORITHMS AND THE
RANDOM APPROACH

No. of Random | Size of the Largest Self-Motion Manifold (Radians)
Configurations Random Approach Proposed Algorithms

10 27.89 28.36

20 33.78 34.09

100 34.33 34.43

200 33.95 34.78

1,000 34.82 35.80

2,000 35.09 35.90

10,000 35.52 35.90

are two separate, equal-sized manifolds at this location. The
other manifold has identical joint-angle ranges, except that 4, =
—2.69 rad. The configurations with §, = £2.69 rad are special
because they make the axis between the shoulder and the wrist
horizontal, and the rotation around this axis can configure the
robot into four rank-1 singularities and four rank-2 singularities.
Operating the robot slightly away from these special values of
0, will not allow it to reach all the rank-1 singularities. This will
not dramatically change the size of the self-motion manifold,
however the robot will lose some ability to reconfigure that is
offered by the rank-1 singularities.

C. Evaluation

We first compare the proposed approach for identifying the
largest self-motion manifold with a straightforward evaluation
of self-motion manifolds generated at random configurations.
Table II shows a comparison of the largest self-motion manifold
identified by both techniques as a function of the number of
random configurations N.

The data shows that the proposed approach converges to the
maximum self-motion manifold size of 35.90 rad at N = 2000.
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Fig. 6. This figure shows a comparison of the distributions of self-motion

manifold sizes computed for 1,000 random configurations (left) with those found
for 1,000 configurations with the best local dexterity measure (middle) and
fault-tolerant measure (right). The best 1000 manipulability and fault-tolerant
manipulability configurations were selected from 10,000 random configurations.
The minimum and the maximum sizes in each distribution are indicated with
black horizontal lines and the red line is the median. The largest (35.90 rad) and
smallest (12.57 rad) self-motion manifold sizes for this robot are also indicated.

This was verified using ten different populations of random con-
figurations. It should also be noted that our proposed approach
outperformed the random approach for any value of V.

Next, we compared our proposed algorithm to an approach
that attempts to identify large self-motion manifolds using clas-
sical local dexterity [22] and fault-tolerance measures [12].

Fig. 6 shows the distribution of 1,000 self-motion manifold
sizes computed from joint space configurations selected in three
different ways. The left distribution is from the N = 1,000 en-
try in Table II, which is generated randomly. The middle and
the right distributions are for the 1, 000 configurations with the
best manipulability [22] and fault-tolerant manipulability [12],
respectively, selected from 10, 000 random configurations. Note
that the distribution of the self-motion manifold sizes generated
from traditional local measures of dexterity and fault tolerance
are outperformed by the random approach. This indicates that
there is no correlation between classical local measures and self-
motion manifold size. In addition, none of these techniques is
able to identify the largest self-motion manifold of the robot.
However, it is possible to use our proposed approach to opti-
mize both global fault tolerance, i.e., largest self-motion man-
ifold size, and any desired local measure of dexterity or fault
tolerance. For example, Fig. 7(d) shows the PA-10 robot in one
configuration on the largest self-motion manifold that minimizes
the condition number of the Jacobian, i.e., o1 /o = 13.86. This
illustrates that one does not have to operate near a singular con-
figuration in order to obtain the benefits of a fault-tolerant loca-
tion with a large self-motion manifold.

D. Example Use Case

We now present a simple example use case where the per-
formance of the proposed technique is compared to existing
approaches [12], [22]. Assume that a robot will be employed
in a remote environment where repair is not feasible and one
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Fig.7. The PA-10robot (with an arc-welding tool attached) is shown operating
at multiple locations.® Subfigure (a) shows it in the home location, (b) in the
best robot manipulability, (c) in the best fault-tolerant manipulability, and (d) in
a location with the largest self-motion manifold. The self-motion manifold size
associated with the best manipulability configuration is 23.67 rad, and for the
fault-tolerant manipulability is 22.45 rad.

TABLE III
ROBOT’S HOME AND TASK CONFIGURATIONS

Start and Optimal Goals
Task Starting Location
Manipulability

Fault-Tolerant Manipulability
Largest Self-motion Manifold

Joint Configurations [rad]
[0707 gv g7 37070}
0,—1.8,—2.8,—1.3,-2.3,1.5,0]
0,—0.8,3.0,1.2,—2.9,1.6, 0]

0,— 2,7, -2.69,1.14, 2, 0]

is designing the workspace to determine where a critical task
should be placed. The home configuration of the robot is where
all tasks start, and one would like to be able to reach the goal
location even after any single locked-joint failure.

The start location is shown in Fig. 7(a). We select the goal lo-
cation using the technique presented here, i.e., the location with
the largest self-motion manifold, Fig. 7(d), and compare it to goal
locations with globally optimal local measures, i.e., manipula-
bility, Fig. 7(b), and fault-tolerant manipulability, Fig. 7(c). The
joint values for all these configurations are given in Table III.

We then simulate a joint failure in each of the joints and per-
form inverse kinematics on the remaining six working joints
and attempt to reach the goal locations. In all cases, the robot is
able to reach location Fig. 7(d), however, there are several joint
failures that prevent the robot from reaching the goal locations
shown in Fig. 7(b) and (c). One example is shown in Fig. 8,
where the robot is not able to reach the desired goal location due
to a failure of joint six at fg = 0 that occurred at the start loca-
tion. In both cases, this joint failure results in the desired goal
location being outside the workspace of the damaged robots.
Therefore, the best they can do is get to the closest location that
is at the boundary of their new workspace. In Fig. 8 we select
the “closest” configuration by minimizing the orientation error,
so that all error is in the position of the tool. This illustrates the

OFig. 7 and Fig. 8 were generated by using the Workspace 5 software package
from WAT Solutions, (www.watsolutions.com).
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Fig. 8. The PA-10 robot is shown with joint six (in red) failed at 6 = 0 while

trying to perform a task where the goal location is either optimal manipulabil-
ity in (a) or fault-tolerant manipulability in (b). An arc-welding tool is shown
in the desired location to show the difference in position from the closest pos-
sible location for the damaged robots. The position errors in (a) and (b) are
[—0.66, —0.44, 0.02]m and [—0.56, —0.14, —0.79]m, respectively.

merit of operating a robot on the largest self-motion manifold
for mission-critical tasks.

V. CONCLUSIONS

This work uses a measure of fault tolerance that is based on
the size of self-motion manifolds. Because singularities occur
at the connection of self-motion manifolds, they can be used to
identify where larger manifolds exist. We developed algorithms
that use this fact to; (1) first identify all ranks of singularities and
then, (2) search in the proximity of these singularities to identify
large self-motion manifolds. A unique feature of Algorithm 1
is that it can efficiently identify high-rank singularities for arbi-
trary robot structures. To do this it must track multiple singular
values that are nearly equal, where their gradients are not well
defined. Algorithm 2 also must deal with the ill-conditioned na-
ture of singular vectors that occur at singular configurations. The
efficacy of these algorithms is illustrated on a commonly occur-
ring 7 DoF kinematic structure (Mistubishi PA-10). In addition
to identifying the largest self-motion manifold, it provided in-
formation that allows one to modify the kinematics to obtain an
even larger manifold. It was also able to identify joints that are
fault intolerant, so that one could explore alternate designs.

REFERENCES

[1] F. Matsuno and S. Tadokoro, “Rescue robots and systems in Japan,” in
Proc. IEEE Int. Conf. Robot. Biomimetics, 2004, pp. 12-20.

[2] J. Carlson and R. R. Murphy, “How UGVs physically fail in the field,”
IEEE Trans. Robot., vol. 21, no. 3, pp. 423-437, Jun. 2005.

(3]

[4

=

(5]

(6]

[7

—

[8

—

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 3, JULY 2019

K. Nagatani et al., “Emergency response to the nuclear accident at the
Fukushima Daiichi nuclear power plants using mobile rescue robots,” J.
Field Robot., vol. 30, no. 1, pp. 44-63, 2013.

K. Nagatani et al., “Redesign of rescue mobile robot Quince,” in Proc.
IEEE Int. Symp. Saf. Secur. Rescue Robot., 2011, pp. 13-18.

M. L. Visinsky, J. R. Cavallaro, and I. D. Walker, “Robotic fault detection
and fault tolerance: A survey,” Rel. Eng. Syst. Saf., vol. 46, no. 2, pp. 139—
158, 1994.

T. K. Podder, G. Antonelli, and N. Sarkar, “Fault tolerant control of
an autonomous underwater vehicle under thruster redundancy: Simula-
tions and experiments,” in Proc. IEEE Int. Conf. Robot. Autom., 2000,
pp. 1251-1256.

N. Ranganathan, M. L. Patel, and R. Sathyamurthy, “An intelligent system
for failure detection and control in an autonomous underwater vehicle,”
IEEE Trans. Syst., Man, Cybern. — Part A: Syst. Humans, vol. 31, no. 6,
pp. 762-767, Nov. 2001.

H. Park and S. A. Hutchinson, “Fault-tolerant rendezvous of multirobot
systems,” IEEE Trans. Robot., vol. 33, no. 3, pp. 565-582, Jun. 2017.

V. Monteverde and S. Tosunoglu, “Effect of kinematic structure and dual
actuation on fault tolerance of robot manipulators,” in Proc. IEEE Int.
Conf. Robot. Autom., 1997, pp. 2902-2907.

C. L. Lewis and A. A. Maciejewski, “Fault tolerant operation of kine-
matically redundant manipulators for locked joint failures,” IEEE Trans.
Robot. Autom., vol. 13, no. 4, pp. 622-629, Aug. 1997.

H. Abdi and S. Nahavandi, “Minimum reconfiguration for fault tolerant
manipulators,” in Proc. 34th Annu. Mech. Robot. Conf., Parts A and B,
2010, pp. 1345-1350.

R. G. Roberts and A. A. Maciejewski, “A local measure of fault tolerance
for kinematically redundant manipulators,” IEEE Trans. Robot. Autom.,
vol. 12, no. 4, pp. 543-552, Aug. 1996.

K. N. Groom, A. A. Maciejewski, and V. Balakrishnan, “Real-time failure-
tolerant control of kinematically redundant manipulators,” IEEE Trans.
Robot. Autom., vol. 15, no. 6, pp. 1109-1115, Dec. 1999.

R. C. Hoover, R. G. Roberts, A. A. Maciejewski, P. S. Naik, and K. M.
Ben-Gharbia, “Designing a failure-tolerant workspace for kinematically
redundant robots,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 4, pp. 1421—
1432, Oct. 2015.

K. M. Ben-Gharbia, A. A. Maciejewski, and R. G. Roberts, “Modifying the
kinematic structure of an anthropomorphic arm to improve fault tolerance,”
in Proc. IEEE Int. Conf. Robot. Autom., 2015, pp. 1455-1460.

J. W. Burdick, Kinematic Analysis and Design of Redundant Robot Manip-
ulators. Ph.D. dissertation, Dept. Comput. Sci., Stanford Univ., Stanford,
CA, USA, 1988.

K. Waldron, S.-L. Wang, and S. Bolin, “A study of the Jacobian matrix of
serial manipulators,” J. Mech., Transmiss., Autom. Des., vol. 107, no. 2,
pp. 230-237, 1985.

S. B. Nokleby and R. P. Podhorodeski, “Reciprocity-based resolution of
velocity degeneracies (singularities) for redundant manipulators,” Mech.
Mach. Theory, vol. 36, no. 3, pp. 397-409, 2001.

C. A. Klein and L.-C. Chu, “Comparison of extended Jacobian and La-
grange multiplier based methods for resolving kinematic redundancy,” J.
Intell. Robot. Syst., vol. 19, no. 1, pp. 39-54, 1997.

J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-pair
mechanisms based on matrices,” ASME J. Appl. Mech., vol. 22, no. 4,
pp. 215-221, 1955.

S. B. Nokleby and R. P. Podhorodeski, “Identifying multi-DOF-loss veloc-
ity degeneracies in kinematically-redundant manipulators,” Mech. Mach.
Theory, vol. 39, no. 2, pp. 201-213, 2004.

T. Yoshikawa, “Manipulability of robotic mechanisms,” Int. J. Robot. Res.,
vol. 4, no. 2, pp. 3-9, 1985.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on March 16,2020 at 21:42:52 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


