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Abstract—Periodic application checkpointing to a parallel file
system has for years been the standard strategy for providing
high performance computing (HPC) systems with resilience to
system failures. The traditional checkpoint/restart protocol has
until recently proved sufficient for mitigating the impact of
these failures on application performance. However, as system
sizes approach exascale levels, the frequency of failures and
the time required to checkpoint/restart an exascale-size appli-
cation increases and the efficiency of traditional checkpointing
decreases substantially, making it no longer a viable option for
providing resilience to future HPC systems. The most frequently
proposed solution for providing future systems with resilience
has been to design multilevel checkpointing protocols. However,
the relationship between system failure rates, checkpoint/restart
overhead, and duration of time between successive checkpoints
is complex and finding the optimal duration of time between
successive checkpoints is an open and challenging problem. This
work presents a novel execution time prediction model we have
developed that takes into consideration execution events that have
not been considered by previous multilevel checkpointing models.
‘We show how this model can be used to select checkpoint intervals
and demonstrate why consideration of these execution events is
important. We validate our work through simulation and provide
a comparison to several optimization strategies proposed in other
work to demonstrate the advantage gained by considering these
execution events.

Keywords: exascale resilience; checkpoint restart; multilevel
checkpointing; checkpoint optimization; fault tolerance.

I. INTRODUCTION

As applications have demanded more computing power
over time, high performance computing (HPC) systems have
required exponentially increasing numbers of system CPU
cores to provide this performance [1]. With HPC systems
approaching exascale computing complexities, it is expected
that they will require several million CPU cores. Simultane-
ously, the drive to improve performance and energy-efficiency
by fabricating at smaller transistor technologies has decreased
component reliability [2].

Because of these trends, as HPC systems approach extreme
scales, system failure rates have increased rapidly. A recent
study of the Blue Waters system in [3] indicates that a 2.2
increase in application size (from 10,000 system nodes to
22,000 system nodes) resulted in a 20x increase in the
probability of application failure. Given that [4] suggests that
an exascale application is likely to require at least 100, 000
system nodes, an exascale system can be expected to experi-
ence significantly higher failure rates. Moreover, the study in
[3] concludes that for the 13.1 petaflop Blue Waters system, on
average an application failure caused by a system-related issue

occurs every 15 minutes. An exascale machine is therefore
likely to experience failures much more frequently and has
been estimated to have a system mean time between failures
(MTBF) of as little as three minutes in extreme cases [5].

In such an environment, it is imperative that protocols
are in place that allow HPC systems to respond to failures
when they occur and mitigate their impact on application
performance. However, analysis has shown that current HPC
resilience protocols such as traditional checkpoint/restart and
redundancy-based resilience are not suitable for scaling to
exascale system sizes [2] [6] [7] [8] [9]. One solution for
future systems that has been researched over the last decade
in anticipation of these extreme-size HPC systems is multilevel
checkpointing. Multilevel checkpointing protocols exploit the
fact that not all failures require costly restarts of the application
from a parallel file system (PFS), and that less severe failures
can be restarted in significantly less time from higher levels
of memory (e.g., local or remote DRAM).

As with traditional checkpoint/restart protocols, when per-
forming a checkpoint or restart operation the system must
temporarily halt application execution. While this is necessary
for successful computation in failure-prone systems, every
checkpoint incurs overhead that slows the progress of appli-
cation execution. Just as application progress is impeded by
failures if the duration of computation between checkpoints is
too large, checkpoints taken too frequently also incur overhead
that prevents application progress. This interaction between a
given execution environment and the duration of the interval
of computation between checkpoints becomes significantly
complex with a multilevel checkpointing system. There is
an optimal set of successive intervals between levels of a
multilevel checkpointing protocol. Determining these optimal
intervals is an open problem associated with multilevel check-
pointing and is one of the major challenges with the successful
implementation of the protocol.

In this work we make the following contributions:

« we provide a detailed comparison among several state-of-
the-art techniques for determining multilevel checkpoint-
ing intervals;

« we demonstrate the necessity of accounting for failures
during checkpoint and restart events when modeling
extreme-scale systems;

« we derive an application execution time prediction model
in the presence of multilevel checkpointing that can
be used for determining the performance of checkpoint
intervals;
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o« we show some of the limits under which multilevel
checkpointing ceases to be a viable option for providing
resilience to extreme-scale systems;

we demonstrate the superior accuracy of execution time
predictions made with our model, as well as situations in
which our model outperforms other state-of-the-art tech-
niques for determining multilevel checkpoint intervals.

The remainder of this paper is organized as follows. We
discuss the historical development and recent progress of mul-
tilevel checkpointing, and discuss the challenge of constructing
accurate models for both application execution time prediction
and checkpoint interval optimization in Section II. We present
our own approach to modeling a multilevel checkpointing
protocol with an arbitrary number of levels in Section III. We
provide a set of simulation studies comparing several state-
of-the-art multilevel checkpointing models in Section IV. We
end the paper with some concluding remarks in Section V.

II. RELATED WORK
A. Overview

Traditional checkpoint/restart techniques have been used for
decades to mitigate the effects of system failures in HPC
systems. The first attempt to optimize checkpoint intervals
was Young’s first-order approximation in [10]. This execution
time model was substantially improved by Daly’s higher order
execution time approximation in [11]. Daly’s work remains the
most common approach for optimizing traditional checkpoint-
ing. However, traditional checkpointing has been shown to not
provide adequate resilience for extreme-sized systems.

The first notion of utilizing different levels of checkpoints
for recovering from different types of failures was presented
in [12] and this was extended to a more practical (two-level)
multilevel checkpointing protocol in the Markov model pre-
sented in [13]. Whereas traditional checkpoint/restart performs
a checkpoint or restarts from one level (typically the PFS),
multilevel checkpointing relies on checkpoints and restarts
from multiple levels of memory (e.g., local DRAM, remote
DRAM, PES). The benefits of a multilevel checkpointing
model is that time-consuming higher severity failures that
typically occur less frequently can restart from a checkpoint
to a slower and more reliable (lower) level of memory such as
the PFS; whereas the more frequently occurring lower severity
failures can restart much more quickly from higher (faster)
levels of memory such as local/remote DRAM. Checkpoints
that are a “higher” level help restore the system from “higher”
severity failures but typically store checkpoint data in corre-
spondingly lower levels of memory. It is usually the case that
for a multilevel checkpointing protocol with L checkpoint and
restart levels (with durations denoted J; and R;, respectively)
and L levels of failure severity (with rates denoted \;) we
have A\y > Ay > ... > Ap while §; < d2... < dp and
Ri < Rsy... < Rp. This relationship benefits multilevel
checkpointing by a direct reduction in the number of level
L checkpoints/restarts taken and from the fact that lower-
level checkpoints to higher levels of the memory hierarchy
are able to utilize resources across the system as a whole
more effectively, allowing for better scalability and a probable
reduction in network overhead. High-level checkpoints/restarts
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Fig. 1: A checkpoint interval pattern for a three-level checkpointing
protocol with its computation interval denoted 7, its checkpoint
lengths of each level ¢ denoted d;, and a pattern that performs two
level-1 checkpoints before a level-2 checkpoint and a single level-2
checkpoint before each level-3 checkpoint.

to or from a single PFS tend to be much more dependent on
the number of nodes used by the application, i.e., the number
of nodes needing to store or retrieve data.

B. Multilevel Checkpointing Techniques Considered

Our work, and that of the other multilevel checkpointing
models presented here, consider HPC systems that employ
two types of multilevel checkpointing protocols. We discuss
the assumptions and common implementation of each protocol
below.

1) Scalable Checkpoint/Restart (SCR) [5] is an extension of
the ideas from [13]. The authors (Moody et al. [S]) develop
their own Markov model that is capable of modeling applica-
tion execution under a multilevel checkpointing protocol with
an arbitrary number of checkpoint levels. SCR is designed
as a pattern-based multilevel checkpointing model. This as-
sumes that the duration of computation between successive
checkpoints is a fixed amount of time, and that the duration
of time between higher checkpoint levels is determined by
the discrete number of lower level checkpoints (e.g., each
level-2 checkpoint will occur after some number of level-
1 checkpoints and each level-1 checkpoint will occur after
a fixed interval of computation). These checkpoint interval
“patterns” define the frequency of checkpoints at each level.
Figure 1 provides an example of a checkpoint interval pattern
for a three-level checkpointing protocol with its computation
interval denoted 7, its checkpoint lengths of each level i
denoted ¢;, and a pattern that performs two level-1 checkpoints
before a level-2 checkpoint and a single level-2 checkpoint
before each level-3 checkpoint. Though it is not shown in
the figure, when a higher-level checkpoint is performed the
SCR protocol first performs all lower-level checkpoints (e.g.,
the length of a level-2 checkpoint, d2, would include the time
required to first perform a level-1 checkpoint).

SCR is somewhat limiting in its use of patterns because it
both restricts checkpoints to be taken at discrete intervals and
mandates that patterns be identical throughout an application’s
execution. It is not known (and hard to prove) if under these
assumptions it is possible to produce checkpoint intervals that
are truly optimal for multilevel checkpointing protocols with
an arbitrary number of levels. Nevertheless, these assumptions
are important from a practical standpoint when considering
the model’s implementation in production HPC systems. SCR
has been highly influential in the development of multilevel
checkpointing and most multilevel checkpointing models fol-
low these assumptions.

This model was developed as part of the SCR library
and implemented as a three-level checkpointing protocol on



a BlueGene/L system. The protocol stores its lowest-level
checkpoints in the node’s local RAM, second level checkpoints
are stored across partner nodes using XOR encoding, and last
level checkpoints are stored in the PFS. The authors present
the effectiveness of their model by analyzing its effect on
application efficiency, which they define as the ratio between
the minimum run time required to complete a portion of work
(with no overhead from checkpointing or failures) and the
expected run time to complete that same portion accounting
for checkpoint and recovery overheads as predicted by the
model. We use this same performance metric for the analyses
we perform in this paper.

2) The Fault Tolerance Interface (FTI) [14] extends the
three-level SCR checkpointing protocol defined in [5] with
work from [15] and [16]. The FTI protocol incorporates Reed-
Solomon encoding to provide an additional checkpointing
level that is more reliable (and more computationally costly)
than SCR’s level-two XOR-encoded checkpoint between part-
ner nodes, but less reliable than a checkpoint to the PFS,
and is therefore categorized as the third checkpoint level out
of four. FTI uses the scalable SCR Markov model from [5]
for estimating application efficiency and determining optimal
checkpoint intervals.

C. Multilevel Checkpoint Interval Optimization

Progress has been made in recent years toward optimizing
checkpoint intervals in multilevel checkpointing systems. One
key requirement for all techniques when determining optimal
checkpoint intervals is having an accurate model of the ap-
plication’s execution behavior under the influence of overhead
from failures and resilience.

The work that we consider by Moody et al. in [5] utilizes
their Markov model to perform a brute-force search of all
possible checkpoint intervals to determine the best efficiency
when optimizing SCR. Because this Markov model is fre-
quently used in other work (e.g., the FTI protocol), this
same model is used for optimizing those implementations
of multilevel checkpointing. While an optimal checkpoint
pattern for an L-level checkpoint protocol is not guaranteed to
have identical sub-patterns, optimizing a multilevel checkpoint
protocol with identical sub-patterns is of practical importance
to HPC system design, as mentioned earlier.

There have been two recently proposed optimization tech-
niques in [17] and [18] that use novel approaches for deter-
mining optimal checkpoint intervals and we consider them
in this work. An optimization of pattern-based multilevel
checkpointing is considered by Benoit et al. in [18]. Work
by Di et al. in [17] includes both pattern-based and interval-
based optimization techniques. An interval-based multilevel
checkpointing protocol allows the interval of time between
checkpoints at each level to be independent of the inter-
checkpoint time at other levels (unlike pattern-based protocols
where higher-level checkpoints have intervals that are mul-
tiples of lower-level checkpoint intervals). Their work indi-
cates that the interval-based optimization can perform better
than pattern-based optimization. However, as noted in [18],
challenges exist with practical implementations of interval-
based optimization techniques that might limit their use in
real systems. In particular, determining how the system should
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behave if checkpoints of different levels are scheduled to occur
simultaneously. Furthermore, to the best of our knowledge
no multilevel checkpointing protocols exist that have been
designed to accommodate anything other than pattern-based
multilevel checkpointing. We therefore only consider the of-
fline pattern-based optimization technique from [17].

In our work we do not assume that checkpoint and restart
events are free from failures, as is common in several other
state-of-the-art models (including [17] and [18]). Indeed, as we
will show in Section IV, the assumption that these events are
free from failures negatively impacts the prediction accuracy
of their models. Our work also considers the effect that
application execution time has on interval optimization, which
is not considered by the work in [5] and [18].

III. MULTILEVEL CHECKPOINTING MODEL
A. Overview

In this section, we discuss our proposed multilevel check-
pointing model. We first present the set of equations used
to estimate the execution time of an application employing
multilevel checkpointing and we end the section with a brief
description of the model’s use for determining optimal check-
point intervals.

B. Execution Time Prediction Model

Our model is a set of continuous equations that estimate
the execution of an application that employs a pattern-based
multilevel checkpointing protocol following the behavior of
SCR described in [5]. We model the equation’s prediction
of application execution time hierarchically, which allows for
the expected execution time of each lower level checkpoint
interval (including application computation as well as all
overhead associated with checkpointing and failures) to be
utilized in the computation of higher level checkpoint intervals.

We define the baseline execution time of the application,
T, as the time to execute the application without overhead
from resilience or failures. In addition to 7'z, the expected
execution time of the application when using multilevel check-
pointing, T’ysr, is equal to the sum of the application’s time
spent executing each type of event associated with checkpoint-
ing and failures (each variable is an L-dimensional vector):

« successful level ¢ checkpoints, T, ;

o level ¢ checkpoints that have failed (failed checkpoints),
Ty
successful level 7 restarts, Tr,;
level i restarts that have failed (failed restarts), TRQ;
re-computation of work lost to a failure occurring during
a level ¢ computation interval, Ty, ;
re-computation of work lost to a failure occurring during
a level 4 checkpoint, TWJVL.

Each term’s expected value is estimated as the expected
number of occurrences of the event multiplied by the expected
time of the event. For a chosen probability density function
(PDF) used to model the probability of a failure occurring, we
calculate the expected execution time for any event in which a
failure has occurred as the expected value of the PDF with its
domain truncated to the duration of that event and normalized
to the probability of a failure occurring during the event’s
duration (a truncated distribution).



We assume that failures follow an exponential distribution
as assumed in most prior work in the area [5] [11] [17] [18].
This makes the probability of a failure occurring during any
given interval of time ¢ for some failure rate X equal to

Pt,X)=1—e %", (1)
In contrast to the expected value of the general PDF, which
is calculated over the entire domain ([0,00) in this case),
the truncated domain is calculated over [0,¢] and makes the
expected value of the truncated PDF for the event when using
an exponential distribution equal to

% — e*Xt(% +1)

Bt X) = P(t, X)

2

We define the failure rates associated with each checkpoint
level ¢ as A;. The system failure rate, A, is equal to the sum
of each \; and this value is also equal to the inverse of the
system’s MTBF. We define a failure’s severity class to indicate
the level of checkpoint required to restart the system after the
failure occurs. Each failure severity class variable, .S;, indicates
the probability of experiencing a failure of severity ¢, and is
equal to the ratio of \; to A. This also means that for a failure
severity, ¢ = 1, ..., L, the corresponding failure rate, \;, is the
product of the system failure rate, A\, and the probability of a
failure at that severity, S;, making the failure rate \; = S; \.

The multilevel checkpoint protocol from [5] that we are
modeling defines each higher-level checkpoint to occur af-
ter some number of occurrences of the previous level of
checkpoint (e.g., an Lo checkpoint to a partner node’s RAM
occurs after some number of instances of L; checkpoints to
the node’s local RAM). These values define the number of
L;_, checkpoints that must occur before each L; checkpoint
is taken, and are the set of L — 1 integer decision variables
Ni,....,Nr_1 used for optimizing the equation. Thus, the
variable NN; is the number of level ¢ checkpoints before a level
i+ 1 checkpoint. The last decision variable is the computation
interval, a real number that we define as 7. This set of decision
variables defines the amount of computational progress made
by the application once each level ¢ checkpoint has been
completed. The variable N, while not a decision variable,
represents the number of level L checkpoints that will occur
during the execution of the entire application and is defined
based on the amount of computational progress that is made
for each level L checkpoint interval, i.e.,

o[l (Vi +1)

An advantage to estimating total execution time hierarchi-
cally is that execution time predictions for lower level com-
putation intervals do not need to account for the occurrence
of higher severity failures when predicting the duration of
each application execution event. Level ¢ events only need
to account for failures of levels less than or equal to ¢ making
the failure rate in most of the terms equal to Z;Zl A; and we
denote this value as ..

The amount of total time spent between each level ¢ + 1
checkpoint (including overhead from resilience and failures)

Ny, 3
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is referred to as the level ¢ execution interval. Each higher
level execution interval, 7,11, is calculated as

Ti+1 = Ti(Ni‘l-l)‘FT(;i +T5: +TR¢ +TR: +TWT,» +TWSi (4)

with the application’s total expected execution time when
using multilevel checkpointing Ts;, = 7r41. The remainder
of this section discusses how the terms in Eqn. 4 are obtained.

For each level i+ 1, the term 7;(V; + 1) represents the total
time of lower level intervals, 7;, occurring in 7;11. We define
the total number of failures during 7; as ; and estimate this
value using a negative binomial distribution to obtain

'77,— 1_P(7—17>\1) ’

Note that because lower level intervals have already accounted
for lower severity failures during computation, the failure rate
used to calculate both 7; and the expected value no longer
needs to be summed and becomes just \;. This makes Ty,
equal to the expected number of failures multiplied by the
expected time of those failures multiplied by the number of
7; intervals occurring during 7;41, i.e.,

T‘V[/T1 = ’}/ZE(T“Al)(N? —+ 1) .

®)

(6)

The total time for successful checkpoints at each level is
defined as

Ts, = Nid; . @)

The estimator for the expected number of failures that occur
during each level ¢ checkpoint, «;, can be modeled using a
negative binomial distribution and is calculated using
o — P(8;, Ae)N;
f1=P(6iAe) ]
so that the expected time that is wasted due to failed check-
points is given by

®)

€))

The additional overhead associated with the execution progress
that is lost due to the failed checkpoint is equal to the number
of failed checkpoints at this level («;) multiplied by the sum
of the entire failed interval plus the expected value of the
overhead associated with that failed interval level multiplied
by the percent of checkpoints of that level (Sy) for each level
up to and including <. This is expressed as

Tl;; = OélE((sL, )\c) .

Twv,, = i D (Tk + W E (ks Ar)) Sk -
k=1

(10)

The estimator for the expected number of successful restarts
is calculated from the total number of level ¢ severity failures
that occur in 7;4; during computation and checkpointing. We
call this value 8; and it is summed using «; and ~y; as

Bi = Sicv; + vi(Ssa + Ny + 1) . (11)

The expected number of failures that occur during restarts
of level 4, (;, is once again modeled with a negative binomial

distribution as
P(R;, \.) B

1= P(Ri ) (12

G =



The total expected time that the application spends for
successful restarts is equal to

Tr, = BiR; , (13)

and the total time that the application spends for failed restarts
is equal to

Tr, = GE(R;, Ac) - (14)

C. Checkpoint Interval Optimization

Optimizing Eqn. 4 by selecting decision variables that
minimizing execution time is accomplished by evaluating the
equation’s execution time at every point in a bounded region
of the solution space and determining which decision variable
values provide the shortest execution time. This sweep of deci-
sion variable values is bounded by the interval (0,75) for 7,
and also bounded such that the product of Ny, ..., Ny _1 with
Ny, and 7 is greater than zero and less than the application’s

baseline execution time, i.e., 0 < 79 Hle(Ni +1)) <Tpg.

We can guarantee a global optimum is found when bounding
the solution space in this way because decision variable values
outside of this region produce infinitely large execution times
when the system’s MTBF is less than the application’s baseline
execution time as is the case here. Efficiency is then calculated
by dividing the application’s baseline execution time by the
calculated expected execution time.

IV. SIMULATION STUDIES
A. Overview

We performed a set of simulation studies to both validate the
behavior of our equation-based multilevel checkpointing exe-
cution time prediction model and to provide a comparison of
its performance with the performance of prior work in the field
when executing applications at extreme scales. In addition, we
also demonstrate the effects that both higher failure rates and
longer checkpoint/restart times have on application efficiency
and model prediction accuracy. We identify the importance
of modeling failures during checkpoint and restart events in
systems with high failure rates. We also show the advantage
that consideration of application execution time has for the
interval optimization of short-running applications.

B. HPC System Simulator

Because exascale systems do not exist, we turn to simulation
to analyze the performance of each multilevel checkpointing
model. The simulations performed in this section use an event-
based simulator that models all events that occur throughout
an application’s execution in a system operating with the
uncertainty of system failures. We provide a more detailed
explanation of our simulator’s operation in our prior work [8].

C. Performance on Prior Work Test Systems

This section provides a comparison between our technique
for multilevel checkpoint interval optimization that we de-
scribed in Section III and some of the techniques by others
discussed in Section II-C. Specifically, in addition to our
own technique we consider the work by Di et al. from [17],
the work by Moody et al. from [5], the work by Benoit
et al. from [18], and the classic optimization of single-level
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checkpointing described by Daly in [11]. We simulate the
performance of each of these techniques on systems with
varying characteristics that have been defined in prior work.
Each unique combination is referred to as a test system and
the details of each is outlined in Table I.

The test systems are organized in order of monotonically
increasing difficulty of providing fault resilience to the system.
The challenge of providing fault resilience primarily increases
through either a decrease in system MTBF (due to higher fail-
ure rates) or increasing checkpoint/restart times (particularly to
the PFS). However, in addition to differences in failure rates
and checkpoint costs, the systems also differ in the number
of checkpointing levels supported by each system as well as
the distribution of failures for each failure severity class. All
values in Table I are functionally identical to the information
provided by each paper indicated in column two, however the
values have been converted in format to allow for consistency
so that all time values are now in minutes and failures for each
severity are expressed as probability distributions. Checkpoint
times are assumed to be equal to restart times for each system,
as assumed in prior work [5] [17] [18]. In the case of Daly’s
traditional single-level checkpoint/restart model and the two-
level checkpointing model from Di et al., when considering
systems that have more available checkpointing levels than
the model is able to accommodate, only the highest levels are
considered (i.e., traditional checkpoint/restart only ever uses
the highest level-L checkpoints to a PFS and Di et al. uses
only level-L and level-L — 1 checkpoints).

Each of our following experiments simulates the execution
of a single large application that employs multilevel check-
pointing (with the exception of Daly’s equation which uses
traditional checkpoint/restart) to mitigate the effects of system-
wide failures on application execution. In all cases, the check-
point intervals of the simulated test case are optimized using
the multilevel checkpointing (or checkpoint restart) modeling
technique indicated in each figure.

Figure 2 shows the performance (efficiency) of the five
checkpointing techniques considered (our technique is shown
in green) for each of the test systems described in Table I
Bars in the figure represent the average of 200 simulation
trials with random failures for each specific setup, with the
standard deviations of those trials shown around each bar. The
diamonds that are color-coded to each bar in the figure indicate
the prediction of the system’s efficiency by each technique.
Predictions are made based on the system’s execution charac-
teristics and the checkpointing intervals determined by each
technique with accurate predictions being those located closer
to the tops of each bar.

The first trend highlighted in Figure 2 is the improved effi-
ciency that a multilevel checkpointing approach can have over
traditional checkpoint/restart (Daly). The figure shows how
even though Daly’s equations for traditional checkpoint/restart
are highly accurate at predicting application efficiency (and
consequently good at selecting appropriate checkpoint in-
tervals) the traditional checkpoint/restart protocol does not
perform as well as the multilevel checkpointing protocol when
optimized by either Dauwe et al., Di et al., or Moody et al.
Daly’s checkpoint/restart’s efficiency is 50% less than that
of multilevel checkpointing in the worst case. In addition



TABLE I: Test Systems Examined in Prior Work

test system paper (system name) num. C/R levels MTBF failure distribution checkpoint/restart time  baseline execution time
(minutes) (probability per level) (minutes per level) (minutes)
M [5]1(BlueGene/L Coastal) 3 6944.45 (0.083,0.75,0.167) (0.008,0.075,17.53) 1440.0
B [19] (BlueGene/Q Mira) 4 333.33 (0.556,0.278,0.139, 0.027) (0.167,0.5,0.833,2.5) 1440.0
D1 [17] (ANL Fusion case 1) 2 51.42 (0.857,0.143) (0.333,0.833) 1440.0
D2 [17] (ANL Fusion case 2) 2 24.0 (0.833,0.167) (0.333,0.833) 1440.0
D3 [17] (ANL Fusion case 4) 2 12.0 (0.833,0.167) (0.167,0.667) 1440.0
D4 [17] (ANL Fusion case 5) 2 6.0 (0.833,0.167) (0.167,0.667) 1440.0
D5 [17] (ANL Fusion case 3) 2 12.0 (0.833,0.167) (0.333,1.67) 1440.0
D6 [17] (ANL Fusion case 6) 2 6.0 (0.833,0.167) (0.167,1.67) 720.0
D7 [17] (ANL Fusion case 7) 2 4.0 (0.833,0.167) (0.667, 3.33) 360.0
D8 [17] (ANL Fusion case 8) 2 3.13 (0.870,0.130) (0.833,5.0) 360.0
D9 [17] (ANL Fusion case 9) 2 3.13 (0.870,0.130) (0.833,5.0) 180.0
0 Dauwe et al. eqns. predicted efficiency [ simulation with intervals determined by Dauwe et al. eqns.
¢ Dietal eqns. predicted efficiency [ simulation with intervals determined by Di et al. eqns.
O Moody et al. eqns. predicted efficiency [ simulation with intervals determined by Moody et al. eqns.
’ Benoit et al. eqns. predicted efficiency I simulation with intervals determined by Benoit et al. egns.
0 Daly et al. eqns. predicted efficiency mmm simulation with intervals determined by Daly et al. egns.
1.04 H}
0.94 i () ') ()
Bl o ¢ ¢ ¢ ¢
0.8 1 1 Foe
- 0.7 I o
0 6]
a =
2 0.5
V0.4
0.34
0.2 1
0.14
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M D1 D2 D4 D5

test system

Fig. 2: Performance of the multilevel checkpoint and traditional checkpoint/restart checkpoint interval optimization techniques executing on
the test systems from Table I. Bars in the figure indicate the average of 200 simulation trials with randomly occurring failures. Diamonds
in the figure indicate each technique’s prediction of the simulated performance. Standard deviations are shown for each bar.

to reaffirming the conclusions from prior work, the data for
traditional checkpoint/restart in Figure 2 also helps to highlight
the importance of having an accurate multilevel checkpointing
model that is capable of making an appropriate selection
of checkpoint intervals. In particular, while the multilevel
checkpoint technique by Benoit et al. performs well on test
system M, because some of the approximations made by the
model have large effects on prediction accuracy, its efficiency
on more challenging test systems is worse than for a well-
optimized implementation of traditional checkpointing.

The efficiency predictions of the equations modeled by
Benoit et al. in [18] are optimistic because they do not consider
the effect of failures during checkpoints or restarts and only
consider failures during computation. Consequently, the corre-
sponding computation intervals determined by these equations
are excessively long. For all test systems, the length of the
computation interval chosen by these techniques is at least
2.5x greater than that of the other multilevel checkpointing
techniques. This disparity also increases as the challenge of
providing resilience to the system increases and can be seen
in Benoit et al.’s model’s faster decrease in efficiency in com-
parison to the other techniques displayed in Figure 2. At the
same time, the execution time prediction model results (blue
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diamonds for Benoit et al.) indicates that the chosen intervals
have optimistically low execution time predictions resulting
in optimistically high efficiency predictions. The sharp drop
in efficiency of Benoit et al’s equations on test system B
is due to the decreasing accuracy of their equations as the
number of checkpoint levels increase. While the decrease in
performance of the other multilevel checkpointing techniques
is monotonic and follows the increase in difficulty of providing
resilience to each system, the Benoit equations drop sharply
from system M (with three checkpoint levels) to system B
(with four checkpoint levels) and subsequently increase in
efficiency in system D1 (with two checkpoint levels).
Simulated performance of multilevel checkpointing when
optimized by either Dauwe et al. (our work), Di et al., or
Moody et al. is similar across all test systems, however the
prediction accuracy for each of these techniques can be seen to
decrease slightly as test system difficulty increases. The causes
of this will be discussed in detail in the upcoming sections.

D. Failures During Checkpoints and Restarts

Figure 3 shows the breakdown of how application time
is spent when executing an application in a failure-prone
environment and employing a resilience protocol to mitigate
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Fig. 3: Percentage of application execution spent on baseline execution of the application as well as all resilience and failure event related
overhead during the application’s execution. Each test scenario shown represents the average of 200 trials with randomly occurring failures.

the effects of failures. Each test scenario shown represents
the average of 200 trials with randomly occurring failures.
The figure shows the percentage of time spent on baseline
execution time as well as time lost to overhead from each
of the resilience and failure-related events discussed in Sec-
tion III. Data is shown for the same test systems presented in
Table I, but we limit our analysis to the three best-performing
techniques from Figure 2.

It is evident from the data in Figure 3 that as the difficulty
in providing resilience to systems increases, applications lose
increasing amounts of time to failed checkpoints and restarts
with at least 30% of application time spent in these areas
in the most extreme cases. Furthermore, this increase is non-
linear (in fact the increase follows the «; and (; variables of
Eqns. 8 and 12) and affects the more extreme D7, D8, and
D9 systems to a greater degree than the other systems shown
in the figure. Results for test systems DS and D9 look almost
identical because these test systems are identical in all respects
except their baseline execution time.

The rapid increase in the number of failed checkpoint and
restart events is caused by the system MTBF approaching (or
even becoming less than) the length of time required to check-
point or restart to the PFS. While optimal intervals between
checkpoints can be adjusted to compensate for decreasing
MTBF, checkpoint and restart times cannot, and this can
force the system to retry checkpoint and restart events several
times before they can complete successfully. Because extreme-
scale systems experience increased amounts of failures during
checkpoint and restart events, consideration of these events is
necessary for accurate execution time modeling.

E. Performance at Extreme-Scale System Difficulty

For the studies discussed in this section we analyze the four-
level checkpointing system from [19] (the system defined in
Table I from Section IV-C as system B) under a variety of
exascale-like execution scenarios. Specifically, we scale both
system MTBF and the length of time required by the system
for checkpointing to or restarting from the PFS. It has been
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noted in [5] that exascale systems are likely to experience
failures with an MTBF between 3 — 26 minutes and therefore
we explore five system MTBF values in this range.

Data from [4] suggests that the improvements to network
speed will increase at a similar rate as the data required to
checkpoint larger applications and consequently checkpoint
times to a PFS will likely remain constant as system sizes
increase. From [4], we assume that checkpoint times to a
PFS for an exascale-sized application will likely be between
20 — 40 minutes. We examine four values for the time costs
associated with checkpointing and restarting to the PFS. These
values range from 10 minutes, likely to be a conservative
estimate, to 40 minutes. We only consider scaling of the level
L checkpoint/restart time because (as noted in Section III)
checkpoint/restart levels less than L spread checkpoint data
across system resources. Lower level checkpoints are therefore
less affected by application size. Checkpoint and restart times
for lower level checkpoints remain the same as those values
listed for test system B in Table I.

The results of this study are shown in Figure 4. The
difficulty of providing resilience to each test scenario increases
both across each x-axis (as system MTBF decreases) and
across sections (a)-(d) of the figure (as the time penalty for
checkpoints/restarts to a PFS increases). Bars in the figure
indicate the average of 200 simulation trials with randomly
occurring failures. Diamonds in the figure indicate each tech-
nique’s prediction of the simulated performance. Standard
deviations are shown for each bar. It is evident that multilevel
checkpointing’s ability to provide resilience to an exascale
HPC system will be more impacted by system MTBF than
increased checkpoint/restart times. Decreasing system MTBF
from 26 minutes to 3 minutes can decrease efficiency from
over 60% to less than 1% in some cases but increasing check-
point/restart times from 10 minutes to 40 minutes produces a
maximum decrease of about 40% efficiency. It is also clear that
some of these possible exascale applications push the limit of
the resilience that multilevel checkpointing can provide. The
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most extreme case of a 3 minute MTBF produces less than
1% efficiency for checkpoint/restart lengths greater than 10
minutes. Even a system with a 15 minute MTBF produces
less than 50% efficiency for checkpoint/restart lengths greater
than 10 minutes.

The results in Figure 4 also clearly show the negative effect
of Di et al’s constraint of only considering two checkpoint
levels. For all execution scenarios that produce more than 1%
efficiency, the performance of checkpoint interval optimiza-
tions from Di et al. is noticeably worse than that of Dauwe et
al. and Moody et al., which utilize all four checkpoint levels.
It should be noted that the poorer performance of Di et al.’s
equations is primarily due to its constraint of two checkpoint
levels. We deduce this by noting that the simulated perfor-
mance of all three techniques are close to equal for the two-
level checkpointing test systems from Figure 2 indicating that
the decreased performance of Di et al.’s equations in Figure 4
is caused by its restriction to only using two checkpoint levels.

Figure 4 also indicates that the prediction accuracy of all
optimization techniques decrease with both decreasing system
MTBF and increasing checkpoint/restart times. Prediction ac-
curacy of each technique is further discussed in Section IV-G.

E. Consideration of Application Execution Time

One advantage that both our equations and those of Di
et al. have over those of Moody et al. is our consideration
of application execution time. Because even for the most
pessimistic MTBF values the highest severity system failures
are still infrequent, under execution scenarios with high level-
L checkpoint/restart times it is more efficient (on average)
for shorter applications not to take time-consuming level-L
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checkpoints and instead risk a total application restart. As our
equations calculate the expected execution time, this effect is
identified by our equations and those of Di et al. Consequently,
when selecting checkpoint intervals for those scenarios our
equations (Dauwe et al.) and those of Di et al. correctly select
intervals that are optimized not to include level- L checkpoints,
while the equations from Moody et al. select interval values
that are appropriate only for longer running applications.

We demonstrate this in Figure 5, which shows the same
set of execution scenarios discussed in Figures 4a and 4b but
with a shorter application that executes for only 30 minutes.
Bars in the figure now indicate the average of 400 simulation
trials with randomly occurring failures. Diamonds in the figure
indicate each technique’s prediction of the simulated perfor-
mance, with standard deviations shown for each bar. Because
the application’s execution time is less than the mean time
between level-L severity failures, our equations and those of Di
et al. do not take level-L checkpoints in any of the experiments
in Figure 5. Here we have shown the execution of a 30
minute application as an extreme example but we have found
these same results occur to a lesser extent for an application
that is 120 minutes in length. We expect that this result is
present for all extreme-size applications that have a baseline
execution time that is shorter than the mean time between
the highest severity failures. Benefits to short applications
from not including level L checkpoints increase with both the
increase in checkpoint/restart lengths and decreasing MTBF
values, and provide as much as a 20% efficiency improvement
in some cases. While the advantage gained in other cases may
be lower, we have determined with 95% confidence that all
improvements in the figure are statistically significant.
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Because this effect is only beneficial on average, one
difference between the results in Figure 5 and those of the
longer application in Figure 4 can be seen when compar-
ing standard deviations between techniques. While standard
deviations are nearly identical between techniques for every
execution scenario tested in Figure 4, the standard deviations
shown in Figure 5 for the execution scenarios that have had
their level-L checkpoints excluded by our equations now have
a slightly greater variation in execution time than the results
for the equations from Moody et al. that still perform a level-L
checkpoint.

G. Model Prediction Accuracy

Figure 6 shows the prediction accuracy of the 20 system sce-
narios shown in Figure 4 in terms of each model’s prediction
of application efficiency minus the efficiency value determined
through simulation. The system scenarios in the figure have
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been sorted according to increasing magnitude of error of
the results for Moody et al. and show each optimization
technique’s deviation from the ideal error of zero. Here, we
have only shown results for the long duration applications
discussed in Section IV-E because they provide the clearest
depiction of model prediction performance. However, for
shorter applications, our equations still has the best prediction
accuracy in most cases.

The results in Figure 6 demonstrate the benefit that our
multilevel checkpointing model provides in terms of prediction
accuracy over both Di et al’s and Moody et al’s models.
As the test numbers on the x-axis increase, the difficulty in
prediction also increases and Moody et al.’s model tends to
underestimate application efficiency (by as much as 7.3%)
while Di et al’s model tends to overestimate application
efficiency (by as much as 14.4%).

The difference in prediction accuracy between our work and
that of Moody et al. [5] and Di et al. [17] are the assumptions
made by each set of equations about the system’s behavior
during failed restarts. Our equations assume that if the system
is restarting from a class ¢ severity failure and experiences a
second failure of severity less than or equal to ¢ then the system
can still be restarted from a subsequent level ¢ checkpoint. The
simulations make this assumption for all techniques.

Di overestimates efficiency because it neglects considering
the effects of failures during restarts entirely. Specifically, it
does not account for the increasing impact of repeated failed
restarts discussed in Section IV-D that occur more frequently
with both decreased MTBF and increased checkpoint/restart
times. Di et al. are aware of this limitation in their model, and
made a note of its effect on prediction accuracy in [17].

The model by Moody et al. underestimates efficiency
because of its pessimistic assumption about failures during
restarts. Specifically, if the system is restarting from a level-
i severity failure and experiences a second failure of level-i
severity then the system needs to subsequently restart from
a level ¢ + 1 stored checkpoint. This causes an unrealistic
escalation of failure levels for extreme-sized systems that
experience significant lower severity failures. For example, if
one of the 100,000 nodes in the test system B considered
here required a restart from local RAM it is unreasonable
to assume that a second event of that type occurring on any



other node in the system would necessitate any response other
than attempting to load the same checkpoint from RAM a
second time. This assumption causing escalating failures in
conjunction with the presence of rapidly increasing numbers
of failures (as discussed in Section IV-D) causes Moody et al.’s
model to have increased prediction error. Although the effect
on system behavior implied by this model assumption would
have been present in several of the more extreme test cases
that Moody et al. explore with their Markov model in [5], they
do not perform any simulations of their model demonstrating
the necessity of this assumption in an actual HPC system nor
do they discuss this effect in their results.

V. CONCLUSIONS

With this work we have developed a hierarchical continuous
equation-based model for a multilevel checkpointing resilience
technique operating with an arbitrary number of checkpoint
levels. Through simulation of exascale HPC systems, we
have shown the model’s ability to accurately predict appli-
cation execution time in failure-prone environments as well
as for determining optimal checkpoint intervals. We have
implemented several multilevel checkpointing optimization
techniques from the literature and shown the benefit that our
technique can provide over these techniques in both model
prediction accuracy and determining checkpoint intervals for
short duration applications. In all circumstances, our model
either outperforms the models from others’ work or it is
capable of performing within 1% of their model.

Using our simulation data we have shown that extreme-
scale systems experience increasing numbers of failures during
checkpoint and restart events. We determined that the increase
is caused by decreasing MTBF values approaching the values
of increasing checkpoint/restart length times. The increased
probability of failure during checkpoint/restart events causes
an extremely rapid (non-linear) increase in the amount of
time lost to these events at extreme scales, and makes the
consideration of these events a necessity for accurate execution
time modeling - something that is frequently ignored.

We have also more generally shown some of the limitations
of multilevel checkpointing. Simulations of single level check-
point/restart (using Daly’s equation) show that the usefulness
of a single-level resilience protocol is limited to petascale-
sized systems with MTBF on the order of hours, and indicate
that larger systems require more advanced resilience protocols
such as multilevel checkpointing. Similarly, our data also
suggests the limits of multilevel checkpointing. When utilizing
multilevel checkpointing, a system with even a 15 minute
MTBF will drop below 50% efficiency for checkpoint/restart
lengths greater than 10 minutes. In such cases, regardless
of the checkpoint interval optimization technique used, the
system will spend less than half its time on useful computation.
Given that operating exascale systems are likely to cost tens of
millions of dollars a year, this level of resilience is likely to be
unacceptable. As system sizes increase further, other strategies
may need to be employed to complement (or possibly replace)
the multilevel checkpointing protocol.
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