
An Analysis of Resilience Techniques for
Exascale Computing Platforms

Daniel Dauwe∗, Sudeep Pasricha∗†, Anthony A. Maciejewski∗ and Howard Jay Siegel∗†
∗Department of Electrical and Computer Engineering

†Department of Computer Science

Colorado State University, Fort Collins, CO, 80523, USA

Email: ddauwe@rams.colostate.edu, sudeep@colostate.edu, aam@colostate.edu, hj@colostate.edu

Abstract—With the increase in the complexity and number
of nodes in large-scale high performance computing (HPC)
systems, the probability of applications experiencing failures
has increased significantly. As the computational demands of
applications that execute on HPC systems increase, projections
indicate that applications executing on exascale-sized systems are
likely to operate with a mean time between failures (MTBF) of as
little as a few minutes. A number of strategies for enabling fault
resilience in systems of extreme sizes have been proposed in recent
years. However, few studies provide performance comparisons
for these resilience techniques. This work provides a comparison
of four state-of-the-art HPC resilience techniques that are being
considered for use in exascale systems. We explore the behavior of
each resilience technique under simulated execution of a diverse
set of applications varying in communication behavior and
memory use. We examine how each resilience technique behaves
as application size scales from what is considered large today
through to exascale-sized applications. We further study the
performance degradation that a large-scale system experiences
from the overhead associated with each resilience technique as
well as the application computation needed to continue execution
when a failure occurs. Using the results from these analyses, we
examine how application performance on exascale systems can be
improved by allowing the system to select the optimal resilience
technique for use in an application-specific manner, depending
upon each application’s execution characteristics.
Keywords: exascale resilience; checkpoint restart; multilevel

checkpointing; message logging; fault tolerance;

I. INTRODUCTION

As the computing power of large-scale computing systems

increases exponentially, the failure rates of these systems

increase exponentially as well. While current large-scale com-

puting systems experience failures of some type every few

days, projection models indicate that the next generation of

these machines will experience failures up to several times

an hour [1]. The resilience techniques implemented in today’s

high performance computing (HPC) and cloud computing sys-

tems are either incapable or impractical when executing at an

exascale level [2]. However, several new promising resilience

techniques have recently been proposed for next generation

computing systems [2] [3] [4]. Unfortunately, little work has

been done to assess the performance of these techniques on a

common computing environment [5].

This work provides a methodology for simulating the execu-

tion of applications operating at exascale-like system sizes in

the presence of uncertainty due to failures across the system.

We use our methodology to model an exascale computing

environment and utilize this environment to simulate four

resilience techniques: one contemporary technique and three

techniques proposed for use in future systems. Using this

common environment, we simulate each resilience technique’s

performance as greater demands are placed on them with

increasing system utilization and test their ability to handle

varying levels of system reliability.

We developed a set of synthetic benchmark applications

inspired by an analysis of today’s scientific benchmark suites

operating at scale [6]. The resulting equation-based bench-

marks provide the simulated exascale system with a set of

applications that have a diverse range of execution character-

istics capable of scaling to extreme sizes. We demonstrate how

application performance compares when using each resilience

technique and identify the trade-offs present for different

combinations of applications and resilience techniques.

We also analyze an exascale-sized system under a typical

use-case scenario as it is utilized over a period of days to

weeks to service a large number of submissions of applications

with a wide variety of execution characteristics. We show

the impact that failures have on this environment and the

level of benefit that each resilience technique would provide

to the system. We conclude by utilizing our analyses of

resilience technique trade-offs to demonstrate how system

performance in such a failure-prone computing environment

can be improved by allowing the system to select the resilience

technique likely to provide optimal fault tolerance based on the

execution characteristics of each application.

In summary, we make the following novel contributions:

• we create a simulation-based methodology capable of

modeling and analyzing the execution of applications in

an exascale environment;

• we develop a set of large-scale synthetic benchmark ap-

plications inspired by current scientific benchmark suites;

• we provide a performance comparison of four state-

of-the-art HPC resilience techniques operating over the

simulated execution of applications with a diverse range

of execution characteristics and sizes;

• we analyze the behavior of a simulated exascale system

over an extended period of time when executing many

applications under the influence of several strategies

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-0-7695-6149-3/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.41

914

for HPC resilience and resource management techniques

used for scheduling applications;

• we demonstrate the ability to improve system perfor-

mance in a large-scale failure-prone system by intelli-

gently selecting resilience techniques based on applica-

tion execution characteristics.

The remainder of this paper is organized as follows. Sec-

tion II discusses contemporary and proposed resilience tech-

niques, as well as highlighting and describing the background

of the four techniques compared in this paper. In Section III

we describe the modeling methodology we use for our system

simulator. Our implementation of HPC resilience is detailed

in Section IV. Sections V, VI, and VII outline our simulated

studies and discuss their results. We conclude with a summary

of this work in Section VIII.

II. RELATED WORK

A. Overview

The work we consider here discusses system-level HPC

resilience that allows application programmers and users of

the system to be oblivious of the strategies for HPC resilience

that are being employed on their behalf. We focus our ef-

forts on providing a comparison of several checkpoint-based

resilience techniques. Our prior work in [7] has been one

of the first efforts to provide an analytical comparison of

these techniques in large-scale systems. However, that effort

was less comprehensive than our work here. We have greatly

extended our prior work to analyze the impacts of varying

workloads and varying application execution characteristics,

and to examine trade-offs among resilience strategies in the

presence of resource management strategies at exascale system

sizes. We acknowledge that other strategies for providing

resilience to HPC systems exist and we refer the reader to

the surveys of such works in [5] and [8]. For the resilience

strategies that we consider, our work differs significantly from

these high-level surveys by providing simulated comparisons

of the performance of each technique.

All checkpointing based techniques rely on the notion of

periodically saving the system’s executing state and restarting

from an earlier error-free state after the occurrence of a system

failure [9] [10]. Because recovery from a failure requires

these techniques to load a copy of the system state that

is not up to date, all checkpointing techniques necessarily

lose some productivity because of the necessity of having to

recompute work lost between the time of the failure and the

time of the last checkpoint. We provide a comparison of four

HPC resilience techniques that utilize system checkpointing:

checkpoint restart, multilevel checkpointing, message logging,

and checkpointing combined with redundancy.

B. Checkpointing and Restarting

Checkpointing is by far the most commonly used resilience

technique employed by today’s large-scale computing systems.

The most general implementation of the checkpointing tech-

nique operates by stopping the system’s execution at regular

intervals to save the state of all executing applications to

a permanent storage device, typically a parallel file system.

Such a checkpointing technique is referred to as a blocking,

coordinated checkpoint scheme [5].

Several variations and improvements on this technique have

been made since its initial inception. Attempts have been made

to create non-blocking or semi-blocking checkpointing which

allows the system to continue to execute while checkpoints are

saved to permanent storage [11] [12]. Attempts also have been

made to allow for uncoordinated checkpoints of the system,

preventing the need for all processes in the system to restart

when a failure occurs [13].

However, the length of time associated with checkpointing,

restarting, and recomputing work lost to a system failure,

and the frequency that the system needs to take checkpoints

for very large-scale applications when implementing any of

these checkpointing techniques, has been shown to provide

diminishing returns with increasing system sizes. Traditional

checkpointing alone is not expected to be capable of providing

resilience to systems at exascale sizes [2].

C. Multilevel Checkpointing

Because different types of failures can affect a computing

system by different amounts, not all failures require restarting

the system from a checkpoint to the parallel file system

[14]. Multilevel checkpointing exploits this by providing the

system with several levels of checkpointing. A system employ-

ing a multilevel checkpointing scheme may allow for levels

that trade-off faster (but able to recover from fewer types

of failures) checkpoints to RAM or to a node’s local disc

and less frequent (but able to recover from more types of

failures) checkpoints to the parallel files system, each level

offering a trade-off between the time required by the system

to checkpoint or restart, and the level of failure severity that

the checkpoint can recover from [3]. Checkpoint levels may

also employ various encoding techniques (such as RAID or

Reed-Solomon coding) to improve the resilience offered by a

particular checkpoint level [3] [15]. Attempts have also been

made to reduce checkpointing’s dependence on the parallel file

system [16] [17]. One challenge associated with using a mul-

tilevel checkpointing technique is in determining the optimal

number of checkpointing levels to provide to the system, and

the optimal computation intervals between checkpoints at each

level. Various solutions to this problem have been proposed [3]

[18] [19].

D. Message Logging

Message logging attempts to provide resilience to a sys-

tem by recording messages sent among processes to create

snapshots of the system’s execution distributed across system

memory [20]. When a failure occurs, the failed node is able to

use messages stored in the memory of other system nodes to

reduce the amount of rework that is performed by the system

when recovering [21]. Using message logging as a technique

for resilience has the benefit of potentially saving computation

time, because the recovering node does not need to wait for

the re-computation on other nodes, but rather only for the

915

stored results from the node’s computation to be sent. Message

logging also saves on the energy used by the system during

recovery, because only the failed system node needs to perform

re-computation, and the rest of the system can remain idle until

progress of the failed node has recovered [22].

E. Redundancy

Redundancy improves a system’s reliability by executing

redundant copies of the same piece of code [23]. It is possible

to implement redundancy in either hardware or software [8],

but in either case the improved reliability of the system comes

at the cost of using additional resources.

Recent attempts have been made to allow the system to

utilize redundancy in less resource-intensive ways. Dynamic

redundancy allows for the executing application to choose

a subset of processes for redundant execution [24]. Partial

redundancy combines redundancy with checkpointing, and

allows for applications to redundantly execute a portion of

processes in the system, providing improved resilience for part

of the system, using only a portion of the resources [4].

III. EXASCALE MODELING METHODOLOGY

A. Overview

Given the impossibility of performing experiments on an

exascale system, we have designed an event-based simulator

used for modeling systems of arbitrary size [7] [25] [26]. The

system experiences randomly generated failures that affect the

simulated execution of applications in the system. Throughout

the system’s simulation an application’s execution is affected

by events associated with each application’s:

• arrival: the simulated time at which an application arrives

to the system,

• mapping: the process by which the resource management

heuristic assigns an application to system nodes,

• computation: execution toward application completion,

• failures: the simulated failure of a system node,

• checkpoints: saving a backup of the application’s current

computation progress,

• restarts: restoring the application progress saved in the

last system checkpoint after a failure occurs,

• recovery: recomputing progress lost to a failure after the

system has restarted.

Checkpoints, restarts, and recovery are all resilience-

technique specific events that determine how an application

behaves in a system with failures. Each of these events affect

applications differently based on the type of resilience tech-

nique employed by the application, the application’s execution

characteristics, and the characteristics of the failures that occur

in the system. This is discussed in detail in Section IV. The

remaining events associated with the simulator’s management

of application arrival, mapping, computation, and failures are

all attributes of the system and behave the same regardless

of the resilience technique being used. In particular, while

failure events have a large impact on the behavior of the

resilience-technique related events, failure events themselves

are a function of the reliability and size of the nodes of

the system, and are not affected by the resilience technique

employed by the system.

B. Modeling Extreme Scale Applications

To ensure our simulated environment has access to a diverse

range of applications that will behave similarly to future

applications, we create a set of synthetic benchmarks that vary

in their attributes of communication behavior, memory use,

and size. We base most of our modeling assumptions for these

extreme scale applications on the analysis of the NAS Parallel

Benchmark applications [27] performed in [6]. The analysis

focused primarily on the Block Tridiagonal (BT) benchmark

application but concluded with a general analysis of the

entire NAS Parallel Benchmark suite. The authors determined

that, with the exception of the Embarrassingly Parallel (EP)

application (which experiences almost no communication), the

applications in the benchmark suite would all become heavily

communication bound at large system sizes. The analysis

performed by the authors for the BT application indicates

that at extreme scales communication began to dominate

between 22%, 50%, and 80% of the application’s execution

time depending on which of the three input parameter sets was

used for the application’s execution.

Similar to the BT application, our synthetic benchmarks are

defined as a discrete set of time steps, represented by the

variable TS , with identical execution characteristics in each

time step. Each benchmark spends some percentage of each

time step communicating, represented by the variable TC ,

with the remaining portion of each time step spent working

on computation, represented by the variable TW . We assume

time steps are one minute in length. Time steps are defined so

that both TW and TC take values between zero and one and

TW + TC = 1 minute, thus allowing application execution

times to be of arbitrary length (equal to the number of

time steps) and unaffected by the application’s size. For all

simulated studies performed here, applications have between

360 and 2880 time steps giving every executing application

an execution time between six hours and two days when

executed without delays from failures or events related to

resilience (such as time spent checkpointing). This delay-free

execution time is the application’s baseline execution time and

is represented by the variable TB .

In keeping with the results seen in [6], we have defined our

synthetic benchmarks to have four levels of communication

ranging from TC = 0 (representing an EP type of application

with little to no communication) to TC values of 0.25, 0.5, and

0.75 representing similar levels of communication dominance

of application execution time seen in the analysis of BT. We

also allow for each of the four levels of communication to have

two sizes of memory requirements represented by the variable

Nm. Applications can have values of Nm = 32GB of memory

per node or Nm = 64GB of memory per node. Defining the

synthetic benchmarks in this way allows the system access to

eight application types with a diverse range of communication

and memory characteristics. Each of the eight application types

are defined in Table I.

916

TABLE I
CHARACTERISTICS OF APPLICATION TYPES

memory per node

communication intensity 32 GB 64 GB

0% (TC = 0.0) A32 A64

25% (TC = 0.25) B32 B64

50% (TC = 0.5) C32 C64

75% (TC = 0.75) D32 D64

We assume all of our synthetic application types exhibit

weak scaling so that as the number of nodes used by the

application increases with application size, the application’s

attributes of computation time, communication time, and mem-

ory used per node remain constant. Details about the sizes of

applications in each simulated study are discussed further in

Sections V, VI, and VII.

C. Simulated System Setup

The simulated exascale system is a homogeneous system

inspired by the architecture used to develop China’s Sun-

way TaihuLight supercomputer, recently determined to be

the world’s highest performing system as of November 2016

[28]. Each Sunway TaihuLight system node has a multicore

architecture composed of four clusters of 64 computational

processing elements (CPEs) with each cluster managed by

a single management processing element (MPE) that also

performs computational work for a total of 65 cores in each

core cluster. The four core clusters in a system node provide

a total of about 3.1 TFLOPs over 260 cores. Our exascale

system assumes that the number of CPEs on a node will

increase by a factor of four by the time an exascale machine

is developed allowing for a total of 1028 cores per node

providing approximately 12 TFLOPs of compute power for

each system node. A system composed of 120,000 of these

high performing nodes would perform at an exascale level.

The Sunway TaihuLight system has 8 GB of DDR3 RAM

at each of its four core clusters, giving each node a total of

32 GB of RAM. We again assume that future systems are

likely to have memory increases of about a factor of four in

comparison to today’s systems giving our simulated system a

total memory capacity of 128GB per system node. In addition

to an increase in volume, we also assume that future memory

is likely to utilize newer architectures, such as the hybrid

memory cube specified in 2014 [29], allowing for increased

aggregate Memory Bandwidth, BM , of up to 320 GB/s.

For the simulated studies in Sections VI and VII, the system

also assumes each application arriving to the system has

individual deadlines. Applications removed from the system

because they could not meet their execution deadlines are

referred to as dropped applications and the percentage of total

applications that are dropped is the performance metric that we

use for the simulated studies of Sections VI and VII. Deadline

values for each application are selected to be the application’s

arrival time, TA, plus the application’s baseline execution time

multiplied by a uniformly randomly selected value U between

1.2 and 2 giving the application a deadline of

TD = TA + U(1.2, 2.0) ∗ TB . (1)

D. System Resource Management Techniques

We explore the behavior of three techniques for resource

management operating in a system with failures and resilience.

Each technique takes as input the set of unmapped applications

and idle system nodes (nodes that are not currently executing

an application) at a mapping event and outputs a mapping of

applications to system nodes. System mapping events occur

immediately after an application arrives to the system as

well as immediately after an application executing in the

system finishes its execution. If not enough idle system nodes

are available during the mapping event to accommodate all

unmapped applications, then the remaining applications stay

in the set of unmapped applications until they are scheduled

during a future mapping event.

1) FCFS Technique: First come first served (FCFS) is the

most commonly employed resource management technique in

HPC systems and is therefore an important point of compari-

son for other resource management techniques. This technique

operates by scheduling applications from the set of unmapped

applications in the order that they arrive to the system until

there are not enough nodes left for the most recently arrived

application in the set of unmapped applications to begin

execution. Applications that are not assigned to nodes are

scheduled in a future mapping event.

2) Random Technique: The random resource scheduling

technique randomly selects an application from the set of

mappable applications and assigns it to execute on the first

available set of nodes able to accommodate the application’s

size. If not enough nodes are available, then the application is

returned to the set of unmapped applications. This process is

repeated until the set of mappable applications is empty.

3) Slack-Based Technique: An application’s slack is calcu-

lated as the application’s deadline minus the sum of its baseline

execution time and its time of arrival to the system. The slack-

based resource management technique allows the system a

means to prioritize applications based on the application’s

baseline execution time and deadline. The set of unmapped

applications is ordered into a priority queue based on each

application’s slack value. A negative slack value indicates that

an application will not be able to complete execution before its

deadline. All such applications are “dropped” from the system.

After clearing out applications with negative slack, the slack-

based resource management technique schedules applications

to nodes in the system in the order of applications with the

lowest slack. Applications that cannot begin execution imme-

diately are returned to the set of unmapped applications. The

slack-based schedule continues evaluating applications until

the queue is empty and all applications are either executing

in the system or have been returned to the set of unmapped

applications to be considered in future mapping events.

917

E. Modeling System Failures

We assume that failures can be characterized by three

attributes: the time of the failure’s occurrence, the location

of the failure, and the severity of the failure. We model the

uncertainty associated with each attribute using random vari-

ables and assume independence between both the individual

failure occurrences as well as the attributes of each failure.

The time between system failures is modeled by a Poisson

process, a common assumption in failure modeling [30]. Every

failure occurs according to the previous failure’s arrival time

(TFi−1 , with TF0 = 0) plus a random variate generated from

an exponential distribution Ti ∼ Exp(λs) with an expected

arrival rate of E[Ti] = 1
λs

. The parameter λs indicates the

average failure rate of the entire system, and is defined as the

number of nodes in the simulated system that are not idle,

Ns, divided by the mean time between failures (MTBF) of

the system nodes, Mn, i.e.,

λs =
Ns

Mn
. (2)

The location of the failure’s occurrence represents which

system node failed and consequently which application is

impacted by the failure. When determining which node has

failed the simulator assumes a uniform random distribution

over all active nodes (nodes that are not idle) in the system,

and selects one node at random as the failed node.

The level of failure severity corresponds to the type of

failure that has occurred in the system. This attribute is

used by multilevel checkpointing resilience techniques to

determine optimal intervals between checkpoints and the level

of checkpoint needed to recover from a particular type of

failure. The specific mapping of types of failures to levels

of failure severities is defined by the implementation of the

multilevel checkpointing technique. This work assumes the

implementation described in [3]. The probability of experi-

encing a failure at a failure severity of level j is determined

according to the ratio of the number of failures that occur

at each failure severity level, λLj
, to the total number of

failures, λLt , measured for an extended interval of time. The

resulting discrete set of ratios for each level is used to create

a probability mass function from which random variates are

sampled to define the severity attribute of each failure. We use

the values in [3] determined by the study of failure logs of the

BlueGene/L system to define λLj
and λLt

.

F. Communication Model

System communication plays a large role in the behavior

and performance of every resilience technique we examine.

We account for communication in the system and model

its effects on application simulation. We assume that future

exascale systems are likely to have improved communication

over today’s systems, and base the communication model

for the studies performed here on the “NDR InfiniBand”

network described in [31]. Our communication network as-

sumes a latency value of L = 0.5μs, a bandwidth value of

BN = 600GB/s, and a maximum number of simultaneous

TABLE II
RESILIENCE TECHNIQUE PARAMETERS

parameter use in modeling

TS application length (time steps)

TC portion of each time step spent on communication

TW portion of each time step spent on computation work

Nm memory used by the application

Na number of system nodes used by the application

L network latency

BN communication bandwidth

NS number of network switch connections

λa application failure rate

Mn system component MTBF

τ optimal checkpoint period

TCPFS
time required to checkpoint to a PFS

TCL1
time required for a level one checkpoint

TCL2
time required for a level two checkpoint

μ message logging slowdown

r degree of redundancy

connections at each switch NS = 12. Further details about

the role of communication is discussed specifically for each

resilience technique in Section IV.

IV. RESILIENCE TECHNIQUE SIMULATION

A. Overview

Four resilience techniques have been implemented in our

simulator. A traditional checkpoint restart based technique,

Checkpoint Restart, as well as three techniques proposed

for next-generation computing systems: a multilevel check-

pointing approach described in [3], Multilevel Checkpoint, an

implementation of message logging outlined in [2], Parallel
Recovery, and a technique combining traditional checkpointing

with partial or full redundancy of the executing application

from [4], Redundancy. The following subsections present

details of how each resilience technique was modeled, with

all relevant parameters summarized in Table II.

B. Checkpoint Restart

Our implementation of the Checkpoint Restart resilience

technique performs periodic, blocking, uncoordinated check-

pointing, with its checkpoints saved to a parallel file system.

This checkpointing strategy allows simultaneously executing

applications to be checkpointed or restarted independently

from one another. This technique also allows for optimal

checkpoint intervals to be defined for individual applications

rather than for the system as a whole, which benefits smaller

applications that would otherwise experience suboptimal per-

formance if checkpointed at exascale failure frequencies.

The time that the Checkpoint Restart technique requires to

read and write its checkpoint data to a parallel file system,

TCPFS
, is dependent on application size, Na, memory use,

and system parameters for communication to give

TCPFS
=

Nm

BN
∗ Na

NS
. (3)

918

Parameters for the applications and environment in this

study impose a checkpoint and restart time of between 17-

35 minutes depending on the application type. It is generally

assumed that, because the rate of growth of system memory

and I/O bandwidth remains similar, even as large-scale system

performance continues to improve, the time necessary for the

system to checkpoint and restart an application utilizing the

entire system using a parallel file system remains constant,

between 20-30 minutes [1].

The optimal checkpoint period is dependent on the appli-

cations’s checkpoint time and failure rate. The value for each

application’s failure rate is dependent on application size and

given by λa = Na

Mn
. The resulting equation for the optimal

checkpoint period, τ , is derived according to [32] as

τ =

√
2TCPFS

λa
− TCPFS

. (4)

C. Multilevel Checkpointing

The Multilevel Checkpointing approach from [3] we imple-

ment in our simulator is a three-level checkpointing model.

Each checkpointing level offers a trade-off between the time

required to save or restore a checkpoint and the severity of the

failure from which it can recover.

The first checkpoint level writes to the node’s local RAM,

with the time required for taking a level one checkpoint

being simply the application’s required memory in the system

divided by the node’s memory transfer rate

TCL1
=

NM

BM
. (5)

The second checkpoint level stores its checkpoints to RAM

in a partner node. Application nodes are assumed to be con-

tiguous allowing for minimum latency between checkpoints

sent between nodes. The time for a level two checkpoint is

equal to the time required to send the data to the partner node

plus the time required to write the data to memory

TCL2
= 2(TCL1

+ L+
NM

BM
) . (6)

The equation is multiplied by two to account for both the time

required to checkpoint data from a given node to its partner

as well as the time required to checkpoint the partner’s data

back to the given node.

The third level checkpoint is written to a parallel file system,

and the time required is the same as presented in Equation 3.

Here we assume checkpoint and restart times are symmetric.

Failure severity and optimal checkpoint intervals at each level

are determined based on the Markov model in [3].

D. Parallel Recovery

The Parallel Recovery technique in [2] is an improvement

to the message logging resilience technique. Parallel recovery

allows for faster recovery from a system failure by allowing the

failed node’s work to be temporarily parallelized across several

nodes after being restarted, thereby reducing the time needed

by the system to recompute the work lost to a failure. As with

all message logging techniques, parallel recovery benefits the

system by allowing most of the system to remain idle while

only the failed node is recovered. This decreases both the

system power needed during recovery as well as the chance

that a failure will interrupt the recovering system. However,

unlike other message logging techniques, parallel recovery

improves checkpointing and restart time by utilizing the in-

memory checkpointing technique outlined in [33]. The in-

memory checkpointing technique behaves similarly to the level

two checkpoint to a partner node described in Section IV-C.

We therefore used Equation 6 to represent the time required

for an in-memory checkpoint or restart.
Utilization of the parallel recovery technique imposes ad-

ditional overhead involved with message logging, because the

system must spend time storing every message that is sent. The

amount of overhead an application experiences from message

logging, μ, is therefore directly proportional to the amount of

communication required by the application. Here we assume

this value for our synthetic applications is equal to μ = 1+ TC

10
which gives a range of values for message logging slowdown

that are very close to those listed in [2]. The increase in

execution time from message logging increases the application

baseline execution time when using parallel recovery to

TB = μTS(TW + TC) . (7)

The optimal checkpoint period when using parallel recovery

is given by Equation 4. The remainder of the parallel recovery

specific parameter values are taken directly from [2].

E. Partial Redundancy
The Partial Redundacy technique in [4] combines the

traditional checkpointing technique with varying degrees of

hardware redundancy. “Partial” redundancy is achieved by

allowing only a fraction of the total system nodes required by

the executing application to have redundant hardware during

its execution. For example, a degree of redundancy of r = 1.5
dictates that each virtual process of an executing application

requiring a single node will have at least one physical node

performing the application’s required computation but half of

the virtual processes will have a second physical nodes per-

forming the same computation. At the same time, checkpoints

are taken by the system at regular intervals. When failures

occur on nodes in the system, the system only requires a

restart if failures occur on all (possibly redundant) physical

nodes associated with one of the application’s virtual nodes

before the next system checkpoint.
Apart from the application baseline execution time, all pa-

rameters associated with the partial redundancy resilience tech-

nique remain the same as the Checkpoint Restart technique. To

account for the increase in application execution time from the

higher communication associated with redundancy’s necessity

for duplicated communication, the communication term in the

equation for baseline execution time is modified to be scaled

by the degree of system redundancy, r, which results in a

baseline execution time when utilizing redundancy of

TB = TS(TW + rTC) . (8)

919

Fig. 1. Resilience technique efficiency at increasing percentages of total sys-
tem use by the low memory use and low communication application defined in
Table I as A32. Efficiency is defined to be the ratio of an application’s time
without slowdowns (from failures or checkpointing) over the application’s
execution time with slowdowns (from failures or checkpointing). Processors
in the system experience a ten year MTBF. Each bar in the figure represents
the average of 200 trials. Standard deviations are shown for each bar.

Fig. 2. Resilience technique efficiency at increasing percentages of total sys-
tem use by the high memory use and high communication application defined
in Table I as D64. Efficiency is defined to be the ratio of an application’s time
without slowdowns (from failures or checkpointing) over the application’s
execution time with slowdowns (from failures or checkpointing). Processors
in the system experience a ten year MTBF. Each bar in the figure represents
the average of 200 trials. Standard deviations are shown for each bar.

V. RESILIENCE TECHNIQUE PERFORMANCE WITH

APPLICATION SCALING

We utilized our simulation environment to conduct sev-

eral sets of experiments examining the performance of each

resilience technique. We evaluated the performance of each

of the eight application types defined in Table I as each

application type is scaled in size from one percent of the

exascale system (about 1.2 million CPU cores, similar in size

to some of today’s largest applications) through to an exascale-

sized application requiring 123 million CPU cores. For these

experiments, the baseline execution time for each application

is defined as TB = 1440 minutes, or one day of execution.

Figures 1 and 2 highlight the results from the first set

of experiments that analyze execution efficiency for varying

application sizes. Efficiency is defined to be the ratio of an

application’s baseline execution time over the application’s

execution time with slowdowns from failures or resilience

technique overhead delays such as checkpointing. Although

we show only two of the eight application types described in

Table I, trends similar to these can be seen for all application

types.

The experiments assume a mean time between failures of

ten years based on the values used in each of the works on

which the resilience techniques we consider are modeled. Fig-

ure 1 depicts the efficiency of an application that exhibits low

memory requirements and a low amount of communication

between nodes (indicated by application A32 in Table I) as

the size of the application increases. This is indicated on the

x-axis of the figure as an increase in the percentage of system

nodes occupied by the application. For applications exhibiting

these characteristics, the parallel recovery technique is the

most efficient for all application sizes. The dominance of the

parallel recovery technique for all application sizes is true for

both of the low communication applications. The figure also

demonstrates the rate at which each resilience technique varies

in performance. As the application occupies larger portions

of the system, the decrease in the traditional checkpointing

technique efficiency drops the fastest, followed by both forms

of redundancy, and then multilevel checkpointing. The parallel

recovery technique is the best at maintaining its efficiency as

the application size increases, but it still decreases in efficiency

at larger application sizes. While results for the redundancy

techniques provide better efficiency than the traditional Check-

point Restart technique, they provide zero efficiency when the

application is scaled above certain applications sizes because

there are not enough nodes available in the system to employ

either redundancy technique.

Figure 2 provides efficiency results for a high communi-

cation high memory use application (indicated by application

D64 in Table I). The same general trends of resilience tech-

nique efficiency decreasing with increasing application size

seen in Figure 1 are also observed in Figure 2. However,

both the parallel recovery technique and the two redun-

dancy techniques suffer a larger decrease in efficiency for

all application sizes than the checkpoint restart or multilevel

checkpointing techniques suffer. This decrease is due to the

parallel recovery and redundancy technique’s higher reliance

on communication, and it results in a distinct trade-off between

which resilience technique is the most efficient for a given

application size. In Figure 2, a shift in the optimal resilience

technique from multilevel checkpointing to parallel recovery

occurs when applications require 25% or more of the system.

However, when analyzing the performance of each re-

silience technique type when executing application D64 as

compared to the same resilience technique type executing

application A32, both the parallel recovery technique and

the two redundancy techniques suffer a larger decrease in

efficiency for all application sizes than the checkpoint restart or

multilevel checkpointing techniques suffer for the same change

in application execution characteristics.

As systems trend towards manycore architectures, with

hundreds or thousands of CPU cores on a single socket,

920

Fig. 3. Resilience technique efficiency at increasing percentages of total sys-
tem use by the high memory use and high communication application defined
in Table I as D64. Efficiency is defined to be the ratio of an application’s time
without slowdowns (from failures or checkpointing) over the application’s
execution time with slowdowns (from failures or checkpointing). Processors
in the system experience a 2.5 year MTBF. Each bar in the figure represents
the average of 200 trials. Standard deviations are shown for each bar.

component failure rates are likely to increase [34] [35]. Our

simulated exascale system assumes an approximate factor of

four increase in the number of CPU cores per processor over

the Sunway TaihuLight System which is likely to decrease

processor reliability and increase the likelihood of failures

in the system. We examine the sensitivity of our results to

system component reliability by decreasing the mean time

between failures of processor components to Mn = 2.5 years.

Most of the same trends from Figures 1 and 2, including

the trade-off in resilience technique optimality for applications

with communication, also exist when system components are

assumed to be less reliable. The results in Figure 3 show

the performance for a high memory, high communication

application (indicated by application D64 in Table I) executing

at increasing percentages of system sizes when processor

nodes have an MTBF of 2.5 years. The parallel recovery

resilience technique is still the best at maintaining execution

efficiency as application size increases. Predictably, the data

also indicates that with an increased failure rate each resilience

technique decreases in efficiency at a faster rate. Traditional

Checkpoint Restart is particularly affected by a rapid decrease

in efficiency, with it spending so much time creating and

restoring from checkpoints that applications are unable to even

complete execution at exascale sizes.

VI. RESILIENCE TECHNIQUE EFFECTS ON RESOURCE

MANAGEMENT

In practice, it is unlikely that exascale systems will always

be used for executing a single exascale-sized application.

Instead, in many cases such systems will spend the majority of

their time executing a larger number of smaller applications.

We explore the behavior of an exascale-sized system under

this more typical use-case scenario as the system is utilized

over a period of several days to service a large number of

petascale sized applications with a wide variety of execution

characteristics. We show the impact that failures have on this

environment and the level of benefit that is provided to the

system by each resilience technique.

We assume the exascale environment is oversubscribed,

meaning there are always more applications submitted to the

system needing to be executed than the system has the capacity

to execute given some constraint. Because an undersubcribed

system is never at risk of having applications that are unable to

execute to completion, the impact of failures and resilience on

the performance of the system at any given time will simply be

a function of the system’s utilization and can be inferred from

our analyses in Section V. We therefore provide an analysis on

performance in an oversubscribed system that is constrained by

requiring individual applications to meet deadlines as defined

in Section III-C.

Each simulation begins by filling the entire exascale system

with applications, forcing the system to begin operation at full

utilization. Applications then arrive to the system randomly

according to a Poisson process with a mean arrival time of

two hours until a total of 100 applications have arrived to

the system. Each application that arrives to the system is

uniformly randomly selected from the set of eight application

types discussed in Table I. Baseline execution times for

each arriving application are uniformly randomly selected to

be either six, twelve, twenty-four, or fourty-eight hours in

length. The number of system nodes required by each arriving

application is uniformly randomly selected to use between 10

to 500 petaflops by utilizing approximately one, two, three,

six, twelve, twenty-five, or fifty percent of the exascale system.

Exascale sized applications are not considered in this study.

The processor MTBF for these studies is ten years.

Each set of 100 applications that arrives to the simulated

system is referred to as an arrival pattern. Fifty such ar-

rival patterns were created. The behavior of each resilience

technique and resource management technique was examined

using the same set of arrival patterns allowing each of their

performances to be compared using the same sets of arriving

applications.

Given that the results from Section V indicate that

redundancy-based resilience techniques will be unlikely to be

implemented in an exascale system, we limit our discussion of

a practical use-case scenario to only the Checkpoint Restart,

Multilevel Checkpointing, and Parallel Recovery techniques.

We compare the results from each of these techniques by

averaging the 50 arrival patterns for each experiment and

comparing those values to an Ideal Baseline execution that

is an average of each arrival pattern that executes without

delays from failures or delays associated with overhead from

resilience techniques.

Results comparing the performance of each resilience tech-

nique and resource management technique combination are

shown in Figure 4 by indicating the number of dropped

applications averaged from each of the 50 arrival patterns.

In comparison to the performance of the Ideal Baseline, the

results from these simulated studies shows how the presence

of failures and overhead from resilience techniques negatively

impacts system performance by increasing the percentage of

921

Fig. 4. Percentage of applications dropped from the system for each resilience
technique and resource management technique combination. Bars in the figure
represent the average of 50 arrival patterns. Standard deviations are shown for
each bar.

dropped applications in the system. While system performance

is negatively impacted regardless of which resilience technique

is utilized, the results also imply that the optimal resilience

technique varies among resource management techniques.

VII. RESILIENCE-AWARE RESOURCE MANAGEMENT

The implications from the results of our simulated studies

in Section V and Section VI indicate that there is a potential

for improving system performance. In addition to deciding

when and on what nodes an application will execute, the

system resource manager will also be given the opportunity

to intelligently select the resilience technique that is most

likely to provide the best performance for each application

based on the results from Section V. Applications that are

provided with this Resilience Selection will be able to use the

best resilience technique possible for their execution, thereby

improving performance of the system as a whole.

Simulated studies exploring the use of Resilience Selection

have a similar setup to the simulated studies of Section VI.

However, in addition to the application arrival patterns seen

in Section VI that allow for a uniformly random selection of

applications of different sizes and types, these studies also

experiment with arrival patterns that are biased toward:

• high memory applications requiring Nm = 64GB;

• high communication applications having communication

values of TC > 0.25;

• large applications that occupy twelve, twenty-five, or fifty

percent of the exascale system.

These application arrival pattern types were chosen because

they are likely to be more challenging for a system to schedule

and execute. The results of this study are shown in Figure 5.

Results are shown for each resource management technique

from Section III-D when utilizing the Parallel Recovery re-

silience technique (indicated by each of the bars without hash

marks in the figure) because it is most consistently the best

performing resilience technique. Each resource management

technique utilizing Parallel Recovery is also compared to the

same execution of arrival patterns when Resilience Selection is

used for each application type (indicated by each of the hashed

Fig. 5. Percentage of applications dropped from the system for each resource
management technique for the Parallel Recovery resilience technique, and
each resource management technique with Resilience Selection. Groupings
of bars show four different types of application arrival patterns. Bars in the
figure represent the average of 50 arrival patterns. Standard deviations are
shown for each bar.

bars in the figure). The results of these simulated studies

indicate that Resilience Selection provides a benefit (albeit

small) to the system in all but one circumstance. Resilience

Selection is able to offer the most improvement for the

high communication application arrival patterns because these

types of applications offer the greatest variability between

which resilience technique is optimal. Unsurprisingly, arrival

patterns biased toward large applications perform worse than

the other arrival pattern types because they require more

system resources. But the large application arrival patterns still

benefit from Resilience Selection about the same amount as

the unbiased application selection.
Because the Parallel Recovery technique never requires

checkpoints to a parallel file system, it has an advantage over

the other resilience techniques when providing fault tolerance

to applications requiring more memory. This is evident from

the high memory application arrival patterns in Figure 5.

High memory application arrival patterns not only generally

perform better than the other arrival pattern types, but they

also gain the least benefit from Resilience Selection as high

memory applications are less likely to have techniques other

than Parallel Recovery giving them the best performance.

Consequently, for applications with high memory use there

are fewer opportunities for Resilience Selection to outperform

Parallel Recovery.

VIII. CONCLUSIONS

HPC resilience has become an increasingly important topic

as we approach exascale system sizes. It has also become

increasingly important that resilience strategies that are pro-

posed for use in these systems are analyzed in a common

computing environment. This work provides one of the few

attempts to test a variety of new HPC resilience techniques in

such a manner. We describe a methodology that can be used

to simulate exascale HPC system sizes with a diverse set of

applications able to scale to arbitrary sizes.
We utilize our simulation models to evaluate four tech-

niques for HPC resilience, the traditionally employed Check-

point Restart technique, as well as, Multilevel Checkpointing,

922

Parallel Recovery, and Partial Redundancy, three techniques

proposed for next generation large-scale systems. While the

Parallel Recovery resilience technique is generally the most

efficient, our analyses indicate that each resilience technique

has performance trade-offs that vary based on application

execution characteristics.

Because a production exascale system is unlikely to execute

only exascale sized applications, we also study the effects

that HPC resilience and system failures have on resource

management. Our results indicate that while Parallel Recovery

is still likely to be the best performing resilience technique,

for most of the resource management techniques there is

still a significant decrease in system performance due to

failures and overhead from resilience techniques. However,

we also show that the system performance can be slightly

improved if resilience technique selection is considered for

each application executing in the system.

ACKNOWLEDGMENTS

The authors thank Dylan Machovec and Ninad Hogade

for their valuable comments on this research. This work

was supported by the NSF under grants CCF-1252500 and

CCF-1302693. This work utilized CSU’s ISTeC Cray system,

which is supported by the National Science Foundation (NSF)

under grant number CNS-0923386. The authors thank Hewlett

Packard (HP) of Fort Collins for providing us some of the

machines used for testing.

REFERENCES

[1] F. Cappello, “Fault tolerance in petascale/exascale systems: Current
knowledge, challenges and research opportunities,” Int’l Journal of HPC
Applications, vol. 23, no. 3, pp. 212–226, 2009.

[2] E. Meneses, X. Ni, G. Zheng, C. Mendes, and L. Kalé, “Using mi-
gratable objects to enhance fault tolerance schemes in supercomputers,”
IEEE Trans. Par. and Dist. Systems, vol. 26, no. 7, pp. 2061–2074, 2015.

[3] A. Moody, G. Bronevetsky, K. Mohror, and B. R. De Supinski, “De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system,” in Int’l Conf. for HPC, Networking, Storage and Analysis, 11
pp., 2010.

[4] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engel-
mann, “Combining partial redundancy and checkpointing for HPC,” in
Int’l Conf. on Dist. Computing Systems, pp. 615–626, 2012.

[5] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience: 2014 update,” Supercomputing Frontiers
and Innovations, vol. 1, no. 1, pp. 5–28, 2014.

[6] R. F. Van der Wijngaart, S. Sridharan, and V. W. Lee, “Extending the
BT NAS parallel benchmark to exascale computing,” in Int’l Conf. on
HPC, Networking, Storage and Analysis, pp. 94:1–94:9, 2012.

[7] D. Dauwe, S. Pasricha, A. A. Maciejewski, and H. J. Siegel, “A
performance and energy comparison of fault tolerance techniques for
exascale computing systems,” in The 6th IEEE Int’l Symp. on Cloud
and Service Computing, pp. 436–443, 2016.

[8] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of
fault tolerance mechanisms and checkpoint/restart implementations for
high performance computing systems,” The Journal of Supercomputing,
vol. 65, no. 3, pp. 1302–1326, 2013.

[9] D. P. Jasper, “A discussion of checkpoint restart,” Software Age, vol. 3,
no. 10, pp. 9–14, 1969.

[10] J. W. Young, “A first order approximation to the optimum checkpoint
interval,” Communications of the ACM, vol. 17, no. 9, pp. 530–531,
1974.

[11] C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita, E. Rodriguez,
and F. Cappello, “Blocking vs. non-blocking coordinated checkpointing
for large-scale fault tolerant MPI,” in Conf. on Supercomputing, pp. 22,
2006.

[12] X. Ni, E. Meneses, and L. V. Kalé, “Hiding checkpoint overhead in HPC
applications with a semi-blocking algorithm,” in Int’l Conf. on Cluster
Computing, pp. 364–372, 2012.

[13] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and F. Cappello, “Un-
coordinated checkpointing without domino effect for send-deterministic
MPI applications,” in Int’l Par. Dist. Proc. Symp., pp. 989–1000, 2011.

[14] N. H. Vaidya, “A case for two-level distributed recovery schemes,”
SIGMETRICS, vol. 23, no. 1, pp. 64–73, 1995.

[15] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “FTI: High performance fault
tolerance interface for hybrid systems,” in Int’l Conf. for HPC,
Networking, Storage and Analysis, pp. 32:1–32:32, 2011.

[16] K. Mohror, A. Moody, G. Bronevetsky, and B. de Supinski, “Detailed
modeling and evaluation of a scalable multilevel checkpointing cystem,”
IEEE Trans. Par. and Dist. Systems, vol. 25, no. 9, pp. 2255–2263, 2014.

[17] L. A. B. Gomez, N. Maruyama, F. Cappello, and S. Matsuoka, “Dis-
tributed diskless checkpoint for large scale systems,” in Int’l Conf. on
Cluster, Cloud and Grid Computing, pp. 63–72, 2010.

[18] S. Di, M. S. Bouguerra, L. Bautista-Gomez, and F. Cappello, “Optimiza-
tion of multi-level checkpoint model for large scale HPC applications,”
in Int’l Par. and Dist. Proc. Symp., pp. 1181–1190, 2014.

[19] S. Di, Y. Robert, F. Vivien, and F. Cappello, “Toward an optimal online
checkpoint solution under a two-level HPC checkpoint model,” IEEE
Trans. Par. and Dist. Systems, vol. 28, no. 1, pp. 244–259, 2017.

[20] K. M. Chandy and L. Lamport, “Distributed snapshots: Determining
global states of distributed systems,” ACM Trans. on Computer Systems,
vol. 3, no. 1, pp. 63–75, 1985.

[21] D. B. Johnson and W. Zwaenepoel, “Recovery in distributed systems
using asynchronous message logging and checkpointing,” in Symp. on
Principles of Dist. Computing, pp. 171–181, 1988.

[22] “Energy profile of rollback-recovery strategies in high performance
computing,” Parallel Computing, vol. 40, no. 9, pp. 536–547, 2014.

[23] J. F. Wakerly, “Microcomputer reliability improvement using triple-
modular redundancy,” Proceedings of the IEEE, vol. 64, no. 6, pp. 889–
895, 1976.

[24] S. Hukerikar, P. C. Diniz, and R. F. Lucas, “A case for adaptive re-
dundancy for HPC resilience,” in Euro-Par 2014: Par. Proc. Workshops,
pp. 690–697, 2014.

[25] B. Khemka, R. Friese, S. Pasricha, A. A. Maciejewski, H. J. Siegel, G. A.
Koenig, S. Powers, M. Hilton, R. Rambharos, and S. Poole, “Utility
maximizing dynamic resource management in an oversubscribed energy-
constrained heterogeneous computing system,” Sustainable Computing:
Informatics and Systems, vol. 5, pp. 14–30, 2015.

[26] D. Dauwe, E. Jonardi, R. D. Friese, S. Pasricha, A. A. Maciejewski,
D. A. Bader, and H. J. Siegel, “HPC node performance and energy
modeling with the co-location of applications,” The Journal of Super-
computing, vol. 72, no. 12, pp. 4771–4809, 2016.

[27] “NAS parallel benchmarks,” accessed Aug. 2016.
[28] “Top500 Nov 2016,” accessed Jan. 2017.
[29] H. M. C. Consortium, “Hybrid Memory Cube Specification 2.1,” Tech.

Rep. HMC-30G-VSR PHY, 132 pp., 2014.
[30] G. Yang, Life Cycle Reliability Engineering. Hoboken, NJ: John Wiley

& Sons, second ed., 2007.
[31] N. R. Tallent, K. J. Barker, D. Chavarria-Miranda, A. Tumeo, M. Ha-

lappanavar, A. Marquez, D. J. Kerbyson, and A. Hoisie, “Modeling the
impact of silicon photonics on graph analytics,” in 2016 IEEE Int’l Conf.
on Networking, Architecture and Storage (NAS), 11 pp., 2016.

[32] J. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,” Future Generation Computer Systems, vol. 22, no. 3,
pp. 303–312, 2006.

[33] G. Zheng, L. Shi, and L. V. Kalé, “FTC-Charm++: An in-memory
checkpoint-based fault tolerant runtime for Charm++ and MPI,” in Int’l
Conf. on Cluster Computing, pp. 93–103, 2004.

[34] A. Marowka, “Back to thin-core massively parallel processors,” Com-
puter, vol. 44, no. 12, pp. 49–54, 2011.

[35] T. Simunic, K. Mihic, and G. De Micheli, “Optimization of reliability
and power consumption in systems on a chip,” in 15th Int’l Workshop
on Integrated Circuit and System Design Power and Timing Modeling,
Optimization and Simulation, in PATMOS 2005 Proceedings, pp. 237–
246, 2005.

923

