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1. Introduction and Research Questions 
 

Within the last century, humans have significantly perturbed the global nitrogen cycle 
(Galloway et al., 2008). Sparked by the discovery and refinement of the Haber-Bosch process for 
artificially fixing atmospheric N2 and driven by the need to feed a growing world population, 
humans have more than doubled the quantity of reactive nitrogen (defined as nitrogen-containing 
compounds that are chemically, biologically or radiatively active: Nr) cascading through the 
earth system (Fowler et al., 2013). Understanding and managing the impact of these 
anthropogenic perturbations to the global nitrogen cycle has been described as a “grand 
challenge” for humanity in the next few decades (Reis et al. 2016). As additional reactive 
nitrogen has been added to the earth system, fluxes of nitrogen across ecosystem boundaries 
have likewise increased (Vitousek et al., 1997). One of the primary conduits for these fluxes is 
through the atmosphere. Reactive nitrogen is most often emitted into the atmosphere as ammonia 
(NH3), nitric oxide (NO), or nitrous oxide (N2O) with NH3 emissions accounting for roughly 
half the total (Flechard et al., 2013). Of these NH3 emissions, agricultural emissions comprise 
around two thirds, with the rest of global NH3 emissions coming from natural soils, oceans, 
biomass burning, and transportation. The increasing contribution from agriculture to NH3 
emissions is driven largely by agricultural intensification of livestock and crop farming, 
involving the use of machinery, fertilizers, pesticides and other means to maximize yields from 
available land and animals.  

Atmospheric NH3 has a number of important impacts on human and earth environments. 
NH3 is the most abundant gas-phase base in the atmosphere, and neutralizes acidic gases such as 
nitric acid or sulfuric acid. Compounds such as ammonium sulfate and ammonium nitrate exist 
primarily in the solid and liquid phases, and contribute to particle nucleation and growth, thus 
positioning NH3 as an important precursor for fine particulate matter (PM2.5). High 
concentrations of PM2.5 have harmful effects on human health (e.g., Pope et al., 2002), and also 
impact regional and global climate by altering radiation budgets (e.g., Pinder et al., 2013). Gas-
phase ammonia and particulate ammonium may also be transported through the atmosphere and 
deposited via either wet or dry deposition. This deposition of reduced nitrogen may have 
detrimental effects on nitrogen-limited ecosystems, causing eutrophication, species assemblage 
shifts, and biodiversity loss (e.g., Krupa et al., 2003).  

Despite the important role NH3 plays in the earth system, there are relatively sparse 
measurements of atmospheric NH3 compared to many other atmospheric constituents. This 
contributes to large uncertainties in the fluxes of NH3 into or out of many systems. Sparse 
measurements are due in large part to the hydrophilic and polar nature of NH3, making it highly 
reactive and prone to adsorbing, or “sticking” to sampling surfaces. Thus, many measurements of 
atmospheric NH3 have been restricted to denuder, impinger, or filter sampling techniques, which 
generally provide concentrations on minute- to week- long time scales. Within the last 15-20 
years, however, techniques such as tunable infrared laser absorption and chemical ionization 
mass spectrometry have been developed for NH3 that are capable of making measurements with 
much higher precision and temporal resolution than in the past (Nowak et al., 2007, von 
Bobrutski et al., 2010). Coupled with recent innovation in inlet design to further increase 
measurement time response, these instruments are now being use to make measurements of gas-
phase NH3 at rates greater than 1Hz. Leveraging this capability, I propose to sample gas-phase 
NH3 from a small aircraft platform in order to calculate net fluxes of NH3 out of or into areas of 
intensive agriculture. The overarching question I aim to answer is:  
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What is the magnitude and spatial distribution of net fluxes of ammonia from 
intensive crop farming in the U.S. Midwest Corn Belt across the growing season?  

 

In addressing this broader question, the proposed research will also tackle several other sub 
questions: 
 

How do inventories and models of NH3 sources/sinks compare to the empirical estimates 
of net NH3 fluxes from croplands? 
 

What is the magnitude and seasonality of NH3 deposition to areas adjacent to intensive 
crop farming? 

 

I propose to employ the University of Wyoming King Air aircraft with a specific instrument 
payload to make measurements of NH3 and atmospheric state variables over Iowa and Illinois. 
These measurements will be made over the course of a growing season and will be analyzed 
using the eddy covariance flux technique to calculate empirical net fluxes of NH3 over regional 
spatial scales. In the following sections, I will describe the motivation for this work, hypotheses 
that will be tested, and the research approach, including analysis techniques and sampling 
strategies. Lastly, I present a discussion of the merits of this research along with potential related 
work and obstacles that may need to be overcome. 
 
2. Background 
 

As discussed in the introduction, agricultural NH3 emissions (from both livestock and 
crop farming) are the dominant source of NH3 to the atmosphere. On aggregate in the U.S., NH3 
emissions from livestock farming operations (55% of the total) are larger than emissions from 
chemical fertilizer use in croplands (26%), but in regions with a high density of intensive crop 
farming, such as the U.S. Midwest, emissions from both may be comparable (EPA 2018). 
Furthermore, the volatilization of NH3 from fertilizer use is a function of many factors, which 
contributes to large uncertainties around the spatial and temporal distribution of fertilizer 
emissions. Fertilizer type and application, soil properties, meteorological conditions, and plant 
canopy characteristics may all influence rates of volatilization, with positive relationships 
between NH3 volatilization at air temperature, soil PH, and urea content of the fertilizer for 
example (e.g., Terman 1979, Sharpe and Harper 1995, Sommer et al., 2004). A meta-analysis by 
Pan et al., (2016) suggests that between 0.6 – 64% of total nitrogen applied as fertilizer may be 
volatilized. NH3 emissions and volatilization rates have been measured in a small number of crop 
systems and locations in the U.S. Examples include multiple crops in California (Potter et al., 
2001), corn in North Carolina (Walker et al., 2013) and Illinois (Nelson et al., 2018), and 
soybeans (Myles et al., 2011), and short grass (Phillips et al., 2004) in North Carolina.  

The most common method to estimate NH3 volatilization across broad spatial scales has 
been the use of emission factors for different fertilizers, crop species, and soil types, combined 
with disaggregated economic data on fertilizer sales and agricultural land use (e.g., Goebes et al., 
2003; Balasubramanian et al., 2015). These emission factors are assumed to be constant, and do 
not account for the biological and chemical processes inherent to the volatilization of NH3 that 
strongly depend on environmental conditions and properties. In the National Emissions 
Inventory 2011, the Sparse Matrix Operator Kernel Emissions model is used to break emission 
down further into spatial and temporal resolutions suitable for input into chemical transport 
models (EPA 2013).   
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Other research has used chemical transport models and inverse modeling to test and 
apportion spatial and temporal distributions of NH3 emissions in the U.S. Heald et al. (2012) 
compared GEOS-Chem NH3 and ammonium nitrate concentrations to observations from several 
networks, field campaigns, and IASI satellite measurements. Gilliland et al. (2006) and Paulot et 
al. (2014) both used measurements of wet deposition of ammonium to constrain national 
emissions, employing the Community Multiscale Air Quality model and the GEOS-Chem 
adjoint model respectively. Zhu et al., (2013) used TES satellite observations in coordination 
with GEOS-Chem to constrain NH3 inventories. One main takeaway from these studies and 
others is that while overall NH3 emissions in the NEI may be reasonable, the spatial and 
temporal distribution of those emissions is consistently incorrect.   
 Efforts to improve inventories and model estimates of NH3 emissions have taken the 
form of including various types of additional data or models. Balasubramanian et al. (2015) 
merged emission factors with a high resolution map of cropland and a biogeochemical process 
model to estimate NH3 emissions in Illinois and surrounding states (model name: Improved 
Spatial Surrogate with DenitrificationDecomposition, ISS DNDC). Other process-based models 
such as the Environmental Policy Integrated Climate (EPIC) model (Williams et al., 2008) have 
been used to simulate fertilizer application driven by plant demand. EPIC is a part of a 
bidirectional flux scheme within CMAQ (Cooter et al., 2012; Bash et al., 2013), and has recently 
been included in the NEI2014 framework (EPA 2018). And Paulot et al. (2014) developed semi-
empirical relationships between environmental parameters and NH3 emissions into the 
Magnitude and Seasonality of Agricultural Emission model (MASAGE_NH3) as part of their 
inverse modeling study. Each of these models or inventories claims to result in improved spatial 
and temporal representation of NH3 fluxes, but the availability of NH3 flux measurements to test 
them limits the further development of NH3 emission estimates from fertilizer use (Flechard et 
al., 2013; Balasubramaniamn et al., 2015).  
 While site-scale NH3 fluxes yield detailed temporal resolution and important insights in 
processes (e.g., Walker et al., 2013), flux measurements on a larger spatial scale would afford the 
opportunity to observe spatial variability and test the ability of various models and inventories to 
capture this variability. Airborne eddy covariance flux measurements promise precisely this 
opportunity to sample fluxes on regional spatial scales, and repeated measurements over time 
offer the opportunity to sample temporal variability and probe process-level understanding as 
well (e.g., Wolfe et al., 2018).  
 
3. Region of Study 
 
While many regions in the U.S. have high NH3 emissions from agriculture, the region chosen for 
this study is the U.S. Midwest, specifically focusing on the states of Iowa and Illinois. These 
states have a very high density of intensive crop farming (Figure 1), and comparisons of models 
with observations (Heald et al., 2012) and models with inventories (Balasubramanian et al., 
2015) suggest that both the spatial and temporal distribution of NH3 fluxes is uncertain. This 
region is both a source of NH3 and a sink for NH3 via dry deposition. Li et al., (2016) find that 
reduced Nr now accounts for over 50% of total Nr deposition. Furthermore, recent studies by 
Steiner et al. (2012) and Evanoski-Cole et al. (2017) have highlighted the importance of NH3 
emissions to PM2.5 formation during late winter/early spring (February-April). Lastly, the high 
density of agricultural activities and relatively homogeneous terrain are well suited to airborne 
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eddy covariance flux measurements. These factors all combine to make the U.S. Midwest a 
relevant and exciting location for this research.  
 
4. Hypotheses 
 

Median seasonal cycles for ambient NH3 concentrations at three sites within the study 
region are shown in Figure 2. These data are 2-week composite measurements from denuder 
filters as part of the Ambient Ammonia Monitoring Network. They show clear peaks in the 
spring and fall in ambient NH3 concentrations, matching up with the primary fertilizer 
application periods for this region, with significant variability in individual measurements 
(plotted as points behind the lines). This general seasonal cycle generally agrees well with sparse 
site flux observations suggesting ~80% of NH3 emissions occurred after fertilizer application in a 
corn field in Illinois (Nelson et al., 2018) 

Following these observations, I hypothesize that the greatest NH3 emissions will occur in 
the early to mid spring, as fertilizer is applied to fields. Biogeochemical models suggest that corn 
cultivation may account for up to 95% of the emissions of NH3 in this region (Balasubramanian 
et al., 2015). Corn and other crops such as soybeans are intermixed widely throughout these 
states, and thus I hypothesize that flux measurements at fine scales will be variable, with strong 
emission sources in close proximity to small sources or even areas of net deposition. During 
summer, emissions from fertilizer will likely be much smaller, even with warmer air 
temperatures, and strong livestock sources in the region may lead to widespread measurements 
of net deposition to croplands. In the fall, harvesting and additional applications of fertilizer will 
likely lead to net emissions once again.  

While the rationale for these hypotheses follows insights from small-scale measurements, 
widely dispersed routine measurement locations, and process based models, empirical NH3 flux 
estimates of regional scale fluxes from intensive crop farming have not been made. Therefore, 
measurements of regional NH3 fluxes across a growing season will be a valuable test of these 
sources of knowledge.  
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Figure 1. Spatial distribution of NH3 emissions over the U.S. Midwest on April 29th from the EPA 2011 National 
Emissions Inventory. The three Ambient Ammonia Monitoring Network locations closest to Iowa are displayed with 
black symbols. The specific region of interest is outlined in a black dotted line.  
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5. Approach 
 
5.1 Proposed Platform 
 
The aircraft research platform I propose to deploy is the Univeristy of Wyoming King Air 
(UWKA). The UWKA is a small twin-propeller aircraft that has a ~4 hour flight time with an 
airspeed of around 85 m/s, and has participated in airborne flux measurement campaigns in the 
past (e.g., Stull et al., 1996; Gerbush et al., 2008). A small research crew flies on board to 
operate instrumentation and guide the sampling strategy. While the payload (~1650 lbs) is 
smaller than other aircraft that have been used to measure airborne fluxes (e.g., NASA C-23 
Sherpa: Wolfe et al., 2018; NSF C-130: Yuan et al., 2015), as a smaller aircraft the UWKA has 
the capability to fly within several hundred feet of the ground, which decreases errors in the 
calculated fluxes (more in sections 5.3 and 7).  
 
5.2 Proposed Measurements 
 

Standard state parameters are always measured on the UWKA. These include altitude, 
position, air temperature, pressure, heading, ground velocity, vertical velocity, pitch/roll angle, 
and 3-dimensional winds. Requestable instruments in service of fluxes of energy, and carbon 
dioxide (CO2) include a Friehe type air temperature measurement with UW modifications, and a 
LI-COR 6262 infrared gas analyzer for fast time response measurements of in situ water vapor 
and carbon dioxide. Specifications of the water vapor measurements include a range of 0-75 mb, 
accuracy of 1%, and precision of 0.1 mb while the CO2 measurements have a range of 0-3000 
ppmv, accuracy of 1 ppmv at 350 ppmv and a precision of 1 ppmv. Air temperature and water 
vapor measurements allow the calculation of latent and sensible heat fluxes to use along with 
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Figure 2. Median seasonal cycles for three Ambient Ammonia Monitoring Network locations from Figure 1. Two-week 
average concentrations are plotted as points, and the median over 3-7 years for each month is plotted as solid lines.   
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CO2 fluxes. Energy and CO2 fluxes have been widely studied in agricultural systems. Therefore, 
these fluxes can used to test the credibility of the NH3 fluxes.  

In situ NH3 mixing ratios will be measured using an Aerodyne Quantum Cascade 
Tunable Infrared Laser Direct Absorption Spectrometer (QC-TILDAS) (Ellis et al., 2010), 
owned and operated by my research group. This instrument was previously used to sample in situ 
NH3 in wildfire smoke aboard the NSF/NCAR C-130 aircraft during the Western Wildfire 
Experiment on Cloud Chemistry, Aerosol Absorption, and Nitrogen (WECAN) field project in 
summer 2018. Inlet modifications including a quartz glass inertial inlet for the separation of 
aerosol particles greater than 300 nm, heated PFA Teflon tubing, and the use of a strong base, 
1H,1H perfluorooctylamine, to coat inlet surfaces serve to increase time response such that 
operation in flight at 10Hz has a precision of 1 ppbv and an accuracy of 12%, with a range of at 
least 0-400 ppbv. QC-TILDAS instruments have been used to make ground-based measurements 
of eddy covariance fluxes (e.g., von Bobrutski et al., 2010; Zoll et al., 2016). As flown during 
WECAN, the instrument rack weighed 356 lbs, with the pump adding an additional 80 lbs.  

Space, weight, and power permitting, two other instruments could be requested from the 
National Center for Atmospheric Research (NCAR) to fly on the UWKA. The NCAR NO/NO2 
2-channel chemiluminesence instrument measures in situ nitrogen oxides with a 1Hz uncertainty 
of 10%, and precision of 10 pptv (Ridley and Grahek, 1990). And the NCAR N2O/CO QC-
TILDAS (Lebegue et al., 2016) uses the same direct infrared absorption technique as the NH3 
instrument to measure nitrous oxide and carbon monoxide with precisions of 30 pptv and 100 
pptv respectively at 1Hz (and is also capable of operating at 10Hz). These instruments also flew 
on the C-130 during WECAN, and while they would not be critical to this research, they would 
provide important tracers for urban, industrial, and traffic emissions. Additionally, NOx and N2O 
have significant sources from agricultural soils, and extensions to this research could investigate 
fluxes of these oxidized reactive nitrogen species from intensive crop farming within the study 
region.  
 
5.3 Proposed Analysis Techniques 
 

Several methods have been developed to estimate surface fluxes from airborne in situ 
data, including mass balance approaches, column integration, and eddy covariance (Wolfe et al., 
2018). Each method requires different flight patterns and is best suited to different flux processes. 
Airborne eddy covariance flux directly quantifies the vertical turbulent fluxes of mass and 
energy within the boundary layer by calculating the covariance between fluctuations in vertical 
wind speed and perturbations in a scalar quantity (such as temperature or gas concentration). It 
has the main advantage of being able to resolve spatial gradients in fluxes over broad regions at 
relatively fine scale (~1 km), and is well suited to disperse fluxes such as those from widespread 
vegetation or intensive crop farming (Misztal et al., 2014).  Recent examples of aircraft 
measurements used in eddy covariance flux calculations include estimates of water and CO2 
fluxes over agriculture and forests in Europe (Gioli et al., 2004), coastal mangroves in Mexico 
(Zulueta et al., 2013), and the eastern U.S. (Wolfe et al., 2018), estimates of methane fluxes from 
Arctic tundra (Sayres et al., 2017) and shale gas production regions in the U.S. (Yuan et al., 
2015), nitrogen oxide fluxes over London, U.K. (Vaughan et al., 2016), and isoprene fluxes from 
the California Central Valley (Misztal et al., 2014).  
 Requirements for successful airborne eddy covariance flux measurements include high 
frequency and high precision measurements, to resolve the range of timescales on which 
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turbulent eddies may transport the quantity of interest, level flight legs on the order of tens of 
kilometers to facilitate reduction in error, and relatively homogeneous terrain to limit the 
variability in turbulent properties along the flight path (Wolfe et al., 2018). Traditionally, the 
average flux along a flight track has been calculated by applying a fast fourier transform (FFT) 
algorithm to the normalized covariance of the wind and gas concentration fluctuations. This 
method generates a single average flux over the flight track and further requires stationarity, or 
that statistical properties of the turbulence do not change along the flight path. Most recent 
applications, including all the examples cited earlier, employ a different method that does not 
require stationarity and delivers spatial resolved fluxes. This method is called continuous wavelet 
transform or CWT. Here, both timeseries of pertubations in vertical wind speed and gas 
concentration are convolved with a wavelet function (Torrence and Campos, 1998), the 
cospectrum of which calculates contributions to the total flux from eddies of all sizes/frequencies 
along the flight track. Different types of wavelets can be chosen, with the Morlet wavelet the 
most commonly used (Wolfe et al., 2018). By preserving energy from all distances and eddy 
frequencies along the flight track, CWT integrates information from the entire sampling leg to 
derive fluxes. Further information on the implementation of CWT and calculation of 
uncertainties is given in section 7. 
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Figure 3. A sample flight plan in black overlaid on the spatial distribution of NH3 emissions over the U.S. Midwest on 
April 29th from the EPA 2011 National Emissions Inventory. Arrows on the left indicate the prevailing wind direction.  
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6. Sampling Strategy 
 

As stated in section 4, NH3 fluxes from intensive crop farming in the U.S. Midwest are 
likely to vary considerably across the growing season due to the timing of fertilizer application 
along with the seasonal cycle in meteorological conditions. In order to sample across this 
temporal variability, I propose to use ~180 flight hours, split up between three one month 
deployments in the month of April, mid July through mid August, and the month of October. 
Roughly fifteen 4-hour flights will be completed during each deployment, offering dense 
temporal sampling rates and the opportunity to make multiple flights in a single day to sample 
diurnal variability as well. The primary flight times will be late morning to early afternoon, when 
the boundary layer is well defined and well mixed. Flights will target synoptically simple days, 
with consistent wind speeds and directions so as to simplify the analysis and interpretation of 
measurements.  
 For each deployment, I propose to base the UWKA out of Des Moines, IA. Des Moines 
is centrally located in Iowa. The UWKA has an average airspeed of 85 m/s which translates to a 
roughly 1200 km range over a flight duration of 4 hours. Thus, the UWKA will be able to sample 
anywhere in Iowa and over much of the area of surrounding states during any given flight. Each 
flight will have 6-12 level altitude sampling legs, with each eddy covariance flux leg being 
between 50 and 150 km long. This range offers the opportunity to sample multiple areas or to 
stack legs at multiple altitudes. The most common flight altitude will be within 100-200 m above 
ground level. Vertical spirals through the boundary layer will be performed at least once per 
flight to estimate the boundary layer height. Figure 3 shows a sample flight path, departing and 
returning to Des Moines. A “racetrack” pattern enables sampling of long flight tracks through 
multiple areas, and the spirals denote vertical soundings throughout the boundary layer. Lastly, 
flights from Des Moines also offer the opportunity to overfly two Ameriflux sites: Brooks Field, 
IA (http://dx.doi.org/10.17190/AMF/1246038), and Bondville, IL 
(http://dx.doi.org/10.17190/AMF/1246036). These sites maintain eddy covariance flux towers 
measuring energy and CO2 fluxes, which can be used to compare and validate the aircraft fluxes. 	
 
7. Data Analysis  
 

Data analysis will have three main components. First will be the production of final data 
and the calculation of net NH3 fluxes and associated errors. Next will be the analysis of the 
spatiotemporal variability of surface fluxes with crop surface information and meteorological 
conditions. And last will be the comparison of fluxes with several models and inventories.   

The calculation of eddy covariance fluxes and errors will follow the detailed methods laid 
out in Wolfe et al. (2018). Briefly, these first involve preprocessing the data to align the time 
base of each measured quantity. Next, the Continuous Wavelet Transform analysis is applied, 
and the cospectra may be compared to a Fast Fourier Transform. Systematic and random errors 
must be calculated, along with the vertical flux divergence, which is the change in the flux with 
height. The vertical flux divergence is calculated by comparing stacked flight legs, and provides 
a scaling factor by which the airborne flux may be extrapolated to a surface flux. This correction 
factor is applied everywhere along the flight track and may account for a 10-50% increase in the 
surface flux as compared to the lowest level airborne fluxes (Wolfe et al., 2018). Lastly, the flux 
footprint is calculated. To calculate the total uncertainty, the systematic error, random error, and 
flux divergence correction error are summed in quadrature. Errors may be averaged over the 
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timeseries as at short timescales errors may be well is excess of 100%. On spatial scales of 2 km 
errors will often average down to the range of 40-90%. This error range is sufficient to 
distinguish differences in the magnitudes of fluxes along different parts of the flight track, and to 
clearly distinguish net sinks from net sources. 
 The analysis of fluxes with crop surface information and meteorological conditions will 
utilize the flux footprints to compare spatially resolved NH3 fluxes from different crop and land 
cover types (NASS, 2014). The influence of meteorological variability on fluxes from different 
crop and land cover types will be analyzed within each deployment, and the overall seasonal 
variability will be investigated. This analysis should be able to separate out the respective 
influence from crop type, environmental conditions, and spatial and temporal variability on net 
NH3 fluxes in the U.S. Midwest.  

The third analysis will be a comparison with three models and inventories. Net NH3 
fluxes will be compared to three of the models described earlier:, the Improved Spatial Surrogate 
with DenitrificationDecomposition (Balasubramanian et al., 2015), NEI2014 (EPA 2018), and 
Magnitude and Seasonality of Agricultural Emission model (Paulot et al., 2014).  
 
8. Work Plan 
 
Recognizing that proposal timelines, budget requirements, and facility scheduling constraints 
would require a longer timeframe than a PhD, here is an example work plan for this research, 
along with a timeline for meeting PhD requirements: 
 
   2019 2020 2021 
 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 
Upload to UW King Air           
Research Flight Period           
Final Data Production           
Calculation of Fluxes           
Comparison to Models/Inventories           
Preparation of Publications           
           
Preliminary Exam                        X           
Committee Meeting      X     
PhD defense          X 

 
9. Discussion and Summary 
 

In this prospectus, I have proposed a set of airborne measurements of in situ NH3 and 
atmospheric state variables in order to calculate the magnitude and spatial distribution of net 
fluxes of NH3 from intensive crop farming in the U.S. Midwest Corn Belt across the growing 
season. Based out of Des Moines, IA, the UW King Air will sample areas of chemical fertilizer 
use in crop-based agriculture within Iowa and surrounding states. This region is a major source 
of NH3 in the U.S. The U.S. Midwest is expected to continue to be a major agricultural 
production region in the future and while NH3 is currently unregulated, it may become so in the 
next few decades. As it stands now, with current technology and practices, Davidson et al. 
(2012), estimate that nitrogen loss from farms and livestock operations could be reduced by 30-
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50%. Interdisciplinary work aimed at estimating the economic cost to human and environmental 
health due to “nitrogen leakage” (Sobota, 2015) may strengthen the economic and policy case for 
innovative policies and incentives for agricultural producers to reduce reactive nitrogen loss and 
usage. Thus, regional estimates of NH3 net fluxes in the U.S. Midwest from this work will be a 
baseline for comparison with future studies. Furthermore, comparison of empirical fluxes with 
models and the national inventory will help improve inputs into chemical transport models, 
thereby resulting in better predictions of nitrogen deposition and particulate matter distributions 
within the midwestern and eastern U.S. Possible extensions to this research could include 
validation or comparison to satellite column measurements of NH3 from CrIS, IASI or AIRS 
(e.g., Van Damme et al., 2015). 

One possible weakness in the sampling strategy presented here is the partitioning of gas-
phase NH3 to aerosol. NH3 has a lifetime of around 1 day (Galperin and Sofiev, 1998) and can be 
appreciably lost to particulates on the timescale of hours (Wagstrom and Pandis, 2011). While 
the timescale of boundary layer mixing means that a low level sampling strategy should be 
measuring air within minutes to an hour of interaction with the surface, this chemical loss of NH3 
could bias our flux calculations. However, this is a case where calculating the vertical flux 
divergence and performing many stacked legs will help address this issue. The vertical flux 
divergence is the sum of entrainment/detrainment, horizontal advection, or production/loss 
processes. Thus, the empirical calculation of the vertical flux divergence wraps chemical 
production or loss into the surface flux correction factor (Wolfe et al., 2018). In theory, 
analyzing differences in the vertical flux divergence correction factor across different flights may 
produce insight into the relative importance of gas-particle partitioning during the sampling 
period. While direct measurements of the partitioning rate could be made by adding an Aerosol 
Mass Spectrometer to the King Air payload, space, weight, and power constraints would make 
this additional research activity difficult.  
 Other possible constraints to this research may be logistical in nature. Deployments of 
aircraft platforms across entire seasons are often infeasible due to scheduling conflicts. Were the 
use of the King Air to be restricted to less than three month-long deployments, this research 
could still produce valuable estimates of the magnitude and spatial variability of net NH3 fluxes 
across one spring planting season, or a spring and summer timeframe. Therefore, the deployment 
schedule could be adjusted to yield valuable scientific insights while acknowledging wider 
community needs.  
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1. Introduction 
 
Imagery from the Geostationary Operational Environmental Satellite (GOES) has been a key 
element of U.S. operational weather forecasting since 1975, supporting the need for high-
resolution rapidly refreshing imagery for situational awareness (Line et al. 2016). Despite the 
well demonstrated value to human forecasters, usage of GOES imagery in data assimilation (DA) 
for initializing numerical weather prediction (NWP) has been limited. The obstacles impeding 
the use of GOES for DA include: (a) gaps in scientific knowledge that limit the accuracy of 
forward operators, (b) computational limitations on simulating all relevant physical processes 
within the scope of the NWP operational production cycle, and (c) unmeasured and uncertain 
quantities that complicate inversion of the forward operator. This dissertation is specifically 
concerned with the use of GOES radiances and lightning observations in cloudy and 
precipitating scenes, where all three of these obstacles are present. However, the broader 
significance of this problem is that these same obstacles are encountered in other areas of Earth 
System Modeling, particularly when coupling different Earth System components, such as the 
atmosphere and land surface. The central question of this dissertation is: how can artificial 
intelligence/machine learning (AI/ML) be used in combination with DA to better utilize remotely 
sensed observations for improving high-resolution NWP forecasts of high-impact weather 
hazards? By providing a rich and powerful library of nonlinear statistical tools, ML can address 
these scientific gaps by providing statistically based forward and backward operators. While it 
can take considerable computational resources to train ML models, once trained, the 
computational cost at inference time is generally a tiny fraction of that required by physical 
models, thus addressing the limitations during the operational production cycle. Unmeasured and 
uncertain quantities remain an issue with ML, which is a motivating factor behind the need for 
trustworthy models that are explainable or interpretable. This dissertation will explore the usage 
of ML to enhance DA for the purpose of connecting models and observations. 
 

 
Figure 1. (Left) Rapid Refresh Forecast System (RRFS) domain in yellow and High-Resolution 
Rapid Refresh (HRRR) domain in green. (Right) Multi-Radar Multi-Sensor (MRMS) radar 
coverage over the contiguous United States (CONUS). 
 
The broader significance and timeliness of this problem is illustrated in Figure 1. The High-
Resolution Rapid Refresh (HRRR) model is NOAA’s current operational NWP system, and it 
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uses ground-based radar to initialize convection over the CONUS domain (Benjamin et al. 
2016). However, NOAA is in the process of updating its NWP models to use the Unified 
Forecast System (UFS) framework (Alexander et al. 2020, Back et al. 2022). When completed, 
the HRRR model will be replaced by the Rapid Refresh Forecast System (RRFS), which covers a 
much larger area, most of which lacks ground-based radar coverage. Therefore, geostationary 
(GEO) satellite products will be key to initializing and assessing the RRFS system. This is made 
possible by the high spatial resolution (2 km) and rapid temporal refresh (10 minutes) of the 
GOES-R Series. In addition, the GOES-R Series provides observations at more wavelengths, 
particularly in the near-infrared, which have become popular with National Weather Service 
(NWS) forecasters for severe weather applications in the form of the Day Cloud Phase RGB 
product (Connell et al., 2020). The GOES-R Series also provides lightning mapping capabilities, 
which I will show are crucial for this specific application, using a combination of Explainable AI 
and Interpretable AI techniques. The hypothesis of this dissertation is that by leveraging the 
power of ML, GOES-R capabilities can be used to provide “radar everywhere” for initializing 
convection in high-resolution NWP models. Note that even over CONUS, in regions of complex 
terrain and sparsely populated areas, there are gaps in radar coverage where GOES-R-based 
estimates of synthetic radar reflectivity can provide value to NWP and help alleviate social 
injustices resulting from uneven radar coverage. 
 
2. Background 
 
Currently, DA makes greater usage of microwave and infrared sounder observations from low-
Earth-orbiting (LEO) satellites (Lin et al. 2017) than GEO. Sounders have the advantage of 
providing more vertically resolved information than imagers but have the disadvantage that LEO 
satellites provide coarse temporal resolution (e.g., twice per day) and longer latency that can 
reach 1.5 h or more. Thus, there is an opportunity for operational DA to benefit from the high 
volume of low-latency complementary data coming from the constellation of GEO imagers. 
While DA for convective-scale NWP has made steady scientific advances (Gustafsson et al. 
2018), all-sky assimilation of infrared radiances has yet to be demonstrated operationally (Geer 
et al. 2018). That means the most dynamically interesting areas where precipitation is occurring, 
which have significant impacts on human activities, are also areas with the least amount of data 
to constrain estimates of the current atmospheric state. The current state-of-the-art for utilizing 
satellite observations in NWP is radiance assimilation (RA). Zhang et al. (2018, 2019) and Jones 
et al. (2020) have demonstrated RA using GOES-16 Advanced Baseline Imager (ABI). RA has 
the advantage of being physically based, which aids interpretation, although the use of 
background error covariances (BECs) estimated from ensembles means that GOES observations 
do not always clearly map into DA increments. The usage of RA is complicated by different 
assumptions that need to be made regarding how to inflate observation and background errors 
and how to weight information in the vertical. Moreover, errors in model microphysical and 
radiative transfer (RT) parameterizations will be inherited by RA, and the land surface is relevant 
to the interpretation of window channels. A limitation of RA is that it does not provide a means 
for assimilating lightning observations, so an observation operator is required to convert 
lightning observables into control variable increments (Kong et al. 2020, Apodaca and Zupanski 
2018). Finally, a fundamental limitation of RA for infrared radiances is that information content 
saturates in cloudy and precipitating pixels through production of abundant cloud ice particles in 
convective cores and their horizontal spreading by wind shear (Grasso and Greenwald 2004). For 
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example, the maximum optical depths retrieved by GOES ABI are 160 and 8 during day and 
night (Walther et al. 2013), which roughly correspond to composite reflectivity (REFC) values of 
20-25 dBZ for daytime and 0-5 dBZ at nighttime (Rutledge et al. 2020). This truncated 
sensitivity is also an issue for pixelwise physically based cloud retrievals (Jones et al. 2015). 
 
ML provides three significant benefits with the potential to “disrupt” RA. The first benefit is that 
Convolutional Neural Networks (CNNs) can capture the information content in multi-scale 
image gradients (Hilburn et al. 2021a), thereby improving on the radiance saturation problem 
present in pixelwise RA. I will demonstrate that gradient information can provide reliable 
information up to REFC of about 50 dBZ. Note that this represents an entirely new source of 
information, which is currently going unused in DA systems. A key aspect of this dissertation 
will be understanding the nature of spatial information content, which gives CNNs their 
seemingly “magical” ability to mimic human interpretation of satellite imagery. The second 
benefit of ML is that it provides a convenient framework for performing data fusion, which 
makes it possible to utilize radiance and lightning observations simultaneously. In fact, I will 
demonstrate that the interaction between information in radiances and lightning combine to 
provide more skill than the sum of its parts. Finally, the third benefit is that ML provides a 
computationally efficient implementation for utilizing remotely sensed data. This is crucially 
important because of limited time during the operational production cycle and the cost of 
complex scattering calculations in RT parameterizations is prohibitive for operational NWP. 
 
Traditional (non-ML) retrieval techniques tend to either treat individual satellite pixels as being 
independent or they make use of simple spatial information, such as the standard deviation in a 
neighborhood (Grecu and Anagnostou 2001, Olson et al. 2001). Even simple spatial information 
can improve predictions, for example in classifying raining pixels over cold surfaces 
(Kummerow et al. 2001). Convolutional ML approaches capture multi-scale spatial information, 
which is an important factor in their ability to outperform traditional methods (Guilloteau and 
Foufoula-Georgiou 2020). This is typically accomplished using pooling layers, which subsample 
the input images by a factor of two along each dimension. In doing so, the ML forms an image 
pyramid (Burt and Adelson 1983, Adelson et al. 1984), which provides a multi-scale 
representation. Section 3 will elaborate on the role of image pyramids in ML. 
 
Criticisms of ML are that (a) it provides “black box” models that are difficult to understand, (b) 
does not generalize well to data outside of the training set, and (c) provides temporally 
inconsistent predictions. These are all valid criticisms, and an important aspect of the dissertation 
research is in addressing these issues. The first issue regarding understanding ML model 
predictions can be addressed in two ways, both of which are used in this research. One way is to 
use Explainable AI (XAI) techniques (Ebert-Uphoff and Hilburn 2020, McGovern et al. 2019), 
which are methods that are applied to trained ML models to provide information about which 
parts of the input images are most influential in the prediction. There has been an explosion of 
research in XAI in recent years, and it has become apparent that not all XAI methods are equally 
trustworthy (Mamalakis et al. 2022). The other way is to use Interpretable AI (IAI) techniques, 
which focus on building the explainability into the model right from the start, before the model 
has been trained. Chapter 2 of the dissertation will develop an IAI model, which is crucial for 
gaining a thorough understanding of exactly what information is present in the “spatial context” 
utilized by CNNs. The second issue is regarding the abilities of ML models to generalize to 
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unseen data, or what has been referred to as “Brittle AI” (Heaven 2019). In a classical linear 
regression framework, this can be seen as a case of covariance shift between the training data 
and the data used for predictions (Simon Pfreundschuh 2022). The dissertation will address this 
issue using a hierarchy of datasets, described in Section 3, and by evaluating ML predictions 
using datasets that were unseen during training. The third issue regrading temporal consistency 
of predictions has been referred to as “Twitchy AI” (Flora 2021). Defining what is meant by 
“temporal consistency” is challenging, but we have developed some approaches (Section 3). It 
will be addressed through assessing scales of spatial and temporal variability for a hierarchy of 
models, ranging from linear regression to CNNs. This is a difficult but important issue to address 
in order to use ML predictions for applications such as nowcasting, where the temporal trends of 
the predictions are important to a human forecaster’s decision making. 
 
3. Data and Methodology 
 
Table 1 provides a list of the datasets, where GOES data serve as the inputs and MRMS data 
serve as the outputs. GOES-16 is used for training, but GREMLIN1 predictions from GOES-18 
will be evaluated once it has moved into West position in June 2022. The GPM DPR data will be 
used for validation over the ocean, and the code has already been developed to process DPR 
reflectivity profiles into composite reflectivity maps. The use of HRRR and GFS fields is 
described in Section 4. All fields are resampled to a common grid, as described in Hilburn et al. 
(2021a). The justification for including these ABI channels is given in Hilburn et al. (2018). 
Lightning data must also be accumulated in time, and a 15-minute period was found to give the 
best results by reducing the flickering in stratiform regions produced using shorter periods. 
Lightning “groups” are more spatially extensive than “flashes” and have higher spatial 
correlation with radar reflectivity. The value of lighting area for better distinguishing convective 
from stratiform echoes was described in Hilburn et al. (2021b). 
 

Table 1. List of datasets used in this research. 
Data Source Parameter 

GOES ABI 

C02 0.64 µm Red Visible 

C05 2.2 µm Cloud Particle Phase/Size 

C07 3.9 µm Shortwave IR Window 

C09 6.9 µm Mid-level Water Vapor 

C13 10.3 µm Clean Longwave IR Window 

GOES GLM 
Lightning Group Extent Density 

Lightning Group Area 

MRMS 
Composite Reflectivity 

Convective/Stratiform/Frozen Precipitation Flag 

GPM DPR Composite Reflectivity 

HRRR Temperature and Relative Humidity at 850, 750, 500, and 300 hPa 

GFS Temperature and Relative Humidity at 850, 750, 500, and 300 hPa 

 
1 GOES Radar Estimation via Machine Learning to Inform NWP 
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After resampling, the fields must be matched in time and collected into a form suitable for ML 
training. This includes quality control, handling missing data areas, scaling the variables, and 
splitting training, testing, and validation datasets. The resulting ML datasets are listed in Table 2. 
The first dataset, CONUS1, was constructed by hand (with help from Alex Libardoni) to provide 
a sampling of severe storms maximizing diversity in location, time-of-day, and convective mode. 
A subset of this dataset, along with a “toy” version of GREMLIN was shared with Jamin Rader 
for use in his ML class project. The second dataset, CONUS2, provides a sampling of warm 
season convective storms that were selected in an automated fashion based on storm reports. The 
first two datasets are storm-centered, while the latter two datasets cover all of CONUS. A subset 
of the CONUS3 dataset was already used by Eric Goldenstern (2022) for his master’s thesis. 
Finally, CONUS4 was prepared to transition GREMLIN from a 3 km grid to a 2 km grid. 
GREMLIN predictions will be made over the portion of the Full Disk (FD) that has GLM 
coverage (about 2/3rds), but the training will be restricted to the CONUS portion of the FD. 
 

Table 2. List of ML datasets produced by this research. 

Dataset Number of Images Image Size Grid Construction Reference 

CONUS1 225 256 x 256 HRRR 
3 km Manual Hilburn et al. 

(2019) 

CONUS2 1,800 256 x 256 HRRR 
3 km Storm Reports Hilburn et al. 

(2021a) 

CONUS3 35,040 
per year 1799 x 1059 HRRR 

3 km 
Every 15 
minutes 

Hilburn et al. 
(2020) 

CONUS4 35,040 to 52,560 
per year 

4660 x 2678 
(3072 x 1536) 

ABI FD 
2 km 

Every 10-15 
minutes 

Hilburn et al. 
(2021b) 

 
This ML application takes images as inputs and returns images as outputs, making this an image-
to-image transition problem. A model architecture in the U-Net family (Ronneberger et al. 2015) 
is an ideal choice for this type of problem, and the details of Version-1 GREMLIN architecture 
are depicted in Figure 2 left panel. The model was fit using TensorFlow with a weighted mean 
squared error (MSE) loss function. The weighting was found to be necessary to compensate for 
imbalance in the output quantity, since radar reflectivity follows an exponentially decreasing 
probability distribution function, using an unweighted MSE produces strong underprediction at 
high radar reflectivity values. The weights were tuned to minimize the categorical bias (Wilks 
2006) across radar reflectivity bins, which produces a performance diagram (Roebber 2009) that 
falls along the 1:1 line. This means that the model is balancing underprediction with 
overprediction across the range of radar reflectivity values, which I found subjectively produces 
the most realistic looking output images. Baseline performance statistics for the warm season are 
RMSD = 5.53 dBZ, R2 = 0.740, and 35 dBZ CSI = 0.33. 
 
After training GREMLIN, the question becomes how does the model make these skillful 
predictions, and where/when can we trust the predictions? To gain insight, I’m using the XAI 
technique called Layerwise Relevance Propagation (LRP, Bach et al. 2015, Montavon et al. 
2018, Lapuschkin et al. 2019, Toms et al. 2019), which reveals where in the inputs (which pixels 
in which channels) the neural network (NN) was primarily looking to derive the output pixel’s 
estimate. LRP was found to be particularly powerful when combined with ablation studies, that 
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is where certain capabilities of the NN are removed (and the model is retrained) to see their 
impact on the predictions. For example, one can “turn off” lightning by setting it to zero or turn 
off spatial context by replacing 3x3 filters with 1x1 filters. Using this methodology, it was found 
that GREMLIN predictions depend on three factors, in order: presence of lightning, strong 
brightness temperature gradients, and cold brightness temperatures. These are all physically 
reasonable strategies for the NN to employ in predicting radar reflectivity. However, the 
disadvantage of XAI is that it only provides insights, not guarantees. To get such guarantees 
about how the model will perform, I have developed an Interpretable GREMLIN. An 
interpretable model is one where the explainability is built in from the start, and this has the 
benefit of also clarifying exactly what is meant by “spatial context” and separating out the role of 
nonlinearity in producing skillful predictions. The key insight enabling Interpretable GREMLIN 
is that the U-Net architecture shown in Figure 2 left panel is equivalent to an image pyramid 
(Figure 2 right panel) and filter bank, which is the mechanism by which CNNs can capture 
multiresolution information content. Thus, this dissertation will demonstrate that the power of 
CNNs for remote sensing problems comes from three factors: multiresolution spatial context, 
gradients and spatial patterns, and nonlinearity. The development of an interpretable model 
consists of taking the work performed by the CNN “under the hood” and bringing it out into the 
open, as part of a data preprocessing stage. The number of actual pieces of information being 
considered in making predictions at each pixel are the product of the number of input channels, 
number of pyramid levels, and number of image kernels. GREMLIN Version-1 has four input 
channels and is four levels deep. While the GREMLIN CNN uses 32 kernels (filters) per layer, 
such a large filter bank of kernels is not necessary. The dissertation will demonstrate that the 
Interpretable model can reproduce the skill of the CNN using only four 3x3 kernels: identity, 
Sobel dx, Sobel dy, and Laplacian. Other problems, such as super-resolution, appear to require 
more kernels. Thus, the number of inputs to the interpretable model is 4*4*4 = 64. 
 

    
Figure 2. (Left) GREMLIN model architecture where number of parameters are given under the 
blue arrows and image sizes are shown in green boxes. (Right) Image pyramid corresponding 
to GREMLIN. 
 
Given those inputs to the interpretable model, we still need a regression framework for making 
the predictions. Two approaches are used. First is to use a fully connected dense NN, which 
serves as a nonlinear function approximator. Using this approach is a quick way to confirm that 
indeed, the interpretable model can reproduce the skill of the CNN, and in some cases even 
performs better. However, a dense NN is not very interpretable, and so the second approach is to 
replace that with a linear model. Linear models represent the gold standard of interpretability 
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because given a set of inputs, the weights of the model tell you exactly how much each input 
contributes to the output, and that is why human forecasters still make use of linear models (e.g., 
the Statistical Hurricane Intensity Prediction Scheme, SHIPS, DeMaria 2022). Given that the 
ability to represent nonlinearity is an important contributor to ML skill, a linear regression must 
include terms to represent nonlinear functions. It was found that GREMLIN skill could be 
reproduced with a model of the form 

 

(1) 

where n is the number of inputs. This model includes linear functions of each input, two-way 
interaction terms, and quadratic functions of each input. The number of terms in this model is 
given by 𝑁 = 𝑛 + 𝑛(𝑛 + 1) 2⁄  = 2144 for 64 inputs. The standard (e.g., scipy.linalg.lstsq) 
approach to solving the generalized least squares problem is through applying singular value 
decomposition to the normal equations. However, this involves inverting a matrix that has the 
shape of the number of inputs (64) by the number of data points (8e+7 for CONUS2), which 
produces memory exhaustion. The standard approach for linear regression when the dataset is 
too large for memory is Stochastic Gradient Descent (e.g., sklearn.linear_model. 
SGDRegression.partial_fit). However, this was found to be prohibitively slow, and many 
passes over the dataset are required for convergence. Thus, the approach used to solve Equation 
(1) is employing the linear minimum mean squared error (MMSE) estimator. From the 
orthogonality principle (Papoulis and Pillai 2002), the solution of (1) is given by 

 
(2) 

where Cx is the autocovariance matrix and Cyx is the cross-correlation matrix. Note that the 
memory required goes as the number of inputs and does not depend on the number of data 
points. These matrices can be calculated with just one pass over the data, accumulating the sums 
of xi, y, xi xj, and y xi for inputs i,j. This approach also has the advantage that ablation studies can 
be conducted without needing to re-fit the model: you simply drop the rows and columns in Cx 
and Cyx for the inputs you want to remove and recalculate w using (2). One might raise the 
question whether this type of model is properly called “machine learning”. I would argue that 
this approach can be considered to be the simplest form of machine learning, and that calculating 
the sums required to solve for the weights in (2) can only be performed by machine. One 
important difference with ML is that this approach does not have an optimizer since weights are 
calculated explicitly, rather than through an iterative process. 
 
One aspect of the MMSE approach is that it allows us to observe that the autocovariance matrix 
is nearly singular. This shouldn’t be entirely surprising given the correlation between different 
infrared channels on ABI and the correlation between different levels of the image pyramid. To 
what degree this can explain the limitations of ML noted in Section 2 is an open question. 
Reducing the number of inputs does reduce the condition number and increase the determinant, 
but also produces a significant loss of skill. Is it possible that use of numerous inputs provides 
value through a “Wisdom of Crowds” (Tetlock and Gardner 2015) ensemble averaging 
mechanism? 
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For initializing NWP, three-dimensional fields of radar reflectivity are required. I’m treating this 
problem as separable, where GREMLIN is used to derive horizontal maps of composite (vertical 
maximum) radar reflectivity, and a separate model is used to specify the vertical profile. The 
profile model uses the composite reflectivity to set the scale (maximum value) of the profile and 
determines the shape of the profile based on the composite reflectivity, the C13 brightness 
temperature, and whether the pixel is convective or stratiform. This model was derived and 
validated by Lee et al. (2022) but the details are outside of the scope of my dissertation. 
 
The GREMLIN technique was originally developed for the purpose of initializing convection in 
NWP, which is the mechanism in HRRR. However, in the next generation of modeling systems, 
actual assimilation of radar reflectivity using BECs from ensembles is being considered. In that 
situation, uncertainty estimates become important, allowing the modeling system to blend 
between actual radar data and this synthetic radar data, based on the uncertainty. Moreover, it is 
clear that in certain situations (e.g., hurricane central dense overcast) there is simply little to no 
information content, and ideally our model would be able to flag situations where estimates lack 
information content. Initial results using a log likelihood loss function (Barnes and Barnes 2021) 
in GREMLIN produces uncertainty estimates that scale with the magnitude of the predictions. 
On one hand, these results make sense (e.g., Tian et al. 2013), however, even though convective 
echoes have high values, GREMLIN predictions are often very good. Meanwhile stratiform 
echoes typical have low to mid-range values but can be very uncertain due to a lack of cloud top 
information. It is possible that accounting for the non-Gaussian character of radar echoes using 
the approach in Barnes et al. (2021) might improve these results. Another potential approach is 
to screen scenes based on the magnitude of texture in the scene (Goldenstern 2022). One 
important test that uncertainty estimates should meet is whether conditioning the ML predictions 
on the uncertainty results in improved performance statistics. 
 
Errors are typically characterized with a norm such as the mean squared error, but this only tells 
us about the accuracy in a mean sense and does not tell us whether the predictions have temporal 
variability that is consistent with the truth dataset. Hilburn et al. (2021c) assessed temporal 
consistency using a combination of time-histograms over limited areas and using Fourier 
Transforms. The time-histogram approach is useful for assessing individual storms, because if 
the area-of-interest becomes too large, jumpiness in different parts of the image can “cancel out”. 
The Fourier approach is good for a global characterization of spatio-temporal characteristics and 
shows that MRMS has more small-scale “noise”, while GREMLIN has more temporal variability 
on larger spatial scales. Examining loops of GREMLIN predictions shows that it can exhibit 
jumpy (on/off) behavior, particularly in stratiform areas. While that jumpiness could be due 
lightning, which naturally has jumpy temporal behavior, the jumpy behavior has been observed 
in areas without lightning as well. This inconsistency is less important for DA applications, 
however getting accurate time variability is important for nowcasting applications where 
meteorologists examine time trends in radar observables. The dissertation will examine temporal 
consistency of GREMLIN predictions and evaluate how that depends on model complexity (i.e., 
type of model and the number of parameters), whether certain inputs are primarily responsible 
for jumpy behavior, and whether there is evidence for noise amplification by nonlinearity. Initial 
results indicate the linear model is more temporally consistent than the CNN. Temporal 
consistency is an important metric for determining the fitness of a method for certain 
applications, but it is an area of ML that has received little attention until recently. Some of the 
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latest nowcasting models (e.g., Ravuri et al. 2021) incorporate temporal consistency into the loss 
function, which is an approach that may be considered. 
 
4. Research Plan 
 
This section outlines the dissertation content, describing the planned research and explaining 
how each step contributes to the outcome. 
 
• Chapter 1: GREMLIN Proof-of-Concept 

o Can ML be used as an observation operator to assimilate/initialize GOES-R 
observations in convection allowing models in cloudy/precipitating scenes? What are 
the results from retrospective forecasts assimilating GREMLIN (in place of MRMS) 
in the RRFS? Where does GREMLIN have the largest impact? 

o How does GREMLIN make skillful predictions? What XAI tools are best for image-
to-image translation problems? How can additional tools such as ablation studies and 
synthetic datasets be used to evaluate models? 

o Why is the loss function so important? How do you use the loss function to focus the 
attention of the network on the most important aspects of one’s dataset? 

 
• Chapter 2: Interpretable GREMLIN 

o What exactly is the “spatial context” that CNNs utilize to make skillful predictions? 
How does one know where there is sufficient spatial information to trust predictions? 
How do I interpret the nearly singular covariance matrix of GREMLIN inputs, and 
what implications does that have for interpretability, generalizability, and predictor 
importance assessments? 

o What are the relative contributions of different channels (ABI vs GLM), 
multiresolution information (pyramid levels), image gradients (kernels), and 
nonlinearity to GREMLIN skill? 

o How does the temporal consistency of GREMLIN CNN compare to the temporal 
consistency of Interpretable GREMLIN linear model relative to an MRMS baseline? 
What conclusions can I draw regarding the potential of GREMLIN to be used for 
nowcasting applications? 

 
• Chapter 3: Global GREMLIN Validation 

o Does GREMLIN perform similarly on the 2 km FD grid as the 3 km HRRR grid? 
How important are additional GOES inputs from C02, C05, and lightning area? Does 
inclusion of NWP fields of humidity and temperature improve false alarms that occur 
for GREMLIN in winter scenes? 

o Can I see evidence of a covariance shift between land and ocean scenes? Does 
validation using DPR-derived composite reflectivity provide evidence that 
GREMLIN is trustworthy over the ocean? Are any changes to lightning accumulation 
period required over the ocean where lightning is relatively less frequent? 

o How does GREMLIN skill vary as a function of precipitation type (convective vs 
stratiform) and as a function of scale (mesoscale vs synoptic scale)? Are validation 
results consistent with uncertainty estimates made by GREMLIN? 
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5. Work Plan  
 
I am working on my dissertation at a level commensurate with 7-8 credits per semester. Chapter 
1 of the dissertation has been published (Hilburn et al. 2021a). Chapter 2 is in preparation and 
will soon be submitted for publication (May 2022). Chapter 3 research will be conducted 
Summer 2022-Spring 2023 with planned submission date May 2023. Two key aspects 
supporting the feasibility of this work are: 1) GOES data archive at CIRA, and 2) high 
performance computing resources at NOAA. 
 
6. Expected Benefits 
 
The research conducted for this dissertation will have several expected benefits. The first benefit 
will be to increase and improve utilization of GEO observations, thereby enhancing the value of 
the investments in GOES-R made by NOAA. Even over CONUS, there are locations with gaps 
in radar coverage, and there are cases where radars “go down” during periods of interesting 
weather, and GREMLIN can provide forecasters information in those cases. The second benefit 
will be to demonstrate the ability of ML to improve operational DA through improved utilization 
of remotely sensed observations. This is expected to improve NWP forecasts of high-impact 
weather hazards because of the high spatial- and temporal-resolution information required to 
correctly forecast these situations. The third benefit will be to provide an explanation for the 
basis of ML to make better use of remotely sensed observations than traditional techniques, 
thereby supporting development of interpretable and trustworthy AI models. Improved 
understanding of spatial context in ML can foster development of advanced algorithms for other 
phenomena, such as dust detection, gravity waves, and cloud properties (Miller et al. 2017, 2015, 
2014). And finally, this dissertation will publish (with DOIs) the datasets developed for this 
research in CSU Digital Repository (Mountain Scholar), which will support and encourage 
additional ML research in the atmospheric sciences. 
 
7. Budget 
 
Kyle Hilburn’s GREMLIN research is supported by the GOES-R Program through the project 
“Assimilating GOES-R Latent Heating in FV3 using Machine Learning”, funded through 2019 
NASA ROSES A.33 Solicitation NNH19ZDA001N-ESROGSS: Earth Science Research from 
Operational Geostationary Satellite Systems. Period of performance: 11/01/2020 – 10/31/2023. 
Award number: NA19OAR4320073. Principal Investigator: Kyle Hilburn. 

Kyle Hilburn’s Linux Workstation, used for data download, preparation, and running real-time 
GREMLIN predictions, was purchased with funding from the project “CIRA Support to 
Connecting GOES-R with Rapid-Update Numerical Forecast Models for Advance Short-Term 
Prediction and Data Fusion Capabilities” supported by GOES-R Program Office. Principal 
Investigator: Christian Kummerow. 

I thank NOAA RDHPCS for access to the Fine Grain Architecture System on Hera, without 
which this research would not be possible. GREMLIN training was performed on Hera. 

My tuition and fees are partly (45%) supported by CSU Employee Study Privilege. I thank Steve 
Miller for covering the remainder of my tuition and fees using his Start-Up Package.  
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1. Overview and Goals 
Extensive land cover changes (LCC) in the tropics are driven by anthropogenic activities 

like deforestation (Fig. 1), agricultural expansion, and urbanization (Lambin et al. 2003; 
Turubanova et al. 2018). These perturbations propagate to the atmosphere via surface energy, 
moisture, and momentum budgets (Mahmood et al. 2014). Where LCC coincide with strong 
land-atmosphere coupling—as in the tropics, where much convection is driven by mesoscale 
flows sensitive to surface properties (Yang and Slingo 2001)—they exert as strong an influence 
on atmospheric temperature as CO2 concentrations do (Pitman et al. 2009; Avila et al. 2012).  

Quantifying how LCC impact 
clouds, precipitation, and radiation 
is difficult given the complex, non-
linear interactions involved (Laguë 
et al. 2019; Drager et al. 2022). LCC 
often occur alongside changes to 
aerosols (Heald and Spracklen 2015) 
that further modify the surface 
energy budget (Grant and van den 
Heever 2014; Park and van den 
Heever 2022). Land-aerosol-cloud 
interactions further vary due to 
differences in meteorology (Findell 
and Eltahir 2003a; Lawrence and 
Vandecar 2015). As a result, disagreement exists not only about the magnitude of LCC impacts 
on convection, but also their overall sign (Chen and Avissar 1994; Takahashi et al. 2017).  

With current scientific understanding, it is difficult to determine even whether a given LCC 
would likely lead to increases or decreases in precipitation, much less how this might vary in 
different regions. Such answers are crucial to fully assess the impact of anthropogenically-driven 
LCC on the earth system. Local impacts on clouds and precipitation are important, as almost half 
the global population lives in the tropics (Kummu and Varis 2011). Furthermore, tropical clouds 
are an essential driver of global circulations and hold outsized importance for global climate 
(Riehl and Malkus 1958). It is therefore essential to quantify the impacts of LCC on clouds 
across environments and improve our understanding of the processes driving these impacts. 

As such, this work seeks to describe how the impacts of land surface perturbations on 
tropical convection varies across thermodynamic and aerosol environments. We will use 
both satellite observations and idealized simulations to answer three science questions (SQs):  
SQ1: Which individual or combined surface properties are the primary drivers of tropical land 

surface-cloud interactions and their impacts on precipitation and radiation? 
SQ2: How do aerosol concentrations and radiative characteristics modulate land surface 

impacts on convection? 
SQ3: What are the key meteorological parameters affecting land-aerosol-cloud interactions? 

 
Figure 1. Fraction of forest cover in (a) 2000 and (b) 2020. The three 
boxed regions are frontiers of tropical deforestation (west to east: the 
Amazon, the Congo, and Southeast Asia). Data from UMD Global 
Forest Change dataset (Hansen et al., 2013). 
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2. Background 
2.1. Land Surface-Cloud Interactions 

The surface energy budget is a balance between 
net radiation and surface heat fluxes (Fig. 2a) 
(Mahmood et al. 2014; Gentine et al. 2019). LCC can 
change this budget first by modifying the net radiation 
at the surface: increasing albedo (brighter surface, e.g., 
dark forest to bright concrete) increases reflected 
shortwave radiation. Second, surface properties 
control the partition of sensible to latent heat fluxes 
(Bowen ratio): decreasing evaporative resistance 
(more moisture, e.g., broadleaf to needleleaf trees) 
increases latent heat flux at the expense of sensible 
heat flux. Finally, surface properties shift the balance 
of radiation and heat fluxes: decreased roughness 
(smoother surface, e.g., tall buildings to short crops) 
hinders heat removal through turbulent fluxes in favor 
of radiating energy via outgoing thermal emission.  

Changes to the surface energy budget modify the 
atmosphere above the perturbed surface and even 
downstream (Davin and de Noblet-Ducoudré 2010). In 
particular, changes to surface fluxes can have critical impacts on the formation and development 
of convection. Clouds that form then shield the surface from incoming radiation and trap 
outgoing radiation, further modifying the surface energy budget. Due to these feedbacks, the 
cloud response to a given surface perturbation is not straightforward. A decrease in soil moisture 
(Fig. 2b) may reduce latent heat fluxes and moisture (suppressing convection), but this is 
compensated by increased sensible heat fluxes and instability (supporting convection) (Chen et 
al. 2019). Because of this sensitivity to the partitioning between heat fluxes, the net convective 
response depends to some extent on cloud type. Deep, precipitating clouds driven by large-scale 
forcing tend to be less impacted by surface perturbations compared to shallow, non-precipitating 
clouds, which can still be important for surface radiation (Baidya Roy and Avissar 2002; Gentine 
et al. 2019). LCC may promote the development of shallow clouds into deeper ones (Cioni and 
Hohenegger 2017), though research into this is relatively limited. Simulations with detailed 
representations of cloud physics and land surface-cloud processes are required to assess the 
impact of a given LCC on the cloud field and its precipitation and radiative effects. 

 
2.2. Establishing mechanisms behind land surface-cloud interactions 

Incorporating the cloud response to surface perturbations in numerical models is 
increasingly important as LCC accelerates (Lambin et al. 2003) and plays a growing impact on 
weather and climate (Schneider et al. 2019; Pongratz et al. 2021). However, representing these 

 
Figure 2. Conceptual diagram illustrating how 
land surface and aerosol perturbations influence 
the surface energy budget. The surface energy 
budget (a) is a balance between net radiation 
(Rs=net shortwave + net longwave), latent heat 
fluxes (LHF), sensible heat fluxes (SHF), and 
heat storage (G; negligible for land over long 
timescales). (b) shows how a surface 
perturbation can drive contrasting feedbacks on 
clouds depending on the surface energy budget 
partitioning (adapted from Chen et al. 2019).  
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interactions is non-trivial, and understanding the processes driving convective responses to LCC 
is crucial. Most models represent LCC as a step change between categories (e.g., cropland to 
urban, forest to bare soil). In reality though, LCC influence many distinct properties at the same 
time (Davin and de Noblet-Ducoudré 2010; Grant and van den Heever 2014; Laguë et al. 2019).  

The impacts of each surface parameter on convection are complex, even in the simplest 
case where only one parameter is changed (e.g., intensifying irrigation leading to increased 
surface moisture). Recent work by Drager et al. (2022) showed isolated perturbations to soil 
moisture drive non-monotonic changes to rainfall, implying that a step change in surface 
moisture—as is commonly used in modeling—may not capture the true precipitation response.  

To further complicate the matter, interactions between parameters are possible, either 
dampening the atmospheric response to LCC (Bell et al. 2015; Takahashi et al. 2017; Duveiller 
et al. 2018) or heightening it (Grant and van den Heever 2014; Laguë et al. 2019). The specific 
combinations of surface properties involved in a given LCC are therefore important. Even 
studies on the same LCC over the same region can give opposing results depending on which 
properties are represented (e.g., Schneck and Mosbrugger 2011; Takahashi et al. 2017), and it is 
difficult to determine which is most credible. This complexity also means it is not clear whether 
mechanisms driving cloud responses from a given LCC can be applied across the board. For 
example, Chen et al. (2019) found decreased roughness length due to deforestation tends to 
increase precipitation, whereas Dado and Narisma (2019) found increasing roughness length due 
to urbanization tends to increase precipitation as well.  

Without separately perturbing surface properties over the full parameter space, it is 
impossible to isolate which property or combination of properties is responsible for—and what 
physical processes are involved in—changes to the cloud field. This leads to our first science 
question: Which individual or combined surface properties are the primary drivers of tropical 
land surface-cloud interactions and their impacts on precipitation and radiation? We hypothesize 
that convection is more sensitive to non-radiative surface parameters (e.g., surface moisture 
availability, roughness length) than to radiative ones (e.g., albedo) in the high-radiation tropics. 
Surface radiation is most sensitive to roughness length via impacts on shallow clouds driven by 
thermals, whereas precipitation is most sensitive to synergistic interactions between moisture 
availability and roughness length that support the transition from shallow to deeper convection.  

 
2.3. Aerosol Impacts on Land Surface-Cloud Interactions 

Perturbations to the land surface tend to coincide with changes to the aerosol environment 
(Heald et al. 2008; Heald and Spracklen 2015). Drivers of LCC may drive transient aerosol 
perturbations, as when wildfires clear forested land and emit smoke (Tosca et al. 2011; Sena et 
al. 2013). LCC can also lead to persistent changes in aerosol magnitude and type. For instance, 
urbanization is associated with combustion-related aerosol, while bare soil is susceptible to dust 
lofting (Wu et al. 2012; Heald and Spracklen 2015; Bukowski and van den Heever 2022).  

Aerosols modify clouds both through microphysics (indirect effect) and radiation (direct 
effect) (Twomey 1977; Albrecht 1989; Tao et al. 2012). Taken separately, aerosol perturbations 



Environmental Controls on Tropical Land-Aerosol-Cloud Interactions 
Leung, G.R. – Ph.D. Prospectus 

4 of 10 

and LCC can influence clouds to a similar order of magnitude (Grant and van den Heever 2014; 
Schneider et al. 2019). In combination, aerosol-cloud interactions can either dampen or amplify 
surface impacts on convection (Ten Hoeve et al. 2011; Grant and van den Heever 2014; Park and 
van den Heever 2022), though the factors controlling these interactions are understudied. 

There is abundant observational and modeling evidence of the microphysical impacts of 
aerosols on cloud lifetime, rain onset and duration, and precipitation efficiency (e.g., Berg et al. 
2008; Li et al. 2013; Altaratz et al. 2014; Dagan et al. 2015). Surface perturbations associated 
with cities have been shown to change the likelihood of cloud formation; clouds that do form can 
subsequently be impacted by emissions of urban aerosol particles, which act as additional cloud 
condensation nuclei (CCN) and lead to changes in cloud and storm characteristics (van den 
Heever and Cotton 2007; Carrió et al. 2010; Sarangi et al. 2018). 

Aerosol particles also lead to the extinction of downwelling radiation and change the 
surface energy budget (Fig. 2a) (Jiang and Feingold 2006). This can dampen cloud responses to 
surface perturbations, as shown by Park and van den Heever (2022) for soil moisture. The extent 
to which the surface energy budget is impacted depends on aerosol loading, since synergistic 
interactions between moderate surface and aerosol perturbations can lead to the opposite cloud 
response versus perturbing them separately (Grant and van den Heever 2014). Aerosol type also 
matters for the surface energy budget. Particles like ammonium sulfate primarily prevent 
radiation from reaching the surface through scattering, thereby reducing the flux of radiation into 
the surface. On the other hand, particles such as black carbon and dust do reduce incoming 
shortwave radiation, but simultaneously absorb and reemit longwave radiation back towards the 
surface (and atmosphere)—in that case, aerosol impacts on the net surface radiation may be 
smaller due to competing shortwave and longwave effects (Zhang et al. 2008; Lee et al. 2014).  

Given that aerosol and land surface perturbations are often concurrent, it is valuable to 
understand the relative magnitude of their impacts and how the two interact. This leads to our 
second science question: How do aerosol concentrations and radiative characteristics modulate 
land surface impacts on convection? We hypothesize that aerosol impacts on land surface-cloud 
coupling are non-monotonic. Moderate aerosol loadings (i.e., middle tercile of observations) 
enhance surface influence on clouds through synergistic interactions, while extreme aerosol 
loadings (i.e., top tercile of observations) diminish the importance of surface properties by 
reducing insolation. These impacts are stronger for scattering than for absorbing aerosol since 
the latter’s shortwave and longwave effects on net radiation partially compensate.  

 
2.4. The Influence of Background Meteorology  

Although LCC happen all over the tropics, their impacts are not always the same across 
locations. The few existing studies examining LCC at global scales show that differences in 
background meteorology across regions drive different emergent responses to LCC (Davin and 
de Noblet-Ducoudré 2010; Seneviratne et al. 2010; Winckler et al. 2017). Understanding the 
environmental dependence of land-aerosol-cloud interactions is therefore important to 
identifying where and when LCC and associated aerosol perturbations have the most influence.  
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The thermodynamic environment varies substantially from region to region, even within 
the tropics. Though the Amazon, the Congo, and Southeast Asia have similar tropical rainforests 
(Fig. 1), their distribution of key environmental parameters is different (Fig. 3). This may 
explain discrepancies in past studies about the precipitation response to deforestation. 
Deforestation in the Congo has been shown to drive decreased rainfall, while the opposite is true 
for Southeast Asia. It is possible that 
once forests are removed as a moisture 
source, the air in the Congo is 
otherwise too dry (Fig. 3d) to support 
rain formation, whereas most of 
Southeast Asia is close enough to 
oceans that additional moisture can be 
fluxed in (Lawrence and Vandecar 
2015; Winckler et al. 2017). Other 
studies have similarly shown that the 
precipitation response to urban growth 
depends strongly on whether a city is 
coastal or inland (Zhang et al. 2022).  

Meteorology also varies 
substantially between seasons, 
especially in monsoon regions. 
Multiple studies have noted the impacts 
of LCC such as deforestation or 
urbanization depend on the season as a 
response to changes in humidity 
throughout the column (Durieux et al. 
2003; Ten Hoeve et al. 2011; Lazzarini 
et al. 2015). This further points to 
environmental-dependence of land-
aerosol-cloud interactions. 

Though not much is known about 
the environmental sensitivities of 
convective responses to surface 
perturbations in general (as opposed to specific types of LCC), most of what research does exist 
revolves around the wet/dry soil advantage problem (i.e., does it rain more over wet or dry 
soils?). Dry soils support stronger sensible heat fluxes, which trigger rain by deepening the 
boundary layer until it reaches the level of free convection. On the other hand, wet soils support 
stronger latent heat fluxes and moister boundary layers, which can lower the lifted condensation 
level to trigger convection more easily. Which mechanism prevails appears to depend on 
environmental properties such as near-surface temperature, low-level humidity, and the ratio of 

 
Figure 3. Probability distributions of monthly mean environments 
for three tropical forests: (a) convective available potential energy 
(CAPE), (b) convective inhibition (CIN), (c) wind speed shear 
from 1000-700 hPa, (d) mean low-level potential temperature (q), 
(e) mean low-level relative humidity (RH), (f) q lapse rate, and (g) 
RH lapse rate. Low-level means (d,e) are taken from 1000-900hPa, 
and lapse rates are the mean from 1000-700hPa, Histograms are 
populated with bootstrapped estimates of the mean sampled 
(n=1000) from all land ERA-5 data (Dx=0.25º) for 2000-2020. 
Bounding boxes for each region are in Fig. 1.  
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potential temperature to moisture lapse rates (Findell and Eltahir 2003a,b; Gentine et al. 2013; 
Cioni and Hohenegger 2017). These factors, along with other variables such as vertical wind 
shear, also play a role in modulating cloud responses to aerosol perturbations (Lee et al. 2008; 
Carrió and Cotton 2011; Yamaguchi et al. 2019; Sokolowsky et al. 2022). 

The need to test the sensitivity of land-aerosol-cloud interactions across a range of 
thermodynamic conditions leads to our third science question: What are the key meteorological 
parameters affecting land-aerosol-cloud interactions? We hypothesize based on past literature 
that land-aerosol-cloud interactions are most sensitive to boundary layer humidity, followed by 
the low-level temperature and moisture lapse rates, then wind shear. LCC has the largest impact 
on clouds and precipitation when environmental conditions only marginally support convection 
(e.g., moderate CAPE or humidity). 
 
3. Proposed Work 

To address the uncertainties surrounding land-aerosol-cloud interactions and their 
environmental controls, a systematic assessment of such interactions is required in both real-
world scenarios and across the full range of potential environments. We therefore propose a 
combined satellite and modeling approach consisting of two primary tasks: 
Task 1: estimating the impacts of deforestation and aerosol loading on cloud properties across 

three tropical rainforest basins using satellite observations  
Task 2: describing mechanisms of and environmental controls on land-aerosol-cloud 

interaction using idealized LES ensembles and variance-based sensitivity analysis  
 
3.1. Impacts of land use and aerosol on cloudiness across regions from satellites 

For Task 1, we will use long-term, high-spatial resolution satellite data to estimate the 
impact of deforestation on cloud properties across three tropical rainforest regions: the 
Amazon, the Congo, and Southeast Asia. These three regions are major frontiers of tropical 
forest loss (Fig. 1), and also span a range of aerosol and thermodynamic environments (Fig. 3). 
Comparisons across the three regions will allow us to evaluate real-world atmospheric responses 
to a prevalent LCC while giving a sense of the potential variability in these responses. 
Interannual variability in cloud cover is difficult to separate from the cloud response following 
deforestation. However, it is still possible to estimate deforestation impacts given a sufficiently 
large sample size and an appropriate statistical method. 

Satellite data are well-suited to providing the large number of sample points needed. We will 
take annual forest extent and change from the UMD Global Forest Change (GFC) product 
(Dx=30m, annual coverage from 2000-2020, Fig. 1), which is derived from Landsat 7 Enhanced 
Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) imagery (Hansen 
et al. 2013). Over the same period, MODIS Terra and Aqua provide near-daily cloud, aerosol, 
and atmosphere measurements at four times spanning the diurnal cycle (Aqua: 1:30AM/PM, 
Terra: 10:30AM/PM) with relatively high spatial resolution (Dx=1km for cloud top height, cloud 
fraction, and near-infrared water vapor, Dx=3km for Dark Target aerosol optical depth (AOD), 
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Dx=5km for atmospheric profiles). The GFC forest cover will be scaled to the same resolution as 
MODIS measurements by taking the mean annual forest cover within each MODIS pixel, such 
that the two datasets can be collocated to create a sample population with millions of pixels. 

To separate the influence of surface changes from interannual variability, we will adapt a 
statistical method from Crompton et al. (2021). The “difference-in-differences” metric e for a 
given property (e.g., annual cloud fraction) describes the change following a deforestation event 
that can be attributed to that LCC and not interannual variability. Deforestation events will be 
identified in the GFC dataset as pixels which lose >50% of forest cover in a given year. Any 
changes in the cloud field can be quantified using the temporal difference around the 
deforestation event for a given property (DCdeforested=Cdeforested, y+1-Cdeforested, y-1). Nearby intact 
forest pixels may also experience cloud changes (DCcontrol=Ccontrol, y+1-Ccontrol, y-1), but these are 
due to other climatic variations (e.g., ENSO phase). The difference in cloud changes experienced 
by these two areas will thus be the change due to deforestation only (ec = DCdeforested - DCcontrol). 
One major assumption this depends on is that the control pixels are near enough to deforested 
pixels to experience the same variability in synoptic-scale meteorology, but far enough that they 
are not directly impacted by the surface perturbation. Crompton et al. (2021) defined this 
distance as pixels that are 10-25km away from any deforestation event, but we will also test the 
sensitivity of our results to the threshold used.  

Analysis has already 
been conducted for 
Southeast Asia (Fig. 4). 
We find deforestation 
leads to greater daytime 
cloud fractions and a shift 
to shallower clouds. This 
is consistent with Chen et 
al. (2019), which proposes 
reduced surface roughness 
and soil moisture due to 
deforestation drives 
anomalous moisture flux 

from the surrounding maritime regions to support clouds. We also find there is little to no change 
in nighttime clouds, as expected if the signal is indeed driven by solar heating.  

After repeating the above analysis for all three forest regions, we will address our science 
questions by sub-setting the sample using ancillary data to capture different environments. 
Compositing Fig. 4 according to AOD tercile addresses SQ2 on the aerosol modulation of LCC 
impacts. If our hypothesis is correct, the composite of pixels with AODs falling into the middle 
tercile of observations would have a magnified response (steeper slope of  !"

!#$%&'(	*$''
) versus the 

lower tercile, while the opposite would hold for the upper tercile. Similarly, compositing 
according to meteorological variables such as precipitable water and atmospheric stability will 

 
Figure 4. Estimated cloud response to mean forest loss in 1km radius for annual 
mean (a) cloud fraction (fraction of sky) and (b) cloud top height (m).  Different 
colored lines indicate swaths from different times of day. Dark line indicates the 
bootstrapped estimate of the mean (n=1000) and shaded area spans the 25th to 75th 
percent confidence intervals.  
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address SQ3 and determine which thermodynamic parameters the cloud response is most 
sensitive to. Finally, we can also compare the response across the three regions while holding 
aerosol and meteorology constant to address SQ1. Although all three regions have tropical 
rainforests, there are nuances in the character of deforestation across the regions which lead to 
differences in the specific surface properties changed. For example, deforestation in Southeast 
Asia is heavily driven by conversion of pristine forest to oil palm plantations, which results in 
smaller changes to albedo, moisture, and roughness length when compared to deforestation in the 
Congo or the Amazon which are driven by expansion of croplands or livestock feeding grounds, 
respectively (Lambin et al. 2003). Thus, differences in the cloud responses between these three 
regions (while holding other variables constant) can give an idea of which surface properties are 
the primary drivers of cloud responses in the real world. 
 
3.2. Environmental controls on land-aerosol-cloud processes from idealized models 

The real-world assessment of how aerosols, meteorology, and the land surface impact 
clouds proposed in Task 1 will be complemented with a process-focused analysis of a large 
model ensemble in Task 2 (Fig. 5). We plan to use an ensemble of high-resolution idealized 
simulations and Gaussian process emulation to elucidate the mechanisms of land-aerosol-
cloud interactions and to determine the key properties driving these interactions.  

We will use the Regional Atmospheric Modeling System (RAMS, current version 6.3.03) to 
run an ensemble of large eddy simulations (LES) designed to test the sensitivity of convection to 
a range of surface, aerosol, and meteorological properties. RAMS is a non-hydrostatic, cloud-
resolving model with two-moment bin-emulating microphysics and sophisticated aerosol 
schemes (Cotton et al. 2003; Saleeby and van den Heever 2013). It is coupled to the Land 
Ecosystem-Atmosphere Feedback (LEAF-3) model (Walko et al. 2000), which allows for 
dynamic interactions between the land and atmosphere through the two-way exchange of surface 

 
Figure 5. Schematic illustrating the Gaussian process emulation framework. (a) Input parameters consist of surface, 
aerosol, and thermodynamic variables that are covaried to efficiently fill the physically realistic parameter space. Note 
that input parameters are color coded according to the relevant science questions. Unique combinations of input 
parameters are used to construct a set of initial conditions, shown here for three combinations of meteorological 
variables, as in Igel et al. (2018). Each set of inputs are used to initialize (b) an LES to create a full ensemble. The (c) 
output parameters are then predicted from the input parameters using a statistical emulator.   
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moisture, energy, and momentum fluxes. RAMS also uses a two-stream radiation scheme that 
incorporates aerosol radiative effects (Harrington 1997; Saleeby and van den Heever 2013). 
These simulations (Fig. 5b) will be run over a 100x100km domain with periodic lateral 
boundaries, at spatial resolutions fine enough to resolve a range of shallow to deep convection 
(Dx=100m, Dz=50-200m) for 24 hours (Dt=1s) to fully represent the diurnal cycle of convection. 
The land surface will be uniform and the initial thermodynamic conditions will be horizontally 
homogenous (but vertically varying) within each simulation, though these will vary between 
ensemble members. Convection will then be initialized using random thermal perturbations 
within the boundary layer. In similar LES we have conducted in the past, realistic cloud fields 
develop under this set-up within a matter of hours (Leung and van den Heever 2022).  

Estimating the individual and combined effects of surface, meteorology, and aerosol 
parameters requires careful ensemble design, for which we will use a Gaussian process 
emulation framework (Fig. 5) (Lee et al. 2011; Johnson et al. 2015; Igel et al. 2018; Park et al. 
2020). First, based on past studies and the hypotheses described earlier, we have already 
identified eleven input parameters (Fig. 5a) that are likely to impact land-aerosol-cloud 
interactions. A physically realistic range will then be assigned to each input parameter based on 
past literature and climatology (Fig. 3). Second, a set of initial conditions will be designed to 
capture the range of possible values for all input parameters, to ensure any non-monotonic 
effects are depicted. Given the large number of input parameters, each additional condition tested 
adds significant computational costs. For example, if even just three values are used for each of 
the eleven input parameters, a total of 311=177,147 simulations are needed—obviously, this is 
not realistic. Instead, we will use a space-filling Latin hypercube algorithm (Lee et al. 2011) in 
order to efficiently span the parameter space: only 143 simulations are needed (110 for training, 
33 for testing) (Bastos and O’Hagan 2009). Third, we will run our ensemble of LES (Fig. 5b) as 
already described. Fourth, we will identify a set of output parameters (Fig. 5c) pertaining to 
convective properties. These output parameters can consist of domain-/time-averaged values, 
specific percentiles of values, or cloud counts. Fifth, we will construct an emulator to estimate 
the relationship between the input and output parameters. This emulator can then be tested for 
accuracy; if the emulator is not able to predict the output parameters accurately (e.g., if not 
enough of the ensemble members produce deep convection), further training simulations can be 
added. Finally, variance-based sensitivity analysis will allow us to estimate the impact of each 
individual parameter and multi-parameter interaction (Oakley and O’Hagan 2004). 

The results of the sensitivity analysis will then be used to address our science questions. We 
will quantify how much of the variance in output cloud properties can be explained by a given 
surface parameter or combination of parameters, thereby directly answering SQ1. For example, 
Park et al. (2020) used the same method to show that 75% of the variance in median updraft 
speed in sea breeze convection could be attributed to soil moisture. Next, we will identify which 
meteorological input factors address the most variance, paying particular attention to how the 
sensitivity of clouds to surface parameters is impacted by differences in initial thermodynamics, 
thereby addressing SQ3. This analysis will also allow us to assess the relative contributions of 
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aerosol and surface parameters, which addresses the first half of SQ2 on aerosol loading. We 
also hypothesized that the radiative properties of the aerosol (whether it is light-scattering or 
absorbing) are important for land surface interactions. To answer the second half of SQ2, we 
plan to run two versions of the ensemble: one with ammonium sulfate and one with absorbing 
carbon particles. Comparing the two ensembles will allow us to confirm or refute our 
hypothesized responses as a function of aerosol type. For all three science questions, once the 
input parameters responsible for the most variance are identified, we can then select specific 
simulations to investigate in further detail (e.g., comparing the evolution of the boundary layer 
throughout the day in low- and high-surface roughness simulations) to better understand the 
processes driving these land-aerosol-cloud interactions.   

 
3.3. Work plan 

We expect the work proposed here will be completed by the end of Fall 2025. Download 
and analysis scripts for Task 1 have already been written and tested for Southeast Asia; these are 
straightforward to reapply for the Amazon and Congo. This task should be completed and result 
in a paper outlining the regional differences in deforestation impacts on cloud properties from 
satellite data to be submitted by the end of 2023. Most of the time and computational cost 
involved in this proposal consists of building the ensemble in Task 2. We have already begun 
selection of input parameters and uncertainty ranges, and can start running the first set of LES 
(scattering aerosol) by mid-2023 in parallel to the analysis in Task 1. The analysis procedure for 
the statistical emulator and variance-based sensitivity analysis will then be done for the first 
ensemble while the second set of LES (absorbing aerosol) is run. Given the large number of 
simulations and parameters to test, we expect to write two papers: one on environmental controls 
and one on aerosol (loading and type) controls on land surface-convection interactions.  

 
In summary, we anticipate that the combined satellite and modeling approach we propose 
here will offer novel insight into the processes driving land-aerosol-cloud interactions and 
how those processes vary across environments. In doing so, we will not only provide a 
systematic estimate of how LCC and their associated aerosol perturbations impact cloud 
properties, but also improve understanding of where and when these interactions are 
most probable and therefore essential to weather and climate.   

2023 2024 2025

Task 1: Impacts 
of land use and 
aerosol on 
cloudiness 
across regions 
from satellites

Paper 1: 
Deforestation 
impacts on 
cloud cover 
across tropical 
rainforests

1.1: Data 
download & 
pre-processing 1.2: Analysis of 

“difference-in-
differences” 1.3: Subsetting 

by aerosol and 
meteorology

Task 2: 
Environmental 
controls on 
aerosol-land 
surface-cloud 
processes from 
idealized models

Paper 2: 
Environmental 
controls on land 
surface-convection 
interactions

Paper 3: Aerosol 
impacts on land 
surface-convection 
interactions

2.1: Select 
input 
parameters 
and ranges 

2.2: Run and test LES ensemble (143 runs 
for scattering aerosol) 2.3: Create 

statistical 
emulator for 
model output 

2.4: Quantify 
parameter impacts

2.5: Run LES ensemble (143 runs 
for absorbing aerosol)

2.6: Repeat 
analysis comparing 
scattering and 
absorbing aerosol
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